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Abstract. The development of prime numbers has always been accompanied by humanity’s
pursuit of logical rigor and breakthroughs in abstract laws. The evolutionary trajectory of
data science has always been closely linked to leaps in computing power and the explosive
growth of data volume, providing robust support for in-depth explorations of prime number
laws. In this paper, Python tools (e.g., NumPy) are used to acquire data on prime numbers
and random matrices. Through normalization processing, comparison of statistical
distributions, and visualization research, the statistical correlation between prime numbers
(natural numbers greater than 1 that are divisible only by 1 and themselves) and random
matrices (matrices whose elements are random numbers) is explored. The paper finds that
there is a significant similarity between the distribution law of prime numbers (zeros of the
Riemann zeta-function) and the distribution of eigenvalues of random matrices (Gaussian
Unitary Ensemble (GUE) model). This statistical insight provides a new perspective for
understanding the randomness and orderliness characteristics of prime number distribution
in number theory and the application of random matrix theory in interdisciplinary
mathematics.
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1. Introduction

Prime numbers, as core objects of number theory research, are an important topic in mathematical
research. The Riemann Hypothesis (RH), which holds the key to unraveling the distribution law of
prime numbers, is not only the most challenging problem in number theory research, but also serves
as a cross-disciplinary bridge connecting various branches of mathematics with disciplines such as
physics and engineering, carrying humanity’s in-depth exploration of the essence of prime numbers.
Meanwhile, random matrix theory, as a “super tool” connecting mathematical abstractions, physical
laws, and engineering applications, provides a brand-new perspective for interdisciplinary research
through its ability to describe complex systems.

In recent years, the development of data science has provided new opportunities and
methodologies for studying the distribution of prime numbers and the eigenvalues of random
matrices. The research attempts to further verify the potential correlation between the two through
data analysis and reveal its underlying laws. This paper aims to systematically explore the statistical
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correlation between the distribution of prime numbers and the distribution of eigenvalues of random
matrices, with data visualization and statistical analysis as core methods.

The research attempts to reveal the intrinsic connection between the prime number distribution
law (especially the zero-point distribution of the Riemann zeta function) and the eigenvalue
distribution of random matrices by constructing a prime number sample set and a GUE random
matrix model, and completing key steps such as data acquisition, normalization processing,
statistical distribution modeling, and visual presentation with the help of Python tools. This research
contributes to exploring the empirical value of data science methods in addressing fundamental
number theory problems and provides an interdisciplinary analysis paradigm for the research of
traditional mathematical problems.

2. Literature review

2.1. Riemann hypothesis and the distribution of prime numbers

Prime numbers are special natural numbers divisible only by 1 and themselves (e.g., 2, 3, 5, 7). They
are the basic units in the study of number theory, and the pattern of their distribution has always
been a core puzzle in the field of mathematics. Prime numbers do not appear in natural numbers
with a simple periodicity, but they exhibit an asymptotic pattern through the prime number theorem.
As N approaches infinity, the number of prime numbers less than N, denoted as π(N), is
approximately equal to N/logN.

In the study of prime numbers, the Riemann Hypothesis has always been central. The Riemann
Hypothesis states that all non - trivial zeros of the ζ function lie on the critical line Re(s)=1/2 in the
complex plane. This hypothesis is closely related to the distribution of prime numbers [1]. Many
scholars have conducted in - depth research around it. Selberg proved that a positive percentage of
non-trivial zeros lie on the critical line [2]. Conrey proved that at least 40% of the zeros lie on the
critical line [3]. The importance of the Riemann Hypothesis lies not only in its own academic value,
but also in the many equivalent propositions and hypothetical conclusions it contains. For example,
dozens of important propositions in number theory can be deduced on the premise of RH [4]. Nearly
two centuries have passed since the Riemann Hypothesis was proposed, and there is still no definite
conclusion on its verification.

2.2. Random matrix

Data analysis research in random matrix theory provides direct support for the analogy between
random matrices and prime number distribution. The prototype of random matrix theory originated
from statistical and economic research in the early 20th century.S.D.Wicksell and E.T. Whittaker
explored the preliminary concepts of random matrices in early economic models [5]. Subsequently,
Albert Einstein conducted research on the vibration spectra of solids. He first proposed the problem
of random matrices, laying the foundation for the theory of eigenvalue distribution [5]. Freeman
Dyson collaborated with Wigner, applying the theory to the analysis of complex nuclear energy
spectra and introducing the concept of NNSD (nearest neighbor spacing distribution) [6]. The
Wigner-Dyson distribution (for highly correlated systems) and the Poisson distribution (for weakly
correlated systems) have been extended to gene networks and chaotic systems [6]. Montgomery
found that when u is small, R₂(u) ≈ 1-[sin(πu)/(πu)]², which is exactly the same as the pair-
correlation function of GUE eigenvalues: the R₂(u) of GUE has the same form, originating from the
eigenvalue repulsion effect [7-8]. Odlyzko verified this through numerical calculations, using large-
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scale zero-point data showing that the gap distribution P(s) is highly consistent with the GUE
prediction [9].

