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Abstract. The relation between the abelian extension of a field and the topological groups of 

the field itself can be constructed using class field theory. In this piece of writing, the author 

will introduce the fundamental theorems of local class field theory by conducting a method of 

literature study. These theorems are the Reciprocity Law and the Existence Theorem, 

respectively. In addition to that, the author will discuss several unresolved issues in class field 

theory and provide examples of their applications in number theory. In class field theory, the 

results can be shown in two different ways. Both can be considered broad strokes. The first 

step is to demonstrate that the local case is true. By employing the methodology of 

cohomology and the theory of Lubin and Tate, one can demonstrate the Local Reciprocity Law 

and the Local Existence Theorem. The fundamental theorems in the global case are going to be 

demonstrated by utilizing the local results in conjunction with cohomology. Directly 

demonstrating the Gocal Reciprocity Law is another viable option. 

Keywords: local reciprocity law, local existence theorem, group cohomology, Lubin-Tate 

theory, local class field theory. 

1.  Introduction 

Class field theory is, in essence, a theory about the abelian extension of fields. Hilbert was the first 

person to establish that there is a bijection between ideal class groups and the abelian extensions of a 

field. People in the 20th century developed the global class field theory by introducing the idele 

groups, and they developed the local class field theory by using the language of brauer groups and 

central simple algebra. Both of these theories were developed in the century.  

In this paper, the author will primarily use the method of Lubin-Tate theory and group cohomology 

to prove the fundamental theorems, and I will demonstrate that the uniqueness of the depth of the local 

kronecker-weber theorem is equivalent to the depth of the uniqueness of the local artin map.  

This proof offers us a means by which we can express the abelian extension in a more explicit 

manner using the local Kronecker-Weber theorem. Even the local theorem can be used to demonstrate 

that the global case is correct. In addition to this, we do not even rely on the character of the local field 

in our proof, which means that we are free to select k as the field of Laurent series. 

2.  Main theorems 

In this section, we shall demonstrate that the Local Reciprocity Law and the Local Existence 

theorem are correct. 
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2.1.  Local Reciprocity Law 

Theorem1: Assume K is a local field, then we can find a unique homomorphism  

𝜙𝐾: 𝐾× → Gal(Kab/𝐾) 

s.t. 

(a) Assume 𝜋 if a prime of 𝐾 and L/K is a unramified extension of finite degree, then , 𝜙𝐾(𝜋)  

restricts on 𝐿 is 𝐹𝑟𝑜𝑏𝐿/𝐾; 

(b) Assume L/K a abelian extension of finite degree, then the norm group NmL/K(𝐿×) belongs to 

the kernel of 𝑎 ↦ 𝜙𝐾(𝑎) ∣ 𝐿, and there is an induced isomorphism 

𝜙𝐿/𝐾: K×/NmL/K(𝐿×) → Gal(𝐿/𝐾). 

And the equality that we have here is as follows: 

(𝐾×:/NmL/K(𝐿×)) = [𝐿: 𝐾]. 

To begin, we are going to demonstrate the Local Kronecker-Weber theorem, which helps us to 

describe the abelian closure of a local field K. 

Theorem2:  For every prime element π of K, 

K𝜋 ⋅ Kun = Kab 

In this thesis, I will use the results in Lubin-Tate theory without proof, for a proof of this results, one 

can see [1] and [2] 

Assume 𝜋  is a prime of K, then according to Lubin-Tate theory, we can choose a polinomial 

𝑓(𝑥) ∈ 𝐹𝜋 and define 𝛬𝑛 as the root of 𝑓(𝑛)(𝑥) and 𝐾[𝛬𝑛] is a totally ramified extension of degree (q-

1)q^n over K with 

𝐺𝑎𝑙(𝐾[𝛬𝑛]) ≅ (𝐴/𝑚𝑛)× 

where A is the valuation ring of K, and m is the maximal ideal of A. We function as an inverse limit 

on both sides, and once we do so, we obtain  

𝐴× ≅ 𝐺𝑎𝑙(𝐾𝜋/𝐾) 

