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Image reconstruction under random pixel loss has a significant role in applications
such as medical imaging, remote sensing, and lossy transmission. This paper explored the
image restoration problem based on the Bernoulli-dropped image, where every pixel has the
probability of p to be kept and (1-p) to be removed. This paper modeled the task as a
supervised learning problem, utilizing a simple U-Net model (comprising three encoders and
decoders) that incorporates skip connections to integrate multi-scale context information and
spatial details for image restoration. In this paper, the DIV2K dataset (800 images,
grayscale) is applied to the retention rate Random mask with p = 0.3 to generate an observed
image that matches its original. The training used the mean square error as the loss function.
The result reveals that the model is able to achieve a relatively clear reconstruction effect
under the condition of a single input image. It can better preserve edge and texture
information, compared to the traditional baseline method. In the end, this paper discusses the
issue of choosing and discarding in the network design. Meanwhile, it points out the
limitation in extreme pixel loss. At the same time, in the future, potential optimization paths
were also mentioned in terms of the improvement of the loss function, the attention
mechanism, and the expansion of color images.

Deep learning, U-Net, Image Reconstruction, Bernoulli-dropped Image
Reconstruction

Image reconstruction is a fundamental problem in the area of computer vision and image processing.
It aims to recover the cropped and lost part of the image under the situation of incomplete
observation. This process plays a very significant role in various applications, including medical
imaging, remote sensing mapping, video surveillance, image transmission, and image compression
[1,2]. In real-world conditions, image degradation may be caused by various factors, such as sensor
errors, noise pollution, or data loss during wireless network transmission [3]. A typical type of
degeneration is the random loss of pixels. The pixels are lost completely in this case, and justifying
what the lost pixels are depends on the rest of the observation data. Reconstructing this kind of
image is very challenging because the size, region, and distribution of the lost area are totally
random. Not only are the details needed to be recovered, but the consistency also needs to be
maintained [4].
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In the past ten years, deep learning has made numerous achievements in image reconstruction,
including noise reduction, deblurring, super-resolution, and image restoration [5,6]. Among various
neural network constructions, the U-Net was considered the most popular one in the field of image
reconstruction. This was because of its encoder-decoder structure with skip connections [7]. Initially,
U-Net was designed for biomedical image segmentation [8]. However, it is able to combine multi-
scale contextual information with precise spatial positioning [9], so it also behaves well in
recovering irregularly lost data. Skip connection is able to directly transfer high frame rate details
abstracted from the encoder to the decoder, which helps with the details recovery.

Although U-Net has been widely used in structured image restoration problems, research on
dealing with random loss in data (for instance, Bernoulli-dropped images) is relatively less [4]. In
the Bernoulli-based degeneration model, every pixel in the original image has a probability p to
remain constant and a probability (1-p) to be removed completely. This setting can model many
problems in the real world, like random sensor failures in imaging equipment, packet loss in image
transmission over unstable channels, and incomplete sampling in compressive sensing [3]. Restoring
images under this condition required the model to utilize the limited observation effectively and
generate reasonable content in those disappearing pixels.

In this research, the application of a deep learning network based on the U-Net in recovering
Bernoulli-dropped images was explored. A dataset containing 800 high-resolution images was
found, and they were synthetically degraded by applying Bernoulli masks with a fixed retention
probability. The degraded images and their corresponding Bernoulli-dropped images are input as
pairs to the U-Net model. The model is trained in a supervised learning manner to restore the
original images. The model is optimized using a mean squared error (MSE) loss function,
encouraging accurate pixel-wise reconstruction. These methods utilize the U-Net’s ability to
combine multi-scale contextual information and handle local details, making it able to generate
content that is structurally consistent and visually coherent under the situation of high loss rate.

The main contributions of this research are as follows. Formulating and reconstructing the
Bernoulli-dropped images problem into a supervised learning manner and providing an
implementation framework that is extendable to similar issues, adapting the U-Net architecture for
this task and evaluating its reconstruction performance on a custom dataset with controlled levels of
random pixel loss, and presenting both qualitative and quantitative results, including visual
reconstructions and error metrics, to demonstrate the model’s effectiveness and limitations.

The remainder of this paper is organized as follows: the second part reviews the image
restoration, sparse observation recovery, and also the research about reconstruction using U-Net; the
third part introduces the methodology, including constructing a dataset, Bernoulli-dropped image
generation, and network construction design; In the end, the fourth part is for conclusion and the
future research direction.

