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The paper mainly studies how to apply complex variable analysis to practical
problems related to a two-dimensional ideal fluid. The author’s purpose is to provide a
mathematical and physical method to optimize and facilitate industries related to fluid
mechanics, such as oceanography, civil engineering, the aircraft wing manufacturing field,
and so on. The main mathematical methodology is complex potential, and the main physical
condition is the theorem and definition of the two-dimensional ideal fluid. The result of the
study is that the use of complex variable analysis is significantly effective, and the processes
of the calculation are much easier for this reason. The calculation process can prove the
practicability. In this paper, the author combines mathematical derivation with methods of
application, and the author also combines physical definitions and physical properties
applied in the paper, clearly demonstrating the method of how complex potential works in
practical problems. In conclusion, complex variable analysis can be used in many different
fields related to physics, and it can facilitate the development of engineering and reduce the
possibility of making mistakes in calculations, making resolutions precise and lowering the
cost of the processes.

Two-Dimensional Ideal Fluid, Complex Variable, Complex Potential,
Mathematical Physics, Cylinder

The application of mathematics has long been a significant force, providing the foundational
language and rigorous framework for the discovery of physics. Moreover, the application of
sophisticated mathematical theorems and tools to physical problems always produces accurate and
precise solutions, providing insights into the laws of nature. Among the infinite mathematical tools,
the theory of complex variables stands out for its distinctive ability to simplify and solve problems
in two-dimensional physics fields, such as fluid dynamics, heat conduction, mechanics, and
electromagnetism. In potential fluid mechanics, the unparalleled methods of complex analysis
provide a remarkably succinct, streamlined framework for tackling the issues of inviscid,
incompressible, two-dimensional, and irrotational fluid, commonly known as ideal or potential fluid.
The study of two-dimensional ideal flow not only has theoretical significance, but it also erects the
foundational basis for understanding more complicated fluid behaviors in many cases. Although
modern Computational Fluid Dynamics is capable of simulating turbulent and viscous flows
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nowadays, finding analytical solutions derived from potential fluid theory remains essential and
pivotal for verifying numerical models and comprehending basic flow phenomena. This theoretical
framework, therefore, finds extensive applications in solving practical engineering problems.

The practical implications of two-dimensional potential flow extend to numerous engineering
disciplines. In ocean engineering, the calculations of the stability of submarine pipelines are
extremely crucial. When ocean currents flow around the pipelines under the water, highly complex
flow phenomena occur. Based on complex analysis and ideal fluid theory, engineers can predict the
flow of fluid structures, water pressure distributions, and the potential scouring zones, and so on.
Rajeev proposed that incompressible fluids in two dimensions can be applied to ocean currents and
atmospheric flows, and these methods are really practical because they can simplify an extremely
complex engineering problem into several understandable equations [1]. Moreover, in the aerospace
field, potential flow theory of ideal fluids and complex variable analysis allows for rapid analysis of
the ideal lift characteristics of airfoil sections, which remain valuable in the early stage of the design
phase. Perezhogin and Academician Dymnikova found that the approximations of the equations for
a viscous fluid can be practically applied in the case of asymptotic with low velocity, which is a very
difficult area of fluid mechanics and plasma physics [2]. Anwar and Srigutomo analyzed that the
two-dimensional ideal flow can be used to solve boundary-value problems in a set of boundary
conditions [3].

The complex variable analysis effectively simplified the process of applying the potential fluid
theory and ideal flow methods, and the complex functions also reduce the probability of making
errors in the case of using ideal fluid theory to calculate in many significant fields. The majority of
Academics and scholars research how two-dimensional Ideal fluid dynamics can be used in different
scientific fields and engineering processes. However, a more focused investigation into specific
classical cases, such as the flow around a circular cylinder, remains highly valuable for elucidating
fundamental principles. The case of flow around a circular cylinder is a representative example of
the application of ideal fluid theory, which is very helpful in understanding how the potential flow
dynamics are unique and distinctive.