With the above notation, we can define a homomorphism 

𝜙𝜋: K× → Gal((𝐾𝜋 ⋅ Kun)/𝐾) 

Let 𝑎 ∈ 𝐾× . Since we have proved that 𝐾𝜋 ∩ Kun =  Kab , we only need to construct the 

homomorphism of 𝜙𝜋(𝑎)  on 𝐾𝜋  and Kunun
 separately. Let 𝑎 = 𝑢𝜋𝑚, 𝑢 ∈ 𝑈 . We have that 𝜙𝜋(𝑎) 

restricts on Kunun
 as 𝐹𝑟𝑜𝑏𝑚, and that it restricts on 𝐾𝜋  satisfies the following equation. 

𝜙𝜋(𝑎)(𝜆) = [𝑢−1]𝑓(𝜆),  all𝜆 ∈ ⋃𝛬𝑛. 

Theorem3: The construction of 𝐾𝜋 ⋅ Kun and 𝜙𝜋 are independent of 𝜋. 

Recall that an infinite extension of a complete field is no longer complete, in particular, we can 

prove 𝐾𝑢𝑛 is not complete. We denote 𝐾𝑢𝑛,𝑐𝑜𝑚 for its completion, and B for the valuation ring of 

𝐾𝑢𝑛,𝑐𝑜𝑚̂ . 𝜎 denotes for the Frobenious automorphism 𝐹𝑟𝑜𝑏𝐾𝑜𝑓𝐾𝑢𝑛/𝐾, and so it can be extended to 

𝐾𝑢𝑛,𝑐𝑜𝑚̂ . 

Lubin-Tate theory shows that there is a power series: 𝜃(𝑋) ∈ 𝐵[[𝑋]]  satisfying the following 

properties: 

(a) 𝜃(𝑇) = 𝜀𝑇 + terms of degree ≥ 2; 

(b) 𝜎𝜃 = 𝜃 ∘ [𝑢]𝑓; 

(c) 𝜃 (𝐹𝑓(𝑋, 𝑌)) = 𝐹𝑔(𝜃(𝑋), 𝜃(𝑌)); 
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(d) 𝜃 ∘ [𝑎]𝑓 = [𝑎]𝑔 ∘ 𝜃 

Proof: [1] and [3] 

Proof: The independence of 𝐾𝜋 ∙ 𝐾𝑢𝑛  

Let 𝜋 and ϖ = 𝜋𝑢 be two prime elements of 𝐾. Where u is unit of 𝑂𝐾0 

then we have  

(𝜎𝜃) ∘ [𝜋]𝑓 = 𝜃 ∘ [𝑢]𝑓 ∘ [𝜋𝑓] = 𝜃 ∘ [ϖ]𝑓 = [ϖ]𝑔 ∘ 𝜃, 

Thus  

(𝜎𝜃)(𝑓(𝑇)) = 𝑔(𝜃(𝑇)). 

Which means that,∀𝛼 ∈ 𝐾al  

𝑓(𝛼) = 0 ⇒ 𝑔(𝜃(𝛼)) = 0, 

𝑔(𝛼) = 0 ⇒ 𝑓(𝜃−1(𝛼)) = 0. 

Thus 𝜃 defines a bijection 𝛬𝑓,1 → 𝛬𝑔,1 

𝐾𝑢𝑛,𝑐𝑜𝑚[𝛬𝑔,1] = 𝐾𝑢𝑛,𝑐𝑜𝑚[𝜃(𝛬𝑓,1)] ⊂ 𝐾𝑢𝑛,𝑐𝑜𝑚[𝛬𝑓,1] ⊂ 𝐾𝑢𝑛,𝑐𝑜𝑚[𝜃−1(𝛬𝑔,1)] ⊂ 𝐾𝑢𝑛,𝑐𝑜𝑚[𝛬𝑔,1] 

and 

𝐾𝑢𝑛,𝑐𝑜𝑚[𝛬𝑔,1] = 𝐾𝑢𝑛,𝑐𝑜𝑚[𝛬𝑓,1]. 

