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Forensic DNA analysis is a critical component of judicial practice, where
identifying individuals from mixed DNA samples poses significant challenges. Short tandem
repeat (STR) analysis serves as the core technique in forensic DNA identification. However,
peak height overlap, allele loss, and background noise in mixed samples lead to insufficient
identifiability and cumulative errors in traditional probability models during subject
identification and proportion estimation. This study aims to construct a deep learning-based
cascade analysis framework to systematically enhance the resolution accuracy and
robustness of mixed STR profiles. This paper proposes a multimodal fusion algorithm based
on the Distance-Weighted Self-Attention (DWSA) mechanism. To address the problem of
inferring the number of contributors, a dual-branch network architecture is designed. By
integrating sequence features and macro-statistical features, the DWSA mechanism captures
spatial correlations among alleles. For contributor proportion estimation, a nonlinear
distance-decaying self-attention network is constructed. Jensen-Shannon divergence is
employed as the loss function, and multi-locus outputs are integrated in logit space.
Experimental results demonstrate that the proposed model achieves 100% accuracy in
predicting the number of individuals across 50 test samples. The overall average ensemble
MAE for proportion prediction is 0.0809, significantly outperforming traditional methods.
This study provides a novel solution for analyzing forensic DNA admixture samples,
holding significant theoretical implications and practical application value.

Hybrid STR analysis, Distance-weighted self-attention, Multi-model fusion

Forensic DNA analysis plays a pivotal role in crime scene investigations, with Short Tandem Repeat
(STR) analysis at its core [1]. STRs are referred to as the Deoxyribonucleic acid(DNA) fingerprint
of cells due to the individual polymorphism in the number of repeats within their core sequence.
Within STR profiles, allele size and peak height respectively reflect DNA fragment length and
abundance. Each diploid individual carries two alleles at autosomal loci, conferring individual
specificity to genotypes [2].

When multiple individuals' DNA is present in biological evidence, mixed STR profiles exhibit
complex allele superposition patterns accompanied by interference such as random losses, random
gains, and peak height imbalances [3]. Traditional probabilistic models face challenges of
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insufficient resolvability and error accumulation when handling these complex scenarios,
necessitating the development of new computational methods to enhance the analytical capability of
mixed STR profiles. Recent studies have explored machine learning approaches to improve mixture
interpretation, yet challenges remain in handling high-order mixtures and low-template samples [4].
Deep learning frameworks, particularly those incorporating biological constraints, show promising
potential for robust forensic DNA profile analysis [5].

This study proposes a deep learning model that integrates biological prior knowledge to tackle
the above problem. The main contributions of this study are: 1) Integrating biological prior
knowledge with deep learning techniques to design an attention mechanism tailored to STR profile
characteristics; 2) Proposing effective multimodal fusion and ensemble learning strategies to
enhance model performance in complex scenarios; 3) Providing novel technical approaches and
solutions for forensic DNA mixture analysis.

This study utilized mixed STR profile data measured in forensic laboratories, encompassing
detection results for 16 autosomal STR loci (D3S1358, D13S317, D21S11, vWA, etc.). Sample
types encompassed DNA mixtures from 2 to 5 individuals. Raw data for each sample included key
characteristics such as fragment size (Size, unit: bp) and peak height (Height, unit: RFU) for each
allele.

Data preprocessing includes the following steps:

a. Dynamic threshold filtering and valid peak identification: Employing dynamic threshold
analysis

T}, = max (20RFU, Percentile({h},8)) (1)

Distinguish between genuine allele signals and background noise.

Only peaks exceeding the specified height are considered “valid peaks.” Participate in subsequent
analysis and feature calculation.

b. Normalization: To eliminate variations in amplification efficiency and detection sensitivity
across different loci, all sequence features (Size, Height) and numerical auxiliary features undergo
minimum-maximum scaling, independently normalized to the range [0, 1].

X = X—Xmin (2)

Xmax ~Xmin

c.Sequence Padding and Mask Construction: Since the number of effective alleles detected

eff

_k _k nl]
k=1

At the same locus varies across samples, each sample's (Size, Height) pairs are padded to a
uniform maximum length using zero vectors. Concurrently, a Boolean mask sequence is generated
to explicitly distinguish between effective data and padding positions within the sequence.
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2.2. Model architecture
2.2.1. Distance-Weighted Self-Attention mechanism (DWSA)

Self-attention mechanisms can capture global dependencies within sequences, but their standard
form does not account for biological prior knowledge—namely, that the strength of associations
between alleles in STR maps is closely correlated with their physical distance. To address this, this
paper proposes the Distance-Weighted Self-Attention Mechanism (DWSA).