This paper will explore and study the application of complex analysis in two-dimensional
potential fluid, following the logic and stages outlined below. Firstly, the paper will introduce the
formula about complex variable analysis and some basic knowledge of complex functions (complex
potential, Cauchy-Riemann Equations, Cauchy Residue Theorem, and so on), which are significant
in the article. To elaborate, this paper will provide a detailed exposition of the theoretical
mathematical theories that are most frequently applied, and the author will also introduce the
definitions of a two-dimensional ideal fluid and some important details in the physics field that will
be used in this paper (complex velocity, uniform flow, point vortex, and so on). Secondly, the author
starts to research and provide how the complex variable analysis and complex function method can
be applied to problems associated with fluid dynamics, and the author will emphasize and explain
the overall application approach and the reason why the author uses these methods. The second
general section is the most significant part of this paper, and the article will also mention the
importance of these theorems in real society and in the scientific field. Thirdly, the paper will
introduce and analyze the phenomenon of flow around a circular cylinder. Because this phenomenon
pertains to the problem of ideal flow potential and is also a typical example, the paper will help
scholars deeply understand the fluid dynamics problems based on complex variable analysis.
Simultaneously, the article will illustrate some additional mathematical and physical theories (Kutta-
Joukowski Theorem, Conformal Mapping, and so on). Finally, the author will provide a general
conclusion about the research and problems discussed and optimize the ideas presented in the paper.

58



Proceedings of CONF-CIAP 2026 Symposium: International Conference on Atomic Magnetometer and Applications
DOI: 10.54254/2753-8818/2026.HZ27810

Moreover, the author will reflect on the limitations of the application of the methods used in this
article, while conducting reflections and looking for better solutions in the future. The article will
also mention the importance of these theorems in real society and in the scientific field. The purpose
of this work is to study how to explore and use complex analysis to tackle issues associated with
practical problems in fluid physics, as well as how this mathematical method can be leveraged to a
broader range of scenarios in today’s entire scientific world.

As for a very crucial part of physics, fluid mechanics is an absolutely indispensable field of science.
Nowadays, a wide variety of two-dimensional ideal fluid theorems are extremely practical in
oceanography, civil engineering, architecture design, aerospace, and so on. At the same time,
numerous fields related to natural science have applied complex variable analysis to reduce some
sophisticated processes during calculations. In today’s society, the use of complex functions to solve
ideal flow problems is profoundly convenient and widely applied in international scientific research
and many engineering-associated industries. Amosova and Ozerova found that irrotational flow
around a round cylinder and complex potential can be integrated and leveraged well, enabling the
solution to flow-related problems to be more insightful [4]. Olver researched conformal mapping
and proposed that complex analysis can transform the highly abstract concept of conformal mapping
into visualizable formulas, largely simplifying the process. With the continuous development and
advancement of technology and modern science in today’s world, the scientific problems and
challenges that individuals face have gradually become more sophisticated. Lacave discussed the
application of complex analysis in the study of the properties of Jordan arcs and Jordan curves with
the thin obstacle convergence problems, which are specific examples of two-dimensional ideal fluid,
and he proposed that these abstract and sophisticated problems can be simplified using complex
variable analysis [5,6]. As the manufacturing of equipment and devices becomes more and more
common, utilization rates have grown rapidly in engineering, oceanography, computer technology,
and certain aerospace fields. Adopting faster, simpler, and more efficient methods to solve
complicated and intricate scientific problems within is a crucial step. In conclusion, the flow motion
of two-dimensional ideal fluids and the application of complex variable analysis play a significant
role in engineering or science-related research projects in today’s studies, and the combination of
these two has created an extraordinary high value in a multitude of domains. Viewed separately, the
author considers that the complex variable analysis and the ideal fluid theorem also have great value
and reflect the integration of mathematics and physics across many sectors. Utilizing mathematical
theorems that were previously used in theory in physics plays an extremely important role in
facilitating the development and progress of the whole scientific community. To summarize the
basic information based on the case that this paper studies, the application of this research has long
been recognized and gained acceptance in society. The author regards this science as an exploration
with practical significance and value, whether in very fundamental fluid mechanics problems or
extremely difficult engineering challenges in the entire world; these fields make pivotal
contributions to society, thereby reflecting the social significance brought by this study. The analysis
of this specific case will serve to demonstrate the core methodologies of complex analysis in fluid
dynamics and will provide the foundation for understanding more complex geometries through
techniques like conformal mapping.
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3. Analysis of the problem
3.1. Problem analysis and basic theoretical concepts
3.1.1. Complex functions

A complex function is a function whose domain is the field of complex numbers, which maps a
complex number to another complex function. The domain and range of a complex function are both
complex number sets.