𝐾𝑢𝑛,𝑐𝑜𝑚[𝛬𝑔,1] ∩ Kun = Kun[𝛬𝑔,1], 𝐾𝑢𝑛,𝑐𝑜𝑚[𝛬𝑓,1] ∩ Kun =al Kun[𝛬𝑓,1], 

The equality holds because everey subfield E of 𝐾𝑎𝑙 containing K is closed, thus the left side is a 

cloed field. 

Kun[𝛬𝑔,1] = Kun[𝛬𝑓,1]. 

We can use the similar proof to show that 

Kun[𝛬𝑔,𝑛] = Kun[𝛬𝑓,𝑛] 

Holds for all 𝑛, thus Kun ⋅ 𝐾ϖ = Kun ⋅ 𝐾𝜋. 

Proof: The independence of  𝜙𝜋  

It suffices to prove that the following equation hold for ∀𝜋 and ∀ϖ, 

𝜙𝜋(ϖ) = 𝜙ϖ(ϖ). 

From the above equation we have that for ∀π′ 

𝜙𝜋′(ϖ) = 𝜙ϖ(ϖ) = 𝜙𝜋(ϖ). 

Which means 𝜙𝜋 = 𝜙𝜋′  hold on 𝐾× 

To show the equality, we only need to show that 𝜙𝜋(ϖ) and 𝜙ϖ(ϖ) agree on both Kun and 𝐾ϖ 

For Kun, 𝜙𝜋(ϖ) and 𝜙ϖ(ϖ)  equals to Frobenius automorphism.  

Now we prove they agree on 𝐾ϖ. 

From theorem3 we know that there is an isomorphism 𝜃: 𝐹𝑓 → 𝐹𝑔 over 𝐾𝑢𝑛,𝑐𝑜𝑚 , and we have an 

induced isomorphism of the roots 𝛬𝑓,𝑛 → 𝛬𝑔,𝑛 for all 𝑛. Then, notice that 𝜙ϖ(ϖ) is the identity on 𝐾ϖ,  

𝐾ϖ,𝑛 is generated over 𝐾 by the image of roots 𝜃(𝜆) for 𝜆 ∈ 𝛬𝑓,𝑛, it suffices to prove that 

𝜙𝜋(ϖ)(𝜃(𝜆)) = 𝜃(𝜆),  all 𝜆 ∈ 𝛬𝑓,𝑛. 

denotes ϖ = 𝑢𝜋. Then 𝜙𝜋(ϖ) = 𝜙𝜋(𝑢) ⋅ 𝜙𝜋(𝜋) = 𝜏𝜎, thus 
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𝜎 = {
Forb𝐾  on 𝐾un

id    on λ
    𝜏 = {

id       on 𝐾un

[𝑢−1]𝑓    on λ 

Since from the construction we know that the series 𝜃 has coefficients in Kun,comun
 

𝜙𝜋(ϖ)(𝜃(𝜆)) = 𝜏𝜎(𝜃(𝜆)) = (𝜎𝜃)(𝜏𝜆) = (𝜎𝜃)([𝑢−1]𝑓(𝜆) = 𝜃(𝜆). 

From which we obtain the independence. 

According to the constrution of 𝐾[𝜋,𝑛], we can draw the equality that 

𝑁𝑚(𝐾[𝜋,𝑛]) = (1+𝑚𝑛) ⋅ 𝜋𝑍 

which means that 𝜋 is a norm of 𝐾[𝜋,𝑛] for all n. 

From the above statements, we have constucted a homomorphism 

𝜙𝜋: 𝐾× → Gal((𝐾𝜋 ⋅ Kun)/𝐾) 

such that 

∗ 1 𝜙𝜋(𝜋) ∣ Kunu
= FrobK; 

∗ 2 for all 𝑚 and 𝑛, 𝜙𝜋(𝑎) ∣ (𝐾𝜋,𝑛 ⋅ 𝐾𝑚) = id for 𝑎 ∈ (1 + 𝔪𝑛) ⋅ ⟨𝜋𝑚⟩. 