First, the input height features are projected onto the query, key, and value spaces via a linear
transformation:

Q = Xy Wo(4), K = Xy Wi(5), V = X3, Wy 4

Here, X}, denotes the height feature column within the input sequence, while Wq , Wi, Wy
represent learnable weight matrices.
Subsequently, a distance penalty term based on normalized size is introduced during attention
weight computation:
qk{
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Where q, and k; are the query and key vectors for the k-th and 1-th alleles, respectively, dy

denotes the dimension of the key vector, sx and s; represent the normalized fragment sizes of the
k-th and 1-th alleles, respectively, and A is a learnable or predefined distance decay coefficient that
controls the strength of the distance penalty.

Finally, the attention weights o and the output O are computed as follows:

___ exp(Logitsy)
Ol = Zﬁfg’f‘ exp(Logits,,,) (6)
Lmax
Output = > ™™ auvi (7)

The biological significance of this mechanism lies in the fact that alleles in close physical
proximity (such as the main peak and its stutter peak) are more likely to originate from the same
biological process. DWSA explicitly reinforces this local association through its penalty term,
thereby reducing interference from unrelated distant peaks and enabling the model to identify key
patterns with greater precision.

2.2.2. Multimodal dual-branch model architecture

For contributor inference, the model employs a dual-branch architecture to fuse multimodal
information:

Sequence Branch: Processes normalized and padded (Size, Height) sequence data X;; € Rlm=>2
. Its core component is the DWSA layer, designed to capture complex spatial interaction patterns
between alleles.

Auxiliary Branch: Processes normalized macro-statistical feature vectors Z;; € RP=x . These
features include effective allele size, total peak height, mean peak height, peak height standard
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deviation, peak height skewness, kurtosis, size difference between adjacent alleles, and peak height
ratio, describing sample characteristics from a global perspective.

Fusion Strategy: Features from both branches undergo independent high-level feature extraction
via multi-layer perceptrons (MLPs). The extracted feature vectors are concatenated, and a fully
connected layer outputs the prediction (theoretical effective allele number).

For contributor proportion estimation, the model input is expanded into four modalities:
normalized peak height sequence, raw Size sequence (retaining absolute scale), validity mask, and
the number of contributors N provided by Problem 1 (injected as a conditional input). The core
mechanism employs an improved nonlinear distance-decaying self-attention mechanism (using the
exponential decay function exp (—ADj;) , while also integrating macro-statistical features. The final
output is a vector of logits without Softmax normalization.

2.3. Model training and evaluation
2.3.1. Training details

Contributor Number Inference: The learning objective is to predict the theoretical number of alleles
2X Pirue - The loss function employs Mean Absolute Error (MAE):

Liae = = o |vi — 7 3

The optimizer uses Adam with an early stopping strategy to prevent overfitting.

Contributor Proportion Estimation: The learning objective is to predict the proportion distribution
of contributors. The loss function employs Jensen-Shannon Divergence (JSD) to stably measure
differences between probability distributions:

JSD(P||Q) = 3 Dgr(P||M) + 5 Drr(Q||M)(11), M = 5 (P + Q) ©9)

The loss function implementation includes steps such as dynamically resolving the true
population size N, computing only the first N valid proportions, and ensuring numerical stability.
The model trains a separate submodel for each locus to fully leverage locus-specific information.

2.3.2. Evaluation metrics

Contributor Number Inference: Primarily assesses the accuracy of the final number prediction.
Additionally, records the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) of each
submodel's predicted allele counts to analyze performance variations across loci.

Contributor Proportion Estimation: Primarily evaluates the Mean Absolute Error (MAE) between
predicted and actual proportions. Simultaneously analyzes MAE variations across different
contributor counts and compares ensemble model performance against independent models.

2.3.3. Ensemble strategy

Estimating the number of contributors: The final predicted allele count T, for a sample is
obtained by taking the weighted average of predictions from all locus models. The weight wj is the

reciprocal of the MAE of the corresponding model: w;j = (10), where € 1is a small

1
MAE;+€
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constant added to prevent the denominator from becoming zero. The final number of contributors is
obtained as B = | 24 | (11).

