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Abstract. This paper explores Lagrange’s Theorem, a foundational result in abstract algebra
that establishes a connection between the orders of a group and its subgroups. Initially
introduced by Joseph Lagrange in the 18th century, the theorem asserts that the order of any
subgroup divides the order of the entire group. This investigation begins with essential
concepts of group theory, including cosets and bijections, leading to a rigorous proof of
Lagrange’s Theorem. The paper also highlights significant implications of the theorem, such
as its role in deriving Wilson’s Theorem and Fermat’s Little Theorem, both of which proves
pivotal in algebraic theory. Furthermore, the applications of Lagrange’s Theorem in modern
cryptography, particularly in the RSA public-key cryptosystem, are discussed, illustrating its
relevance in contemporary mathematical practices. Despite its profound impact, there is no
guarantee of the existence of subgroups for every divisor by the theorem, a limitation
addressed by Sylow’s Theorem. This paper concludes by emphasizing the enduring
significance of Lagrange’s Theorem in linking abstract algebra to practical applications and
suggests avenues for future research in Galois theory and advanced cryptographic methods.
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1. Introduction

In 18th century, the problem of solving polynomial equations with degree 5 and higher attracted and
puzzled enormous mathematicians and one of these people was Joseph Lagrange [1]. Lagrange
conducted in-depth study on permutation groups and focused on how the roots of some equations
can be permuted. He realized that the permutation of the roots makes up a group, which has a close
relation with the solutions of equations. Then, in 1770-1771, Lagrange first gave the statement of the
relation of the order between groups and their subgroups, which are latterly called Lagrange
Theorem [1]. In fact, the ideas of groups and some other concepts were not specified and well
defined yet in 18th century, when Lagrange Theorem appeared. It was in 19th century that genius
mathematicians Galois and Abel gave rigorous definitions and concepts to the group theory. Despite
this, Lagrange Theorem remained a milestone, influencing subsequent developments of algebra.

Basically, Lagrange Theorem is so revolutionary that it reveals the close relations between groups
and subgroups since it states that the order of the group can be divided by the order of the subgroup.
Thus, it guides mathematicians that studying the sub-structures of some groups may help gain
deeper insight into the structure of the whole group. However, there is a key limitation from the
statement of the theorem, which is that it only tells the possibility of orders. But for each order, there
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may not exist such a group. That drawback pushed the development of group theory, and one
breakthrough is Sylow Theorem in 19th century.

In addition, some important corollaries and applications can be directly proposed from
Lagrange’s Theorem. One simple example is the statement that “if     is finite and    is a prime
number, then    is a cyclic group”. There are some other famous theorems which can be deduced
from Lagrange Theorem, such as Fermat’s Little Theorem and Wilson’s Theorem [2]. Besides that,
with the development of group theory, Lagrange Theorem can be applied to some modern science
fields like cryptography technology to increase the safety of encryption. One specific example is the
Rivest-Shamir-Adleman (RSA) system which uses Lagrange Theorem a lot [3]. The public-key and
private-key used in RSA are based on the group theory and have become the most secure
cryptography method since 1977 [4].

This paper aims to carry out investigations and research on the Lagrange Theorem with some
related, advanced applications. To achieve this goal, this article is primarily concentrated on group
theory and will start with some concepts. Then, some important propositions will be introduced.
Next, strict proof of Lagrange Theorem will be deduced. Finally, there will be some famous
applications or theorems to illustrate the strength of Lagrange Theorem.

2. Lagrange theorem

2.1. Basic concepts of group theory

Before the detailed proof of Lagrange theorem, many basic but important concepts of group theory
should be firstly clarified [5].

Definition (coset): Let      be a subgroup of     . The left coset of      with representative  
  to be the set    .

Lemma: Take a group D and     is a subgroup of    . For any    , if    , then  
 .

Proposition (1): If     be a group and let     is a subgroup. The set     is the
set of all left cosets of     and is a partition of    

Proposition (2): Let     be a group and     is a subgroup. For any    , there is a bijection  
 

2.2. Proof of propositions and lemma

To prove this lemma, this paper proceeds in two steps by proving      and    
respectively. If    , then, there exists    such that    , so    . Take
any     , then     . So, this is the first

step, and it has proved that     . Next, since     , it can be deduced that  
  . Similarly, take any     , then  

  . This means that     . In
conclusion,    . The proof of lemma finishes.

Moving to the proof of proposition (1). Since it comes to the set     , three
properties of the partition need to be verified:

a)  :

|A| |A| 

A 

B (A, ⋅) B

a ∈ A aB = {ab ∈ Ab ∈ B} [6]

C (D, ⋅) a, b ∈ D a ∈ bC

aC = bC

G H G/H = {aH|a ∈ G}

H G.
G H a, ∈ G

ϕ : H⟶ aH  :   h ↦ ah.

aH ⊆ bH bH ⊆ aH

a ∈ bH c ∈ H,   a = bh1 b−1a = h1 ∈ H

ah ∈ aH ah = (bb−1)ah = b(b−1
a)h = bh1h = b(h1h) ∈ bH

aH ⊆ bH b−1a = h1 ∈ H

(b−1a)
−1

= a−1b = h−1
1 ∈ H bh ∈ bH

bh = (aa−1)bh = a (a−1b)h = ah−1
1 h = a(h−1

1 h) ∈ aH bH ⊆ aH

aH = bH

G/H = {aH|a ∈ G}

∅ ∉  G/H
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Let     be an arbitrary coset. As    , based on the definition,     as
required.

b)  :
Since    , then,     and    . Using the lemma, it can be deduced that  

  as required.
c)  :   :
Actually,    can be chosen since    .
To sum up, the set    is a partition of    .
Finally, showing      is invertible can verify that      is bijective. Thus, show that  

   is an inverse. Note that      is well-defined, that is, for every  
  . Then, for every       

  . And  
 as required. This shows that     is a bijection.