A complex function can be expressed by:

f(z) =w,z=xz+1y (1)

Z is a complex number, and z = = + iy is a basic expression of a complex number. x is the Real
Part of the complex number, and y is the Imaginary part of the complex number.

The expression of w: w=u(z,y)+iv(z,y) , u(z,y)andv(z,y) are real functions,
representing the real part and the imaginary part of the complex function, respectively. A complex
function can be either a single-value function or a multiple-value function. If each complex number
z is corresponded to exactly one complex number w, this complex function can be regarded as a
single-value function; if each complex number z is mapped to many different complex numbers w,
this function can be qualified as a multiple-value function.

3.1.2. Differentiability and the cauchy-riemann equations

The necessary and sufficient condition for the function f(2) =u(z,y)+iv(z,y) to be
differentiable at the point (z,y) is:

u(z,y) and v (z,y) can be differentiable at the point (z,y) .

u(z,y) and v (z,y) have to satisfy the Cauchy-Riemann Conditions at the point (x,y) .

The Cauchy-Riemann Conditions are:

du _ dv o1 du _ _ dv
dx — dy and dy — dx (2)

These conditions serve a vital function in subsequent sections of this paper, because they can
perfectly align with the physics theorems about a two-dimensional ideal fluid that the author
discussed later.

3.1.3. Two-dimensional ideal flow: assumptions and simplifications

Ideal fluid is a theoretical fluid model in Fluid Mechanics. It has four traits: The model studied in
this paper further assumes the flow is two-dimensional and steady.

Inviscid: it means that there is no internal friction and there is no viscosity.

Incompressible: it means that the density of the fluid is constant and the fluid cannot be
compressed.

Irrotational: It means that fluid particles do not rotate around their center of mass, and it also
means that the vorticity is equal to zero.

Because there is no internal friction in the ideal fluid, there is no heat conduction at the same
time.
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There are two characteristics of Two-Dimensional fluids:

Two-Dimensional Flow: It means that the motion of the fluid occurs in the x-y plane, and the
velocity field is described in a certain x-y plane.

Two-Dimensional Steady Flow: It means that the velocity field of the fluid does not change with
time.

The definitions of steady flow and two-dimensional flow are distinct concepts that, when
combined, define a two-dimensional steady flow.

The usual way of describing a fluid flow is to describe it by means of the flow velocity defined at
any certain point p = (z,y, ) at any time in terms of t. The author believes that the world is three-
dimensional in real life, and people should first comprehend the definition from a three-dimensional
perspective.

u = u(p,t) = [u(p,t),v(p,t), w(p, )] 3)

Kundu and Cohen analyzed that (z,y,z) are three velocity components in the three Cartesian
directions can be indicated by (u, v, w), in a three-dimensional system [7].

According to this information and definitions:

Because of the definition of the two-dimensional flow, the motion of the fluid must occur in the
x-y plane. This means that the velocity field analysis along the z-axis does not exist. In terms of
mathematical language, this means that the velocity component w that represents the velocity in the
z-axis direction does not exist, w(p, t)=0.

The two-dimensional flow can be regarded as this term:

u = u(p,t) = [u(p,t),v(p,t),0], where p = (z, y) (4)

Because of the definition of steady flow, the velocity field of the fluid does not change with time.
In terms of the mathematical language, if there is a function, its x-axis is time t and its y-axis is the
flow velocity, the graph of its function will appear as a straight line parallel to the x-axis. This means
that the slope of this function’s graph remains zero.