Contributor proportion estimation: For test samples, the ensemble Logits vector
Lensemble = ﬁ Zg{zl Lm(12) is computed as the arithmetic mean of Logits vectors from all 16

locus models. The first N elements are then truncated based on the known true population size N,
and the final predicted proportion is obtained via Softmax. This ensemble strategy in logit space
effectively smooths noise from individual models.

3. Results
3.1. Contributor count prediction results

The model achieved perfect performance on the test set (50 samples). As shown in Table 1, all

mixed samples of 2, 3, 4, and 5 contributors were correctly classified, achieving an overall accuracy
of 100%.

Table 1. Contributor count prediction confusion matrix

Prediction Category

Actual
2 3 4 5
2 15 0 0
3 16 0
4 0 11 0
5 0 0 9

The performance of individual locus submodels showed significant variation (Table 2). Highly
polymorphic loci such as D13S317, D3S1358, and D21S11 demonstrated high prediction accuracy
(100%, 98.04%, 98.04%) and low MAE (~0.13-0.16). In contrast, low-polymorphism or highly
complex loci like TPOX, D7S820, and D5S818 exhibited relatively lower prediction accuracy
(54.9%, 54.9%, 58.8%) and higher MAE (~0.46—0.53). This confirms that different loci contribute
varying degrees of information to population size estimation and underscores the necessity of an
ensemble strategy.
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Table 2. Performance examples of models for different locuses

Marker MAE RMSE Accuracy
D13S317 0.1613 0.2028 1.0000
D3S1358 0.1265 0.1792 0.9804

D21S11 0.1388 0.1833 0.9804

vWA 0.1290 0.1964 0.9608
THO1 0.1810 0.2417 0.9216

AMEL 0.2448 0.2978 0.9020

D8S1179 0.2886 0.3437 0.8824
FGA 0.2526 0.3207 0.8824

D18S51 0.2203 0.2964 0.8627
D16S539 0.2409 0.3241 0.8431
D19S433 0.3272 0.3648 0.8235
CSF1PO 0.3530 0.4194 0.7843
D2S1338 0.3883 0.4450 0.6863
D5S818 0.5032 0.5721 0.5882
D7S820 0.4633 0.5318 0.5490

TPOX 0.5346 0.6190 0.5490

Analysis of the Correlation between Error Metrics and Accuracy
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Figure 1. Analysis of the correlation between error metrics and accuracy

The weighted ensemble strategy effectively leverages reliable information from high-
performance loci while suppressing noise from low-performance loci, ultimately achieving 100%
accuracy. Case studies demonstrate that even for highly challenging samples involving five
individuals, the model accurately predicts a theoretical allele count of 10 by integrating predictions

from multiple loci, thereby correctly inferring the number of individuals as five, as shown in Figure
1.
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The proportion prediction model also demonstrated excellent and robust performance. The overall
average ensemble MAE across all 50 test samples was 0.0809, indicating an average absolute
deviation of approximately 8.09% between predicted and actual proportions.

Model performance did not decline monotonically with increasing sample size (Table 3). For the
more complex 4-person and 5-person mixed samples, the average MAE (0.0768, 0.0673) was lower
than that for 2-person and 3-person samples (0.0898, 0.1002), with smaller standard deviations. This
indicates that the ensemble strategy demonstrates greater advantages when handling high-
complexity mixtures, effectively integrating multi-locus information to resist noise.

Table 3. Average ensemble MAE for different contributor numbers

Contributors(N) Samplesize AverageEnsembleMAE MAEstandarddeviation
2 6 0.0898 0.0934
3 12 0.1002 0.0533
4 16 0.0768 0.0469
5 16 0.0673 0.0298

The performance of the ensemble model (MAE=0.0809) significantly outperformed all 16
independent locus models (whose MAEs ranged from 0.0886 to 0.0988) (Table 4). This
demonstrates that multi-locus integration in Logits space effectively smooths biases arising from
data quality issues and allele loss in individual loci, thereby enhancing prediction accuracy and
robustness.

