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Robot motion control is crucial for high-precision tasks in fields such as industrial
manufacturing and surgical operations. However, multi-source errors related to machinery,
sensors, environment, and modeling significantly reduce its precision. This paper
systematically reviews the statistical analysis methods for such errors in motion control
experiments, with a focus on introducing the mathematical modeling and handling strategies
of errors. For modeling, it analyzes probability-based error propagation models such as
covariance analysis-least squares, Monte Carlo simulation, Taylor series expansion, and
non-Gaussian modeling to quantify the transmission of uncertainties in the kinematic chain,
as well as spatiotemporal correlation models such as Markov chain integrated stochastic
frameworks and multi-source error Bayesian networks to capture the error dynamics coupled
with time and space. For processing, it explores three technical directions: first, real-time
filtering and state estimation, which includes statistical process control and Bayesian
network fusion; second, parameter identification and system calibration, including genetic
particle swarm optimization-neural network and Bayesian optimization-random forest; third,
robust control and adaptive strategies, including deep learning, dynamic compensation, and
federated learning, among others. It compares the applicability of methods. For example, the
Monte Carlo method is used for offline nonlinear analysis but has a large computational
load; federated learning is used for rapid multi-robot convergence but has high bandwidth
requirements to guide selection, and looks forward to future research directions, such as
improving robustness in extreme environments.

robot motion control, error statistical analysis, mathematical modeling, error
handling, multi-source error compensation

Robot motion control technology has been widely applied in multiple key fields, such as industrial
manufacturing, surgical operations, autonomous driving, and collaborative robots. Achieving high-
precision control is the foundation for ensuring the success of tasks. Take aircraft assembly as an
example. Industrial robots must strictly control the positioning error within a range of 0.lmm to
meet the requirements of high-precision riveting processes. In minimally invasive surgeries, if the
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trajectory deviation of the surgical robot’s end reaches 0.5mm, it may cause irreversible damage to
human tissues.

However, during the actual operation process, the robot system is still disturbed by various error
sources, which greatly reduces its control accuracy and performance. These errors are mainly
divided into four categories. The first category is the mechanical structure deviation caused by
manufacturing and assembly, specifically including link dimension deviation, joint clearance, and
transmission clearance. The second category is the sensor system error, covering encoder reading
fluctuations and visual measurement noise. The third category is external environmental
interference, including thermal deformation caused by temperature, mechanical vibration, and
electromagnetic interference. The fourth category is the uncertainty generated during the control
modeling process, such as the linearization approximation errors of the kinematic model.

In practical application scenarios, uncorrected systematic errors often lead to a decline in product
quality, an increase in energy consumption, and even trigger serious safety risks. For example, the
gear clearance in the transmission mechanism of a robot arm may cause the end-effector to
continuously oscillate during high-speed movement, thus reducing positioning stability. The servo
motor of a welding robot generates temperature drift due to long-term operation, which gradually
accumulates to form a significant positioning deviation and ultimately affects the quality of weld
formation. With the increasing popularity of tasks with extremely high-precision requirements, such
as micro-electronic precision assembly and precision agricultural operations, developing effective
statistical analysis methods to accurately model, quantitatively evaluate, and real-time compensate
for multi-source errors in robot systems has become a key research direction for improving the
performance and reliability of robots.

Existing research has developed a variety of methods for robot error analysis, such as probability-
based propagation models, time-series prediction, and intelligent compensation algorithms.
However, most of these methods are only applicable to specific application scenarios and lack a
systematic review of their basic principles, applicable conditions, and inherent limitations.
Therefore, it is difficult for researchers and engineers to quickly select appropriate technical
methods for specific problems in practical operations.

Against this backdrop, this paper aims to systematically review the methods of error statistical
analysis in robot motion control experiments. Two core aspects were focused on in the research:
first, the mathematical modeling methods of errors, including probability-based error propagation
models and spatiotemporal correlation models; second, error handling strategies, such as real-time
filtering, parameter identification, and robust control.

By comparing the advantages, disadvantages, and applicable scenarios of these different methods,
a basis is provided for the selection of methods in engineering practice and theoretical research. And
the future development direction of this field is prospected.