Some progress has been made in researching the correlation between the distribution of prime
numbers and the distribution of eigenvalues of random matrices. The development of data science
has injected new vitality into this field. However, there are still some gaps in the research on the
internal relationship between the complex prime number model and the random matrix model.

3. Methodology

3.1. Prime number normalization interval processing

One of the core characteristics of prime number distribution is the randomness of the gaps between
adjacent prime numbers. However, direct analysis of raw gaps is affected by prime density. To
eliminate the density deviation caused by the magnitude of prime numbers, it is necessary to
perform normalization processing on the gaps.

Define the normalized interval of prime numbers: (where is the k-th prime number and is the
(k+1)-th prime number).

When k is extremely large, the distribution approaches a fixed curve as follows [8].

(1)

3.2. Framework

3.2.1. GUE random matrix

The Gaussian Unitary Ensemble (GUE) is an important model with unitary symmetry in random
matrix theory, and its matrix elements satisfy the complex Gaussian distribution [8]. The eigenvalue
distribution that satisfies the GUE model has universality and does not depend on the specific matrix
size (under the limit condition). It is a typical model for describing the energy level distribution of
strongly correlated complex systems.

3.2.2. Wigner’s conjecture theory

Through research on the energy levels of heavy nuclei, Wigner conjectured that the energy level
spacings of complex quantum systems follow specific statistical distributions, and these spacings
contain universal statistical laws [6,10].

Define the normalized interval distribution as:

(2)

Sk= Pk+1-Pk

lnPk

P (s)= πs
2 e-πs2/4
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4. Experiment

4.1. Experiment process

Prime number sample acquisition: With the help of the sympy library, select all prime numbers
between 1 and 1,000,000. Avoid the interference of the special distribution of small prime numbers,
then calculate the intervals between adjacent prime numbers and normalize them with the average
interval.

Generate a GUE random matrix using NumPy, calculate and sort the eigenvalues through linear
algebra tools, then obtain the intervals between adjacent eigenvalues, and also normalize them by
the mean of the intervals.
import numpy as np

import matplotlib.pyplot as plt

from sympy import primerange

Experiment Process# Calculate the distribution of prime number gaps (N=10000)

primes = list(primerange(1, 1000000))

gaps = [primes[i+1] - primes[i] for i in range(len(primes)-1)]

normalized_gaps = gaps / np.mean(gaps)

Generate the eigenvalue interval of a random matrix (1000x1000)

matrix = np.random.randn(1000,1000) + 1j*np.random.randn(1000,1000)

matrix = (matrix + matrix.T.conj()) / 2 # GUE matrix construction

eigenvalues = np.sort(np.linalg.eigvalsh(matrix))

eigen_gaps = np.diff(eigenvalues)

normalized_eigen_gaps = eigen_gaps / np.mean(eigen_gaps)

4.2. Results visualization

Use Matplotlib to plot histograms of the normalized intervals of prime numbers and the normalized
intervals of eigenvalues of GUE matrices using matplotlib.

Meanwhile, based on the theoretical formula of Wigner Surmise, the experimental results are
presented through triple - contrast visualization (as shown in Figure 1).
plt.hist(normalized_gaps, bins=50, density=True, alpha=0.5, label=Primes)

plt.hist(normalized_eigen_gaps, bins=50, density=True, alpha=0.5, label=Random 
Matrix)

plt.plot(np.linspace(0,5,100), (np.pi*np.linspace(0,5,100)/2)*np.exp(-
np.pi*np.linspace(0,5,100)**2/4),k--, label=Wigner Surmise)

plt.legend()

plt.show()



Proceedings	of	CONF-APMM	2025	Symposium:	Simulation	and	Theory	of	Differential-Integral	Equation	in	Applied	Physics
DOI:	10.54254/2753-8818/2025.DL27427

140

Figure 1. Comparison of the distribution histograms of the normalized intervals of prime numbers
,the normalized intervals of eigenvalues of GUE matrices and the theoretical formula curve of

Wigner Surmise

As shown in Figure 1, this study calculated the normalized gap distributions of primes and GUE
random matrix eigenvalues, and compared both with the Wigner Surmise theoretical curve. The
frequency distributions of the normalized intervals of prime numbers (blue) and eigenvalues of
random matrices (orange) are intuitively presented through a histogram. The two exhibit a high
degree of morphological similarity in the low-interval range (e.g., 0-2), which provides support for
the conjecture that "prime number intervals follow the statistical laws of random matrices". At the
same time, t comparing both distributions with the Wigner Surmise theoretical curve (black dotted
line) quantifies the matching degree between “theoretical predictions” and “actual data (primes,
random matrices)”. The relatively close trend reflects that the distribution of prime numbers
conforms to the universality of random matrix theory to a certain extent. This proves that the
randomness of prime numbers can be quantitatively described by the statistical model of random
matrices.According to the Montgomery-Odlyzko law, the spacing distribution of the zeros of the
Riemann zeta function satisfies specific rules.