∗ 1 come from the definition directly, and ∗ 2 holds because 

𝐺𝑎𝑙(𝐾[𝛬𝑛]) ≅ (𝐴/𝑚𝑛)× 

Thus the kernel of 𝜙𝜋(⋅) ∣ (𝐾𝜋,𝑛 ⋅ 𝐾𝑚) is (1 + 𝑚𝑛) ⋅ ⟨𝜋𝑚⟩. 

What’s more, we have shown that the construction of 𝐾𝜋 ⋅ 𝐾un and 𝜙𝜋 don’t rely on the choice of 

𝜋. 

We shall now use some cohomoloy tools to prove the existence of the homomorphism described in 

the Local Reciprocity Law. 

The following theorem would be very important to the solution: 

Theorem: 𝐺  is a finite group(not necessary abelian) and 𝐶  is a 𝐺 −module with the following 

properties. For all subgroups 𝐻 of 𝐺, 

(a) H11
(𝐻, 𝐶) = 0 

(b) H12
(𝐻, 𝐶) ≅   Z/(𝐻: 1)Z.  

Then, there is an isomorphism between two Tate cohomology groups 

𝐻𝑇
𝑟(𝐺, ℤ) → 𝐻𝑇

𝑟+2(𝐺, 𝐶) 

Proof: [1] and [4]. 

Since (𝐺, 𝐿×) , where G is a finite Galois extension of local field 𝐿/𝐾 satisfies the conditions of 

Tate’s theorem. Thus we obtain a homomorphism. 

𝐿/𝐾 is a finite Galois extension, then the homomorphism 

𝐻𝑇
𝑟(l(𝐿/𝐾), ℤ) → 𝐻𝑇

𝑟+2(l(𝐿/𝐾), 𝐿×) 

Induced by the map 𝑥 ↦ 𝑥 ∪ 𝑢𝐿/𝐾  is an isomorphism. If we let 𝑟 = −2, then we can obtain the 

isomorphism for the abelian quotient of G 

𝐺ab ≃ 𝐾×/NmL/K(𝐿×) 

By using cohomology tools, we can explicitly describe the inverse map through 

𝜙𝐿/𝐾: 𝐾×/NmL/K(𝐿×) → Gal(𝐿/𝐾)ab 

And we could not have found a better local map of Artin than this one. 
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In order to demonstrate that the Local Reciprocity Law is true, we are going to employ the 

theorems that have been presented thus far, focusing primarily on the building of 𝐾𝜋,𝑛 and 𝜙𝜋(𝜋), as 

well as the development of the Local Artin Map. 

Lemma: For all 𝑎 ∈ 𝐾×, 𝜙(𝑎) ∣ 𝐾𝜋 ⋅ 𝐾𝑢𝑛 = 𝜙𝜋(𝑎). 

Proof: ∀ prime 𝜋  of 𝐾, 𝜙(𝜋)  becomes the identity map on 𝐾𝜋,𝑛  since 𝜋  is a norm of 𝐾𝜋,𝑛 , and 

𝜙𝜋(𝜋) (which is constructed in the local Kronecker-Weber theorem, and is independent of 𝜋) acts 

trivially on 𝐾𝜋,𝑛. Since 𝜙(𝜋) and 𝜙𝜋(𝜋) both act as 𝐹𝑟𝑜𝑏𝐾 on 𝐾𝑢𝑛. Thus they are the same on 𝐾𝜋 ⋅

𝐾𝑢𝑛. And since 𝐾× is generated by the primes of K as a group(𝑎 ∈ 𝐾×can be written 𝑎 = 𝑢𝜋𝑟, and 

𝑢 = (𝑢𝜋)𝜋−1), the equality comes. 

To show the uniqueness, It remains to prove that 

𝐾𝜋 ⋅ 𝐾𝑢𝑛un
= 𝐾𝑎𝑏ab

 

Proof: Let 

𝐾𝑛,𝑚 = 𝐾𝜋,𝑛 ⋅ 𝐾𝑚, 

and 

𝑈𝑛,𝑚 = (1 + 𝔪𝑛) ⋅ ⟨𝜋𝑚⟩. 