According to this information, the author thinks that the definition can be represented in the
following terms:

G =0, where u = u(p) = [u(p), v(p), w(p)] (5)

After these steps, they can be put together and become the mathematical expression of the
definition of Two-Dimensional Ideal Fluid:

u = [u(p), v(p), 0], where the point p = (z,y) (6)
3.2. The need for a complementary approach: limitations of traditional methods
3.2.1. The established value of traditional methods

Numerical, theoretical, and experimental methods are indispensable pillars of fluid mechanical
research. However, when applied in isolation to the problem of two-dimensional potential flow, each
faces significant challenges.
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Numerical computation methods can be used to obtain specific numbers and detailed values for
sophisticated problems that people can’t solve by analyzing them. It transforms abstract problems
into specific numerical problems, promoting estimation and processes in the engineering field at
relatively low costs.

Theoretical analysis methods allow people to clearly identify the variation relationship between
individual physical quantities and different flow parameters, and researchers can use this
characteristic to draw many valuable functional figures that can be used in many fields of
engineering.

Experimental methods are significantly intuitive. They can be used to facilitate the resolution
directly, and scientists can also have opportunities to discover new principles and phenomena. In the
fields of science, the experimental approaches have long been regarded as the most credible and
compelling methods.

Wang analyzed that the scientific community recognizes these three methods and has been using
them for decades, and he also found that the majority of crucial concepts and fundamental principles
are derived from experimental research [8].

Although these three methods all have their special advantages, the author believes that their
inherent limitation and shortcomings are obvious.

Numerical computation methods are only computation itself in some cases. When addressing
very complicated problems without a well-established mathematical model, numerical computation
approaches are not able to tackle these issues. Meanwhile, numerical computation methods are
susceptible to errors. If there are constraints on computation resources and limitations on
computation accuracy, it becomes difficult to solve all relevant problems.

Although theoretical analysis approaches are applicable, the difficulties of mathematical
computations are immense. Pure theoretical analysis often requires solving Laplace’s equation
subject to complex boundary conditions, which can be mathematically formidable and yield closed-
form solutions only for simple geometries.

While the experimental methods are widely recognized as the most applicable methods in
scientific research, the costs of human resources, financial resources, and material resources for
different depths of experiments are extremely high.

The limitations outlined in Section 3.2 highlight the need for a powerful analytical framework that
can provide exact solutions for a class of flow problems, thereby complementing traditional
approaches. The theory of complex variables provides this framework. To fix the problem
mentioned in 3.2.2, the author proposes combining complex variable analysis with two-dimensional
ideal fluid mechanics as an effective and reasonable solution to these shortcomings and limitations.
To be specific, many of the constraints of differentiability in complex variable functions are
congruent with two-dimensional ideal fluid mechanics. This section is the main part of the paper,
and this part reflects the significance and advantages of the research associated with how to use the
complex variable analysis method as a distinctive tool to solve fluid mechanics problems. The
critical step in applying complex variable analysis to ideal fluid mechanics is to give the physics
meaning to the complex function.
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4.1. The complex potential: linking mathematics and physics
Firstly, the basic form of a complex function is:
z=x+1y (7)
The analytic function of z is:
f(2) = u(z,y) +iv(z,y) (8)

For two-dimensional potential flow, this analytic function takes on profound physical
significance. It is termed the complex potential, where in the real part u (x,y) is identified as the
velocity potential ¢, and the imaginary part v(x,y) is the stream function .

The next part is associated with Methods of Mathematical Physics. Complex functions can
describe the motion of an ideal fluid as the basic term of the complex function. In the complex
function, the real part of it is the velocity potential function, and the imaginary part of it is the
stream function. Hildebrand found that using the analytic function of a complex number z
corresponds to the flow velocity. V, and V, is reasonable [9]. The key part is how to apply the
correspondence between the real part, the imaginary part, the velocity potential function, and the
stream function, and use their relationship to show V, and V.

4.2. Application example: uniform flow and the complex potential
4.2.1. Basic application and expression of methodologies in mathematical physics

In a two-dimensional ideal fluid, complex functions can describe the motion of an ideal fluid
(inviscid, irrotational, incompressible fluid). The author believes that only combining theoretical
mathematics and physics can make individuals understand and solve practical problems intuitively
and directly. Therefore, the author intends to illustrate the advantages of applying complex variable
analysis to two-dimensional ideal fluid mechanics through very specific examples, and this example
is one of the most paradigmatic examples in fluid mechanics: Uniform Flow Past a Circular
Cylinder.