Since the distribution law of prime numbers directly depends on the distribution of the non-trivial
zeros of the Riemann zeta function, it is conjectured that there may also be a certain relationship
between the distribution of the non-trivial zeros of the Riemann zeta function and the normalized
spacing distribution of the eigenvalues of the GUE matrix. By using Python code, numerical
calculations are carried out with NumPy, and plotting is done with Matplotlib.
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Figure 2. Comparison of the GUE nearest-neighbor spacing distribution with the theoretical curve of
Montgomery’s pair-correlation function

According to Figure 2, it is found that after the normalized interval is greater than 1, the
difference between the theoretical curves is significant. It is speculated that the interval distribution
of the zeros of the Riemann zeta function and the GUE nearest-neighbor spacing distribution may
exhibit different characteristics with the change of the normalized interval.

5. Discussion

5.1. Conclusion

This study explored the relationship between random matrices and primes using visualization tools,
confirming statistical similarity between the normalized spacing distribution of primes and the
eigenvalue distribution of GUE random matrices. In particular, there is a significant morphological
consistency was observed in the low-spacing interval (0-2). Moreover, both of them show a high
degree of agreement with the Wigner Surmise theoretical curve. This discovery helps to support the
idea that the distribution of prime numbers contains the universal laws of complex systems.

From an application perspective, this paper provides new insights for improving encryption
algorithms. A more efficient prime number generation algorithm is generated through the random
matrix model, and its randomness helps to ensure the dependence of RSA encryption on the
randomness of prime numbers [10]. Additionally, while this research cannot directly prove the
Riemann Hypothesis, it provides empirical support for the correlation between prime distribution
and complex system laws using large-sample data. It also offers a new perspective for exploring
number-theoretic problems through data science methods and provides certain theoretical support
for subsequent exploration of the deep-seated connection between the zeros of the ζ function and
complex systems.

5.2. Limitations

This experiment also has certain limitations. Firstly, the model scope is narrow. This study only
focuses on the eigenvalues of prime number distribution and random matrices (GUE model), and
does not explore other symmetric types of random matrix ensembles (GOE or GSE). Since there are
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slight differences in the eigenvalue distributions of different matrix ensembles, further research is
needed to examine the correlation between prime number distribution and multiple ensembles to
verify its universality.

Secondly, quantitative analysis is insufficient. There is a shortage of quantitative statistical data
on the distribution of prime numbers and matrix eigenvalues, and most of the focus is on qualitative
observation of images and distribution patterns. Consequently, subtle differences or unique
distribution characteristics in local intervals (such as the degree of deviation in large - interval
regions) may be overlooked. Finally, sample coverage is limited. Future studies could expand the
sample size of Riemann zeta-function zero (by calculating more zeros) to verify the asymptotic
stability of the distribution pattern.

6. Conclusion

This paper reveals the similarity between prime number distribution and random matrix eigenvalue
distribution through empirical analysis. The research shows that the normalized intervals of prime
numbers are highly consistent with the eigenvalue distribution of random matrices in the low-
interval range, which confirms the applicability of the laws of complex systems in the field of
number theory and provides a new research paradigm from the perspective of data science for
solving problems in analytic number theory. However, due to experimental limitations, there are still
some deficiencies in the selected samples. Therefore, further verification by incorporating other
matrix ensembles is still needed in the future.

This paper combines the fine structure of deterministic systems in number theory with the
universal laws of random systems in random matrix theory. It not only solves the core problems in
number theory and physics but also provides new perspectives for interdisciplinary research. This
“bridge between determinism and randomness” may find new application scenarios in more
complex systems in the future (such as the weight distribution of neural networks in artificial
intelligence and the distribution of galaxies in cosmology), thereby promoting a deeper
understanding of the relationship between “order and chaos”.

References

[1] Liu, F. (2016). Jacobi functional equation and the zeros of the Riemann ξ(s) function. Journal of Shandong
University of Science and Technology (Natural Science Edition), 35(1), 97–101.

[2] Titchmarsh, E. C. (1986). The theory of the Riemann zeta-function (2nd ed.). Oxford University Press.
[3] Conrey, J. B. (1989). More than two fifths of the zeros of the Riemann zeta function are on the critical line. Journal

für die reine und angewandte Mathematik, 399, 1–26.
[4] Borwein, P., Choi, S., & Rooney, B. (2008). The Riemann hypothesis: A resource for the aficionado and virtuoso

alike. Springer.
[5] Bai, Z., & Silverstein, J. W. (2010). Random matrix theory and its applications: Multivariate statistics and wireless

communications. World Scientific.
[6] Wigner, E. P. (1955). Characteristic vectors of bordered matrices with infinite dimensions. Annals of Mathematics,

62(3), 548–564.
[7] Montgomery, H. L. (1973). The pair correlation of zeros of the zeta function. In Analytic number theory (pp. 181–

193). American Mathematical Society.
[8] Mehta, M. L. (2004). Random matrices (3rd ed.). Academic Press.
[9] Odlyzko, A. M. (2001). The 1022-nd zero of the Riemann zeta function. http:

//www.dtc.umn.edu/~odlyzko/unpublished/zeta.10to22.
[10] Dyson, F. J., & Wigner, E. P. (1967). Statistical theory of the energy levels of complex systems. Journal of

Mathematical Physics, 8(1), 165–175.