2.3. Proof of lagrange theorem

There is a finite group     and a subgroup     And it can be concluded that    .
In particular, the number of elements in     is the divisor of the number of elements in    . This is
the famous Lagrange Theorem and can be proved by following steps: the group      is partitioned
into     distinct left cosets by the proposition (1). From proposition (2), since all left cosets are
bijective, they have the same elements. Each cosets have     elements. So,    
as required.

However, it should be noted that Lagrange Theorem does not make any statement about the
existence of a subgroup with a given order. For example, one can verify that the alternating group  

  has no subgroups of order 6 although 6 divides    .

3. Applications of lagrange theorem

3.1. Wilson’s theorem

The idea of the theorem was first proposed by an Iraqi mathematician called Ibn al-Haytham around
1000 AD. Then it is the British mathematician Edward Waring who published the theorem and gave
fair credit to his student John Wilson for their findings [7]. However, Lagrange published the first
proof of what is known as Wilson’s Theorem in the article [8]. Wilson’s theorem is used in many
other formulas of mathematics such as Formulas for Prime.

The basic construction of Wilson’s Theorem is not complicated, which can be stated that if  
 and     is prime, then    .

Proof: Since     is an odd prime, so     contains     elements. The aim is to pair elements
with their inverses. Note that each element has a corresponding inverse. An element is equal to its
own inverse if and only if its square is the identity element. i.e.,    . And
this can be rewritten as     . Thus, either      or     .
This shows that the only elements which are their own inverse are exactly 1 and    . Removing
these two elements, there are left with      (an even number) elements, which must pair up.
Therefore, the product of the remaining elements is 1. Hence,  

 . And this proves the theorem.

aH ∈ G/H e ∈ G a = a ⋅ e ∈ aH

∀a, b ∈: aH ∩ bH ≠ ∅⟹ aH = bH

x ∈ aH ∩ bH x ∈ aH x ∈ bH

aH = xH = bH

∀g ∈ G, ∃aH ∈ G/H g ∈ aH

g  g = g ⋅ e ∈ gH

G/H  G

ϕ ϕ

ψ : aH → H  : x ↦ a−1x ψ

x ∈ aH,  a−1x ∈ H h ∈ H and x ∈ aH :  ψ∘

ϕ (h) =  ψ (ah) = a−1 (ah) = (a−1ah) = h

ϕ ∘  ψ (x) = ϕ (a−1x) = a (a−1x) = (aa−1)x = x  ϕ

N M. |N | = |N/M| ⋅ |M|

M N

G

|N/M|

|M| |N | = |N/M| ⋅ |M|

A4 |A4| = 12

p  > 2  p (p − 1)! ≡ −1(mod p)

p Z
×
p p − 1

a ≡ a ⟺ a2 ≡ 1(mod p)

p (a2 − 1) = (a + 1)(a − 1)∣ p| (a − 1) p| (a + 1)

p − 1
p − 3

(p − 1)!  ≡ 1 ⋅ (p − 1) ⋅ 1 ⋅ 1 ⋅ ⋅ ⋅ 1 ≡ p − 1 ≡ −1(mod p)
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3.2. Fermat’s little theorem

This theorem which belongs to enormous findings of Fermat is an important conclusion in the
theory of algebra and is named after the famous French mathematician Pierre de Fermat. It has been
used tremendously to simplify or convert a very large power of a number to a relatively small
integer as a crucial theorem in the basic number theory [9]. Fermat first stated the theorem in a letter
to his friend Bessy in 1640 without a proof. He stated that if      is a prime number, then for any
integer    that is not a multiple of    , the number (    is an integer multiple of    . The
first known proof was given by Gottfried Wilhelm Leibniz in an unpublished manuscript around
1683, but it remained unknown until the 19th century. The first published proof was from one of the
greatest mathematicians Leonhard Euler in 1736 who generalized the theorem (known as Euler’s
Theorem) [6].

Proof: There are two cases to consider [10].
a) If    , in this case, a is an multiple of     which means the exponential of a minus

a is still the multiple of    , i.e.,     as required.
b) If     is not the multiple of    , in this case,    is invertible in    . The multiplicative    has

    elements. Before continuing the proof, there is one corollary of Lagrange Theorem to clarify:
Take     which is a finite group. For any    , there should be    . Using this corollary,  

  as required.
c) Proof of the corollary: By the Lagrange Theorem, the     divides    , as a result,     is an

integer. Thus,    =   
In fact, Euler gave an improvement of this theorem and stated that as     is a prime number, then

for any integer    , (    is the multiple of    .

4. Conclusion

This paper has stated that Lagrange Theorem, a cornerstone of the group theory, establishes that the
order of a subgroup divides the order of the group with exploring the detailed proof via cosets and
bijections, demonstrating its fundamental role in algebra. Key applications include two famous and
vital theorems which have been discussed above, as well as its use in the RSA system. However, the
theorem does not ensure the existence for every divisor, a limitation addressed by Sylow’s Theorem.
Future research could focus on the applications in Galois theory and modern cryptography. Despite
this, Lagrange Theorem remains indispensable, linking abstract algebra to practical fields and
inspiring further mathematical advancements.
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a n a  Zn  Z×
n

n − 1

G g ∈ G g|G| = eG

an−1 ≡ 1(mod n)

|g| |G| |G|
|g|

g|G| = g
|g|⋅

|G|

|g| = eG
|G|

|g| eG.
p

a ap − a) p
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