Firstly, based on the complex function mentioned in 3.1.1 and the definition of two-dimensional
ideal fluids in 3.1.2, the author considers establishing a connection between these two concepts
before describing the specific problem. In ideal fluid mechanics, the complex potential function
W (z) = ¢ + iy, and what ¢ and y represent respectively, have been mentioned above in 4.1.

Why is the basic form of a complex function extremely effective? There are several reasons:

1. Two-dimensionality: The complex point z =z + iy on the complex plane can perfectly
correspond to a point (x,y) , which is a useful condition to solve the practical problem.

2. Two traits of ideal fluid, irrotationality and incompressibility, can totally correspond to the
Cauchy-Riemann equation in theoretical mathematics, which allows people to define a vital
composite function: complex potential.

To be specific, the author considers a two-dimensional motion, and the velocity field is

V=_(u(=z,y), v(z,y)) ©)
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The physical meaning of incompressibility is that the density of the fluid is constant and the fluid
cannot be compressed, and the mathematical meaning of it is that the divergence of the velocity
remains zero. VV =0 can be represented as % + % =0 in a two-dimensional Cartesian

coordinate system. The physical meaning of irrotationality is that fluid particles do not rotate around
their center of mass, and it also means that the vorticity is equal to zero. Mathematically speaking, it
means that the curl of the velocity remains zero. In addition, in a two-dimensional case, the curl has
only one component of z, therefore, the condition VV = 0 can be represented by % — %z =0.
King, Billingham, and Otto researched the combination of these physical and mathematical
meanings of ideal fluid, which is very effective and can be used easily for simple flow [10].

4.2.2. Citation of potential function and stream function

In vector calculus, any vector field for which the curl is zero must be the gradient of a scalar
function. This is really complex if it can only be understood by words, so in mathematical
explanation:

If VV =0, the function V = V¢ must exist.

Also, in the two-dimensional case, it has:

u:%andv:%5 (10)

The function ¢(x,y) is the velocity potential function.
Similarly, any vector field for which the divergence is zero in vector calculus can be expressed as

the curl of another vector field. In the two-dimensional case, it means that:
If there is a function Y (x,y), there are two conditions that can be satisfied

u=% andv=—2 (11)
The function Y (x,y) is called the stream function. Its physical meaning is extremely significant

because the contour of the stream function exactly streamlines when individuals solve practical
problems. Moreover, the most fundamental mathematical expression of the defining equation of a
streamline is:

B = 8 e 8ty = o+ udy =0 12

Horace proposed that this calculation is based on the same velocity field V = (u,v) , and

because of their relationship, many sophisticated equations like the equation of a streamline can be
derived [11].

In conclusion, there are four different equations from the traits of irrotationality and
incompressibility, as shown in Table 1:
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Table 1: Four Different Equations

From irrotationality From incompressibility

_d¢ _w

U= —— u =
dr dy
L v Y
dy  dx

Let:
_ d¢ _ dy _4d¢ _ _dy
u—%—@andv—@——% (13)

This is the famous Cauchy-Riemann equation in complex function theory.
4.3. Example analysis: flow around a circular cylinder
4.3.1. Basic flow elements

In complex variable analysis, there is a critical application: conformal mapping. Through conformal
mapping, an enormous amount of complicated shapes and objects can be mapped to elementary
shapes, thereby solving the related problems effectively. Polya and Latta proposed that using the
Schwarz-Christoffel mapping can map the flow around the cylinder problem to the upper half plane,
so that the difficult computation can be simplified [12].