We are given that 𝜙𝜋(𝑎) ∣ 𝐾𝑛,𝑚 = 1 for all 𝑎 ∈ 𝑈𝑛,𝑚. Hence 𝜙(𝑎) ∣ 𝐾𝑚,𝑛 = 1 for all 𝑎 ∈ 𝑈𝑛,𝑚, and so 

𝑈𝑛,𝑚 ⊂ Nm(𝐾𝑛,𝑚
× ). But 

(𝐾×: 𝑈𝑛,𝑚) = (𝑈: 1 + 𝔪𝑛)(⟨𝜋⟩: ⟨𝜋𝑚⟩)

= (𝑞 − 1)𝑞𝑛−1 ⋅ 𝑚

= [𝐾𝜋,𝑛: 𝐾][𝐾𝑚: 𝐾]

= [𝐾𝑚,𝑛: 𝐾],

 

𝜙 induces an isomorphism 

𝐾×/Nm(𝐾𝑛,𝑚
× ) → Gal(𝐾𝑛,𝑚/𝐾). 

Thus, 

𝑈𝑛,𝑚 = Nm(𝐾𝑛,𝑚
× ). 

𝐿/K is a finite abelian extension. Considering that 𝜙  specifies an isomorphism starting from 𝐾×/
Nm(𝐿×) to Gal(𝐿/𝐾), it follows that Nm(𝐿×) has a limited index in 𝐾×. And we can easily verify that 

the norm group of finite index is open(by considering the compactness, see [5]) , which contains 𝑈𝑛,𝑚 

for some 𝑛, 𝑚 ≥ 0. Then The map 

𝜙: 𝐾× → Gal(𝐿 ⋅ 𝐾𝑛,𝑚/𝐾) 

is onto and, for 𝑎 ∈ 𝐾×, 

𝜙(𝑎) fixes the elements of 𝐿 ⇔ 𝑎 ∈ Nm(𝐿×) 

𝜙(𝑎) fixes the elements of 𝐾𝑛,𝑚 ⇔ 𝑎 ∈ Nm(𝐾𝑛,𝑚
× ) = 𝑈𝑛,𝑚 

Because Nm(𝐿×) ⊃ 𝑈𝑛,𝑚, this implies that 𝐿 ⊂ 𝐾𝑛,𝑚. It follows that  

𝐾𝑎𝑏ab
= 𝐾𝜋 ⋅ 𝐾𝑢𝑛un

. 

2.2.  Local Existence Theorem 

There is a relationship, known as a bijection, that can be established between the open subgroups of 

fixed index in 𝐾× and the norm groups of finite abelian extensions in 𝐾×. 

Before we prove this theorem, we need some results induced by Local Reciprocity Law, for a 

detailed information, see the reference [6]. 
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Theorem: 𝐾 is local field. 𝐿/𝐾 is a finite abelian extension, then the following properties hold: 

(a)  𝐿 ↦ Nm(𝐿×) can be thought of as a bijection between finite abelian extensions of and the norm 

groups that exist in 𝐾×. 

(b) 𝐿 ⊂ 𝐿′ ⇔ Nm(𝐿×) ⊃ Nm(𝐿′×). 

(c) Nm((𝐿 ⋅ 𝐿′)×) = Nm(𝐿×) ∩ Nm(𝐿′×). 

(d) Nm((𝐿 ∩ 𝐿)×) = Nm(𝐿×) ⋅ Nm(𝐿′×). 

(e)  any subgroup of 𝐾× that contains a norm group is again a norm group. 