Table 4. Example of MAE comparison between independent and integrated models

Model Average MAE Model Average MAE

MAE(AMEL) 0.0925 MAE(D5S818) 0.0922
MAE(CSF1PO) 0.0988 MAE(D7S820) 0.0886
MAE(D13S317) 0.0940 MAE(D8S1179) 0.0970
MAE(D16S539) 0.0986 MAE(FGA) 0.0954
MAE(DI18S51) 0.0985 MAE(THO1) 0.0976
MAE(D19S433) 0.0962 MAE(TPOX) 0.0932
MAE(D21S11) 0.0924 MAE(VWA) 0.0937
MAE(D2S1338) 0.0975 Integrated Model 0.0809
MAE(D3S1358) 0.0955

The predicted proportions [0.1008, 0.4747, 0.4245] for the typical sample (ID:9, 3-person mixed)
closely match the actual proportions [0.1111, 0.4444, 0.4444], with an ensemble MAE as low as
0.0202, demonstrating the model's high accuracy under ideal conditions.
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Mean Absolute Error {MAE) Distribution by Marker and Ensemble
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Figure 2. Mean absolute error distribution by marker and ensemble
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Figure 3. Ensembled predictions vs. true proportions

This result provides strong evidence that our ensemble strategy is successful. Ensemble learning
effectively smooths out prediction biases in individual models caused by data noise, allele loss, or
other random factors by synthesizing the “opinions” of multiple models, as shown in Figure 2. Even
when data quality at a single locus leads to inaccurate predictions in its independent model,
information from other loci can correct this bias. Consequently, the final ensemble result more
closely approximates the true value and exhibits greater robustnes, as shown in Figure 3.

4. Model analysis

The cascade model constructed in this study demonstrates significant advantages in hybrid STR
profile analysis:

First, the successful application of the distance-weighted self-attention mechanism (DWSA)
represents one of the core innovations enabling the model's high accuracy. This mechanism
successfully encodes the key biological prior that physically proximate alleles exhibit stronger
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associations into the model. By introducing distance penalty terms (linear or nonlinear decay), the
model precisely captures local biological features such as stutter peaks, significantly enhancing its
ability to recognize complex spatial interaction patterns between alleles. This attention mechanism
design grounded in biological prior offers new insights for deep learning applications in specialized
domains.

Second, the multimodal fusion design enables the model to simultaneously leverage micro-level
sequence patterns (Size, Height sequences and their interactions) and macro-level statistical features
(peak height distribution, effective gene number, etc.). This fusion provides a more comprehensive,
multidimensional information view, enhancing the model's understanding and robustness toward
complex, variable data. Particularly in applications like forensic DNA analysis where data quality
varies significantly, the complementarity of multi-source information is crucial.

Third, the ingenious application of ensemble learning strategies effectively addresses the
disparity in information content and reliability across loci. Weighted ensemble (for individual
prediction) and logit-space averaging (for proportion prediction) allow the model to synthesize
multiple information sources, automatically assigning higher weights to reliable loci. This approach
effectively mitigates the impact of low-quality data or noise interference, ensuring the stability and
accuracy of final decisions. This strategy demonstrates significant advantages when handling
challenging samples.

Finally, the “number—proportion” cascade analysis framework aligns with forensic experts'
logical interpretation process. The accurate number prior provided in Problem 1 establishes the
foundation for precise proportion prediction in Problem 2, forming a systematic solution. This
cascade design not only enhances analytical efficiency but also improves result interpretability.

Future research directions include: 1) developing more robust feature extraction methods,
particularly for low-polymorphism loci; 2) exploring end-to-end training strategies to reduce error
accumulation in cascading frameworks; 3) incorporating additional prior biological knowledge, such
as stutter ratios and allele frequencies across different loci; 4) expanding dataset scale, especially by
including rare proportion and highly degraded samples, to enhance model generalization.

This paper addresses key challenges in forensic DNA mixture analysis by proposing a mixed STR
profile parsing model based on distance-weighted self-attention (DWSA). Through multimodal
feature fusion and ensemble learning strategies, it systematically resolves the problems of
contributor number inference and proportion estimation.

Experimental results demonstrate that the proposed model achieves 100% accuracy in number
prediction and an average MAE of 0.0809 in proportion estimation, significantly outperforming
traditional methods. The DWSA mechanism effectively captures local associations among alleles,
multimodal fusion provides more comprehensive feature representations, and the ensemble learning
strategy ensures model robustness.

However, this study still has some limitations. First, model performance is highly dependent on
the accuracy of the initial number prediction. Any misjudgment of the number will lead to
cumulative errors in subsequent proportion estimation. Second, although the ensemble strategy
mitigates the impact of low-polymorphic loci to some extent, the prediction performance for loci
such as TPOX and D7S820 still has significant room for improvement. Additionally, the model's
performance in handling extreme proportion mixtures (e.g., where the major contributor's proportion
exceeds 90%) requires further validation.
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Future work will focus on optimizing the model architecture, incorporating additional prior
knowledge, and expanding the dataset scale to further enhance the model's performance and
practical value in complex scenarios.
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