2. Mathematical modeling methods for robot motion control errors
2.1. Error propagation model based on probability

The error probability propagation model utilizes statistical methods to deeply explore the
transmission mechanisms that control uncertainties in the robot's kinematic chain. Its fundamental
nature lies in establishing a probability-related framework, quantifying the complex relationships
between various error sources and the positional deviations shown by the end - effector. Through
systematic analysis of these connections, it firmly lays a statistical foundation for understanding
how uncertainties propagate in the kinematic chain and affect the final positioning accuracy.
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2.1.1. Combination of covariance analysis and least squares method

Judd and Knasinski proposed a method for standardizing the kinematic parameter errors of robots
based on the least-squares method. This method constructs an error transfer model through
covariance analysis. The researchers first collected multiple sets of joint angle and end-pose data.
Then, they model parameter errors as random variables, such as link length deviations and joint zero
errors, and use covariance matrices to characterize the statistical properties of these random
variables. Finally, based on the kinematic equations, they deduced the transfer law of errors from the
joint space to the operational space, laying a statistical theoretical foundation for parameter
calibration.

2.1.2. Application of Monte Carlo simulation in error source analysis

In the study of the spatial distribution of robot positioning errors, Maggiolaro and Dubowsky used
the Monte Carlo simulation method to quantify the impacts of key error sources such as gear
clearances and joint clearances [1].

The specific implementation process of this method is as follows. First, random sampling is
performed on error source parameters that conform to specific probability distributions, such as
uniform distribution. Second, a large number of repeated pose calculations are carried out for the
end effector. Third, the spatial distribution characteristics of errors are revealed through statistical
analysis. Such statistical analysis includes indicators such as mean and standard deviation.

This study not only verifies the non - linear characteristics of the error propagation process but
also provides an effective tool for the error analysis of strongly non - linear systems. However, the
computational load of the Monte Carlo simulation method is relatively large. Therefore, in practical
applications, it is necessary to balance the sample size and computational accuracy.

2.1.3. Extensions of Taylor series and sensitivity analysis

Wu and Yang proposed a statistical analysis method based on Taylor series expansion for the
problem of manufacturing tolerance propagation in serial robots [2]. This method establishes a
sensitivity analysis model to quantitatively evaluate the contribution of the tolerance parameters of
each component to the positioning accuracy of the end-effector. The tolerance parameters of these
components include relevant parameters such as link length and joint axis deviation. In this model,
the larger the sensitivity coefficient, the more significant the impact of the corresponding tolerance
parameter on the end-error.

Researchers adopted the first-order Taylor expansion method to approximately handle the error
transfer function, thus effectively reducing manufacturing errors. The advantage of this method lies
in its high computational efficiency, but its applicability is limited by the small-error assumption
condition.

2.1.4. Breakthroughs in non-Gaussian error modeling

Traditional probabilistic models mostly assume that errors follow a Gaussian distribution. However,
in their research on cable-driven parallel robots, Gouttefarde and Lamaury found that the error
distribution exhibits obvious skewed characteristics, which is caused by the nonlinear elasticity of
the cables [3]. They were the first to establish a nonlinear error model using the skewed normal
distribution. Through experimental verification, they increased the pose accuracy of the robot by
48%, providing a new modeling idea for non-Gaussian error scenarios.
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2.2. Spatio-temporal correlation model of errors

The errors of robots exhibit significant spatio-temporal coupling characteristics. Their distribution
laws change with the position in the workspace and also demonstrate dynamic evolution
characteristics over time. Therefore, it is necessary to establish a spatio-temporal joint modeling
method to simultaneously represent these two types of associated characteristics.

2.2.1. Time series modeling of stochastic framework and Markov chain

In the research of error prediction for robotic assembly tasks, Schroer and Albright proposed an
innovative stochastic modeling framework [4]. This framework integrates the Markov chain and
Monte Carlo simulation method. Markov chains are used to describe the temporal correlation of the
error sequence. It satisfies the Markov assumption: the current error state depends only on the
previous state. Monte Carlo simulation is used to evaluate the propagation and cumulative effects of
random errors. Through this method, researchers have successfully revealed the interaction
mechanism between systematic errors and random disturbances during the assembly process.
Examples of systematic errors include the progressive wear of mechanical components, while
examples of random disturbances include environmental vibrations. This study provides new ideas
for error prediction under complex working conditions.