Proof: one arrow of (b) is trivial since 𝑁𝑘
𝐿′

= 𝑁𝑘
𝐿(𝑁𝐿

𝐿′
) 

hence for the statement (c) 𝑁(𝐿 ⋅ 𝐿)× ⊂ 𝑁(𝐿×) ∩ 𝑁(𝐿′×) conversely, if 𝑎 ∈ 𝑁(𝐿×) ∩ 𝑁(𝐿′×) then 

𝜙𝐿(𝑎) = 𝜙𝐿′(𝑎) = 1  ⇒ 𝜙𝐿𝐿′(𝑎)  ⇒ 𝑎 ∈ 𝑁(𝐿 ⋅ 𝐿)×                    

For converse of (𝑏) , if 𝑁(𝐿′×) ⊆ 𝑁(𝐿×)  then 𝑁((𝐿 ⋅ 𝐿′)×) = 𝑁(𝐿′×)  since [𝐿′: 𝐾] = |𝐾𝑥/
𝑁(𝐿′)| =|𝐾×/𝑁(𝐿𝐿′)×| = [(𝐿 ⋅ 𝐿′): 𝐾] thus 𝐿 ⊆ 𝐿× 

For (a), the bijection comes from the fact that it is surjective, and for injective, it follows from (b). 

As for (𝑒), consider 𝑁 = 𝑁(𝐿×)  to be the norm group of the abelian extension 𝐿/𝐾, and 𝑁 ⊆ 𝐼 

then 𝜙𝐿(𝐼) ↦ Gal(𝐿/𝐾) maps I into a subgroup of Gal(L/K), consider it as 𝐻, and the fixed field 𝐿𝐻 as 

𝐿′ then Gal(𝐿′ ∣ 𝐾) ⊆ 𝐺𝑎𝑙(𝐿|𝐾) and the kernel of 𝜙𝐿′ is 𝑁(𝐿′×). On the other hand, the kernel is the 

elements in 𝑘× such that 𝜙𝐿(𝑎) ⊆ 𝜙𝐿(𝐼), which is I, Thus 𝐼 = 𝑁(𝐿) 

For (d). Since the largest subextension of L contained in 𝐿′ is L ∩ L′, and the smallest subgroup of 

Nm(𝐿×) containing Nm(𝐿′×) is Nm(𝐿×) ⋅ Nm(𝐿′×), which is a norm group since it contains a norm 

group, thus according to (a), 

The equality holds. 

Proof for the Local Existence Theorem: we have already proved the injection by the above lemma, 

as for surjection. Every open subgroup of bounded index is a norm group if it contains a norm group, 

which follows from the fact that every such group includes 𝑈𝑛,𝑚. Then we've proven Local existence. 

3.  Further exploration with the help of cohomology 

In this part, the author will present some propositions about the local artin map. Since in the above 

proof, we just simply constructed the local Artin map by the Local Kronecker-Weber theorem, and we 

do not have an explicit description on a arbitrary field. With the help of cohomology, we can obtain 

various results of norm groups. 

𝐿/𝐾 is a finite Galois extension, denotes 𝐺 = Gal(𝐿/𝐾). Then both 𝐿 (consider L as a addictive 

group) and 𝐿×(consider it as a multiplicative group) are 𝐺-modules. 

Theorem: 𝐿/𝐾 is a finite Galois extension whose Galois group is 𝐺. Then 𝐻1(𝐺, 𝐿×) = 0 

Proof: Let 𝜑: 𝐺 → 𝐿×be a crossed homomorphism, which means  

𝜑(𝜎𝜏) = 𝜎𝜑(𝜏) ⋅ 𝜑(𝜎),  𝜎, 𝜏 ∈ 𝐺, 

and it suffices to find a 𝑐 ∈ 𝐿× 𝑠. 𝑡. 𝜑(𝜎) = 𝜎𝑐/𝑐. For 𝑎 ∈ 𝐿×, let 

𝑏 = ∑ 𝜑

𝜎∈𝐺

(𝜎) ⋅ 𝜎𝑎. 

Suppose 𝑏 ≠ 0. Then 

𝜏𝑏 = ∑ 𝜏

𝜎

𝜑(𝜎) ⋅ 𝜏𝜎𝑎 = ∑ 𝜑

𝜎

(𝜏)−1𝜑(𝜏𝜎)𝜏𝜎𝑎 = 𝜑(𝜏)−1𝑏 

Hence 

𝜑(𝜏) = 𝑏/𝜏𝑏 = 𝜏(𝑏−1)/𝑏−1, 

Thus 𝜑 is principal. We only need to prove the existence of 𝑎 s.t. 𝑏 ≠ 0. 𝐿 is a field and 𝐻 is a group; 

then every finite set {𝑓𝑖} of distinct homomorphisms 𝐻 → 𝐿×is linearly independent over 𝐿, i.e., 
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∑𝑎𝑖𝑓𝑖(𝛼) = 0 all𝛼 ∈ 𝐻 ⇒ 𝑎1 = 𝑎2 = ⋯ = 𝑎𝑛 = 0. 