Before solving the problem about the flow around a cylinder, the author believes that people need
to understand that the superposition of the following basic flow elements can form any complicated
irrotational flow:

1. Uniform Flow: The complex potential of the uniform flow with velocity V' and with an angle

a with the positive real axis = can be defined as w (z) = Ve~ %z . When the direction of the
motion of the flow is horizontally to the right, it means that the angle « is equal to 0, the complex
potential can be simplified as w (z) = Vz . Corresponding to the velocity potential function ¢ and
the stream function U, the author thinks:

¢=Vzandy =Vy (14)

2. Source and Sink of Complicated Irrotational Flow: The distinction between a point source and

a point sink is the value of the strength () at the origin of coordinates. The complex potential of a

point source that @ > 0 or a point sink that @ < 0 can be defined as: w (z) = 22 Inz . The

™
streamlines of the flow are a family of rays that radiate outward from the origin or converge toward
the origin. For the point source, they radiate outward; for the point sink, they radiate inward.
3. Dipole: The complex potential of a dipole located at the origin with a strength p and a

direction angle - o is: w(z) = g—f:: . The direction of the angle - a points from the point sink to

the point source. The dipole refers to a limiting flow model that forms when a point sink of equal
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strength and a point source approach infinitely close to each other in a certain space. The strength
and the direction of the angle are definite and clear, and the dipole is a core element that solves the
problem of flow around the cylinder.

4. Point Vortex: The complex potential of a point vortex located at the origin with a circulation
[ is: w(z) = ;—1; Inz. The streamlines of the flow are concentric, centered at the origin; the sign
(+or—) of the circulation I' determines the direction of the ideal fluid that rotates around the
origin.

The author constructs a fluid that flows with the velocity V and flows along the x-axis direction. The
fluid now passes an infinitely long cylinder with radius a. The motion of the flow can be regarded as
the sum of two simple motions of fluid:

1. The uniform flow that flows along the positive x-axis direction: wi(z) = Vz.

2. The dipole that is along the negative x-axis direction at the origin: ws (z) = %m (because «
is 0), in this case, the value of p is to be determined.

To combine them, the total complex potential can be defined as:

w(z) =wi(z) +w2(2) =Vz+ 5= (15)

After knowing the total complex potential, the next step is to determine the strength u of the
dipole and to verify the boundary of the cylinder. The boundary of the cylinder is a streamline.
Because the fluid cannot pass through the cylinder in the real case, the surface of the cylinder itself
is a streamline. Yy =0 can be used as the boundary condition, which means that
Y =Im[w(z)] =0 existson |z| = a,and it can be used to determine the strength 1 .

The exponential form of the complex number is z = re? , it can be used in the complex
potential:

w(2) =Vz+ o =Vre? + £ = Ve + £ e

2mreid

= (Vr+ 2—’;7,)60504—1'(Vr— i)sz’n@ (16)

27r

Therefore, the stream function is the imaginary part:
Y (r, ) = (Vr — £ )sind (17)

In this case, the radius of the cylinder is a , it means that r = a,and Y =Im [w(z)] =0.
So: (Va— 5k )sinf =0 exists for all value of 6 . It means that Va — 4= =0, And

2ma
Va=+-, p=2nVa® .
Now, the author believes the strength p is clear and can be used in the total complex potential:

w(z):Vz—i—Qi7rz :Vz—|—2g—7‘;“2 :Vz+V—z“2 :V<z+%2) , and the stream function can be
2

represented by: v (r, 6) = (Vr _ 2Vl )sin 0= (Vr _ Ve )sin@ = V(r - < )sz’n@

27r r T

To verify whether the processes are reasonable, the author conducted an analysis of fluidity.
There are many stagnation points when the fluid flows around a cylinder. The stagnation point is the

66



Proceedings of CONF-CIAP 2026 Symposium: International Conference on Atomic Magnetometer and Applications
DOI: 10.54254/2753-8818/2026.HZ27810

point at which the velocity remains zero. Firstly, the complex velocity is:

‘fi—f =V -a?2W = V(l — %2) , and the complex velocity is zero: V' (1 — %2) =0.

It is clear that 22 = a?, so that z = +a . Using the complex variable analysis is much easier
than solving the function that v =0and v =0. Because z = +a , the stagnation points are
located on the front and back edges of the cylinder.