2.2.2. Bayesian network modeling of multi - source errors

To address the issue of multi-physics field coupling errors in industrial robot systems, Lee and Park
developed a Bayesian probabilistic network model that includes 15 key error parameters [5]. Based
on the actual operation data of over 200 automotive welding robots, the researchers constructed a
complete probabilistic graphical model. In this model, nodes represent various error sources. These
sources of error include thermodynamic errors, mechanical structure errors, and control system
errors. The edges represent the causal relationships between the error sources. This model can
quantitatively describe complex interactions. For example, for every 10°C increase in ambient
temperature, the conditional probability distribution will cause a 15% increase in motor noise and a
12% increase in joint friction errors. This provides a probabilistic reasoning framework for the fault
diagnosis of individual robots.

3. Error processing
3.1. Real-time filtering and state estimation

Real-time filtering and state estimation techniques effectively suppress noise interference through
multi-source data fusion. Their core objective is to continuously optimize the state estimation
accuracy of robots in dynamic environments.

3.1.1. Application of statistical process control in machining error monitoring

In the 2021 study, Liu and Xu proposed a robotic machining quality monitoring method based on
Statistical Process Control (SPC). This method constructs a customized control chart (X-R chart) for
force and vibration signals, analyzes the changes in the statistical characteristics of process signals
in real-time, and successfully achieves the early identification and early warning of abnormal
working conditions such as tool wear.
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3.1.2. Multi-source error fusion of Bayesian network

The Bayesian network model proposed by Lee and Park innovatively achieves dual functions: it can
be used for system error modeling and can also fuse multi-source data from temperature sensors,
force sensors, etc. in real-time [6]. By dynamically updating the posterior probability distribution of
each error source, this model can maintain robust state-estimation performance even under complex
working conditions such as high-temperature interference during the welding process, providing a
reliable theoretical basis for real-time error compensation.

3.2. Parameter identification and system calibration

Parameter identification, as a key technical means to improve the accuracy of robots, focuses on
using optimization algorithms to inversely deduce the key parameters of system error sources, thus
achieving precise calibration of robot performance.

3.2.1. Combination of intelligent optimization and neural network

Li et al. innovatively proposed a genetic particle swarm optimization-neural network (GPSO-NN)
compensation method to address the issue of insufficient positioning accuracy caused by the serial
structure of industrial robots. The typical error range of this positioning accuracy problem is
+1~2mm [7]. This method uses the GPSO algorithm to co-optimize the neural network structure and
parameters. The parameters to be optimized include the number of hidden layer nodes and
connection weights, among others. On this basis, it further constructs an accurate mapping model
between the desired pose of the robot and the positioning error. Experimental results show that this
method can enhance the adaptability of the system in high-precision scenarios such as aircraft
assembly.

3.2.2. Automated calibration of Bayesian optimization and random forest

Wu et al. proposed an intelligent calibration framework that integrates Bayesian optimization and
random forests [8]. In this framework, the random forest algorithm is used to establish a complex
nonlinear mapping relationship between the robot's motion parameters and the end-effector error. At
the same time, the Bayesian optimization algorithm is responsible for conducting efficient global
searches in the parameter space. The key variables involved in this parameter space include joint
zero deviations and link length correction values. This collaborative optimization strategy achieves
automatic and accurate calibration of robot motion parameters, significantly reducing the reliance of
traditional methods on expert experience.

3.3. Robust control and adaptive strategies

Robust control and adaptive strategies, by adjusting the parameters of the control law in real time,
can effectively suppress the unknown error disturbances encountered by the system during
operation, thus ensuring a high degree of stability and accuracy of the control system.

3.3.1. Application of deep learning in dynamic error compensation

In 2020, Chen and Zhang, addressing the trajectory deviation problem faced by collaborative robots
under dynamic load conditions, innovatively selected the ResNet-18 deep neural network
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architecture. By analyzing the data from torque and positions sensors in terms of time-domain
features (such as signal peaks) and frequency-domain features (e.g., energy distribution), they
successfully constructed a deep-learning model of error dynamics. This model has the ability to
accurately capture the non-linear mapping relationship between load changes and trajectory errors,
thus achieving real-time error compensation under dynamic working conditions.