Thus,  ∑ 𝜑𝜎 (𝜎)𝜎 ≠ 0, from which we obtain the existence of a s.t. 𝑏 ≠ 0. 

From the above theorem, we can easily obtain the following, 

Theorem: 𝐿/𝐾 is a cyclic extension, and 𝜎 is the generator of the Galois group. If 𝑁𝑚𝐿/𝐾𝑎 = 1, 

then 𝑎= 
𝜎𝑏

𝑏
 for some b ≠ 0. 

Theorem: 𝐿/𝐾 is a finite Galois extension. Then 𝐻𝑟(𝐺, 𝐿)=0 for all 𝑟 > 0.  

Proof: According to Normal Basis Theorem, ∃𝛼 ∈ 𝐿 such that {𝜎𝛼 ∣ 𝜎 ∈ 𝐺} provides supports for 

𝐿 as a 𝐾-vector space. Then (𝜎𝛼)𝜎∈𝐺  defines an isomorphism of 𝐺-modules 

∑ 𝑎𝜎

𝜎∈𝐺

𝜎 ↦ ∑ 𝑎𝜎

𝜎∈𝐺

𝜎𝛼: 𝐾[𝐺] → 𝐿. 

But 𝐾[𝐺] = Ind{1}
G 𝐾, and so 𝐻𝑟(𝐺, 𝐿) ≃ 𝐻𝑟({1}, 𝐾) = 0 for 𝑟 > 0 

The results that were presented earlier are commonly known as Hilbert's Theorem 90. And for 

another proof of this, see [7]. 

Theorem: 𝐿 is a finite extension of 𝐾, then make 𝐸 turn to be the largest abelian subextension L/K; 

then 

NmL/K(𝐿×) = NmE/K(𝐸×). 

Proof: We only prove the local case, for a global proof, see [8]. 

Since L contains E, then NmL/K(𝐿×)is contained in NmE/K(𝐸×). The proof for Galois case is 

trivial, and we only consider the general case 

Denotes 𝐿′/𝐾 to be a Galois extension which contains 𝐿. Let 𝐺 = Gal(𝐿′/𝐾) and 𝐻 = Gal(𝐿′/𝐿). 

Since the largest ablian extension of K in L is E, then  𝐺′ ⋅ 𝐻  is the fixed group,(  𝐺′  =
{𝑎𝑏𝑎−1𝑏−1 | 𝑎, 𝑏 ∈ 𝐺}  ),  Consider The  𝜙𝐿′/𝐾(𝑎)  ∈  𝐺/𝐺′  maps to 1 in 𝐺/𝐺′𝐻 . since 𝜙𝐿′/𝐿  is 

surjective, then  ∃𝑏 ∈ 𝐿×, S. t.  𝜙𝐿′/𝐾(𝑎) = 𝜙𝐿′/𝐾(Nm(𝑏)), thus ∃c ∈ L′×, 𝑎/Nm(𝑏) ∈ Nm(c) 

Therefore, we have  

𝑎 = NmL/K (𝑏 ⋅ Nm𝐿′/𝐾(𝑐)) ∈ NmL/K(𝐿×) 

With this theorem we see that the norm group of a local field cannot be used to categorize its 

nonabelian extension. 

4.  Conclusion 

In this study, the author uses Lubin-Tate theory and cohomology theory to show some of the 

fundamental theorems of local class field theory. The Galois group of abelian extensions has, in fact, 

been described in greater depth. The cohomology group of K can be constructed using brauer groups 

and characterized using a central simple algebra. Galois representation and Galois cohomology are just 

two examples of where the conclusions of class field theory can be put to use. 
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