For the surface of the cylinder z = ae® and the total complex potential is w (z) = V (z + %2 )

. The complex potential is % =V — Va2 2=V <1 — %3 ), so that:

wov(1-Z) =v(i-F) =v(1-e ) (18)

Because most discussions of this problem focus on the magnitude of the complex velocity, the
author considers that people should find out the absolute value of the complex velocity to exclude its
direction, and the direction is never a key point in this case.

e = cosB — isinB, let B = 26,
e 0 = cos (20) — i sin(26)

%’ = V(l — cos (26) + isin (29)) (19)

The real partis: V (1 — cos (26)) ; the imaginary part is: V (sin (26))

dw

— | = \/[V(l — cos (29))]2 + [V (sin (29))]2

= V\/[(l — cos (29))]2 + [(sin (20))]2

= Vy/4sin®*(9) = 2V |sin(0)] (20)

Because the stagnation points are located on the front and back edges of the cylinder, it means

that the velocity of the flow is the highest. The range is from 6 =2 tof =37 , |sin(d)| =1

always exists, so that ‘%’ ‘ = 2V . Overall, this phenomenon conforms to Bernoulli’s principle:
when the velocity increases, the pressure will decrease.

If the cylinder rotates when the flow passes the cylinder at the same time, the circulation I' will
exist, and it means that the flow will no longer be symmetric. The problem will be extremely
difficult in this situation because it is special in the flow around the cylinder. But the complex
potential can solve this problem effectively: it is only necessary to superimpose the complex
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potential of a point vortex located at the origin onto the complex potential of the flow without
circulation I': w(z) =V (z + %2 ) — &L Inz , the function of i is rotation.

After analyzing the specific problems, a principle can be applied to this problem- the Kutta-
Joukowski Theorem. This principle is not only associated with the fluidity of the flow, but also
related to the lift force L . Munson, Okiishi, Huebsch, and Rothmayer proposed that the Kutta-
Joukowski Theorem is a specific application of the complex potential in differential analysis of fluid
flow in many difficult cases [13].

Because the circulation I' exists, the fluid flow is not symmetric. Therefore, stagnation points
can move from z = 4a instead of staying in a point, and it is possible that the stagnation points
can merge together. Kutta-Joukowski Theorem is a critical and basic theorem in the fields of fluid
mechanics: the lift force that acts on a certain cylinder per unit length is L = pVI', p is the
density of the fluid, V' is the fluid velocity, and I' is the circulation of the flow. When the velocity

V' rotates by 90 degrees against the direction of the circulation I', the resulting direction is the
direction of the lift force L . The relationship between the velocity, circulation, and the density can
be applied to solve practical problems in scientific research effectively.

The paper mentions three different reasonable methods to solve the problems associated with the
two-dimensional ideal fluid: numerical, theoretical, and experimental methods. Even though these
three methods have many unique advantages, their limitations cannot be ignored. In order to solve
the problem with the minimum level of limitation, the author suggests that individuals can combine
the complex variable analysis with the ideal fluid problems. The paper mentions the basic roles,
definitions, and formula at first, and then showcases the effectiveness and the necessary functions of
the complex potential with details of calculations. From a microscopic perspective, the method is the
application of complex variable analysis to fluid motion; from a macroscopic perspective, it
represents the perfect combination of mathematical and physics methods. The purpose of the
mathematical methods used in this paper is to show the immense power of complex variable
analysis in the field of fluid mechanics and to provide recommendations for the application of
complex potential in relevant industries in today’s society.

However, the complex variable analysis has its own limitations. The complex potential can be
completely constructed based on an ideal fluid, which means that inviscid flow is an extremely vital
condition. Therefore, the complex potential method actually ignores that the fluids in the real world
all have the characteristics: viscosity, compressibility, and fluidity. Ideal fluids do not exist in the
real world. In conclusion, the application of complex analysis and theorems of two-dimensional
ideal fluid can only be used to make a precise estimation, but it cannot truly solve problems directly.
Moreover, this paper only analyzes one example: flow around the cylinder, and it does not fully
present or search for the specific data or images from an actual experiment, so the paper itself also
has certain limitations. Of course, with the continuous development of science and technology, the
popularity of theoretical mathematical methods will be enhanced in the future, and strategies of
using complex analysis will be optimized.
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