3.3.2. Multi-robot cooperative compensation in federated learning

Chen and Yang innovatively proposed a multi-robot collaborative error compensation framework
based on federated learning [9]. Through the distributed parameter aggregation mechanism, this
framework achieves the collaborative optimization of multi-robot error compensation experience
under the premise of strictly protecting the local data privacy of each robot. Experimental results
show that this method significantly improves the error convergence rate by 67%, proving a practical
solution for the collaborative improvement of the accuracy of large-scale robot clusters such as
warehouse robots.

4. Discussion
4.1. Comparison of method applicability and limitations

The performance differences among different error modeling and processing methods are
significant, and a choice needs to be made according to the scenario.

4.1.1. A contrast between Monte Carlo simulation and Taylor series-based sensitivity analysis

The Monte Carlo simulation method has extremely high accuracy when dealing with strong non-
linear error transfer problems [10]. However, due to its high computational complexity, it is mainly
applicable to offline analysis scenarios, such as error budget evaluation in the robot design stage. In
contrast, the sensitivity analysis method based on Taylor series expansion significantly improves the
computational efficiency [11]. However, its scope of application is limited to small error cases under
high-speed robot motion or heavy-load conditions, and the accuracy will drop significantly.

4.1.2. Contrast between federated learning and deep learning

Federated learning achieves the accelerated convergence of error compensation through multi-robot
collaboration, but it has a relatively high demand for communication bandwidth [12]. By contrast,
deep learning can effectively handle dynamic errors, but it has limitations, namely, the insufficient
generalization ability of the model. For example, when the robot model changes, the deep learning
model needs to be retrained [13].

4.2. Cutting-edge technologies and future directions

In recent years, research has shown a remarkable trend of interdisciplinary integration. On the one
hand, inspired by the principles of quantum computing, Nakamura and Ando proposed a new
algorithm based on quantum Monte Carlo sampling, successfully breaking through the analysis
bottleneck of the 100-dimensional error space [14]. The computational efficiency has increased by
1000 times, providing a breakthrough solution for high-dimensional error modeling. On the other
hand, Levin and Kriegman innovatively integrated living neural networks into the robot control
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framework. This integration increased the system's adaptability to unknown disturbances by 82%,
thereby establishing a research paradigm for bionic error correction [15]. Future research should
focus on optimizing the balance between model accuracy and computational efficiency and rely on
the exploration of error robustness methods in extreme environments such as outer space and the
deep sea.

This paper systematically reviews the error statistical analysis methods and their applications in
robot motion control experiments. It focuses on the mathematical modeling and processing
strategies of errors and discusses their significance in practical engineering and theoretical research.

In the error modeling of robot kinematics, probability-based error propagation methods such as
covariance analysis and least-squares fusion, Monte Carlo simulation, Taylor series expansion, and
non-Gaussian distribution modeling are widely used to quantify the transmission laws of
uncertainties in the kinematic chain. Different methods are applicable to scenarios with different
degrees of nonlinearity and error scales, showing strong adaptability. Furthermore, spatiotemporal
correlation models can describe the dynamic evolution of errors over time and their coupling
mechanism with spatial positions, thus more comprehensively characterizing the error
characteristics in complex systems.

In the field of error handling, real-time filtering and state estimation techniques, such as statistical
process control and Bayesian network fusion, achieve robust state tracking through multi-source
data fusion. Parameter identification and system calibration methods, such as genetic particle swarm
optimization-neural network and Bayesian optimization combined with random forest, improve the
accuracy of robots by intelligently optimizing key parameters. Robust control and adaptive
strategies, such as deep learning-based dynamic compensation and multi-robot federated learning
collaboration, enhance the system's ability to resist unknown disturbances.

In the discussion section, the comparative analysis clarifies the applicable boundaries of different
error handling methods. For example, although Monte Carlo simulation is suitable for offline error
analysis of strongly nonlinear systems, its computational cost is relatively high. Federated Learning
can effectively accelerate the error convergence process in multi-robot systems, but it has high
requirements for communication bandwidth. These conclusions can provide a basis for researchers
and engineers to select appropriate methods for different application scenarios in practical tasks.
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