Image reconstruction refers to the process of restoring a high-quality original image from
incomplete or degraded observations. It has a wide range of applications in many fields like medical
imaging, remote sensing, video surveillance, and wireless image transmission [1,2]. The methods
used can be classified into two main types: traditional techniques and methods based on deep
learning.
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2.1. Traditional method

The early method for reconstructing an image mainly depended on interpolation (such as bilinear
interpolation and bicubic interpolation) and sparse representation methods based on the transform
domain. These methods worked well in tackling regular lost or low-noise environments. However,
in the conditions of high loss rate or complex texture, this often leads to blurring and artifacts [1].
The compressive sensing theory provides a new mathematical framework for image restoration
under the condition of sparse sampling, but the accuracy of the assumption of signal sparsity limits
its performance.

Besides, Maximum Likelihood Estimation (MLE) is one of the important statistical methods in
traditional reconstruction. MLE estimates the most likely original image by assuming that the
observed data follows a specific probability distribution (such as a Gaussian distribution or a
Poisson distribution) and then finding the parameters that maximize the likelihood function of the
observed data under this distribution assumption [3]. In the restoration of medical imaging and
remote sensing data, MLE was usually used to reconstruct based on the noise model, in order to
enhance the statistical consistency of the results. However, this method highly depends on the
accuracy of the assumed noise distribution. When the actual noise distribution does not match the
assumed or irregular distribution (such as a Bernoulli distribution), the performance of MLE may
significantly deteriorate.

2.2. Image reconstruction based on deep learning

In recent years, Convolutional Neural Networks (CNNs) have made significant progress in tasks
such as image denoising, super-resolution, and image inpainting [5,6]. The Generative Adversarial
Network (GAN) enhances the authenticity of the reconstructed images by introducing adversarial
loss, while the attention mechanism improves the model's ability to fuse global and local features
[9]. For instance, the WaveFill model proposed by Yu et al. [5] processes high-frequency and low-
frequency information separately, based on wavelet decomposition, which significantly improves the
texture details of the repaired area. Wei and Wu [6] enhanced the global consistency and local detail
restoration capabilities by combining the context discriminator with the U-Net.

2.3. U-Net and improvement

U-Net was initially proposed by Ronneberger for use in biomedical image segmentation. Its
encoder-decoder structure and skip connection mechanism are widely used in image restoration,
segmentation, and super-resolution tasks, because of its ability to extract multi-scale features under
the condition of maintaining spatial resolution [7]. The improved versions that have emerged in
recent years include the introduction of residual structures, attention modules, and bidirectional
feature transfer mechanisms [7,9]. Xiang et al. [7] proposed BiO-Net, which enhances the efficiency
of feature transfer through bidirectional recurrent connections and performs exceptionally well in
medical image analysis and reconstruction.

2.4. Restoring randomly lost and bernoulli-dropped

In the cases of wireless image transmission, sensor networks, and compressive sensing, etc., the
pixels lost tend to be irregular. The Bernoulli-dropped model assumes every pixel has a fixed
probability of p to be lost and 1-p to be kept, which can effectively model these situations [3.,4].
Aggarwal et al. [3] proposed a projection-based cascaded U-Net, which achieved excellent results in
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MRI sparse sampling reconstruction. However, its application in the restoration of random missing
data in natural images is still relatively limited. This research aims to implement effective restoration
of images with a high loss rate by combining the Bernoulli-dropped model and the U-Net structure.

3. Methodology

This study focuses on the natural image reconstruction task under the condition of Bernoulli-drop
point degradation and has designed and implemented an end-to-end reconstruction network based on
the U-Net.

3.1. Problem definition, dataset, and preprocessing

Given the original image x € [0,1]H x W x C and the Bernoulli random mask M ~ Bernoulli (p),
the observed image is (1):

y=MQOx (1)

where () indicates element-wise multiplication. The objective of this study is to learn the
mapping function 0 (y,M) =~ x to reconstruct the image under known conditions, given the
original image and mask.

This paper uses the DIV2K dataset released by the NTIRE 2017 Single Image Super-Resolution
Challenge as the source of the original clear images, which included 800 high-resolution natural
images, covering various scenarios and textures. It is suitable as a training and evaluation
benchmark for reconstructing models [9]. Every image was first resized to 512%512 and turned to
grayscale to lower the computational cost and focus on restoration. Then, the Bernoulli-dropped
image to every grayscale image was generated using the mask M ~Bernoulli (p) (in this paper, p is
0.3), and the observation was obtained, and those not observed were marked zero. The train set will
be shuffled in the stage of training; pixel value was generalized by [0,1]. To ensure reproducibility,
the random seed is fixed, and the data partitioning is kept consistent [9].

3.2. Network construction

In this paper, a symmetric encoder-decoder U-Net model is used, consistent with the common
paradigms used in image repair/reconstruction tasks. The network was constructed by three layers of
down-sampling encoder, a bottleneck layer, and three layers of up-sampling decoder. The features of
the encoder and decoder are fused on the same scale through jump connections, allowing for the
balance of global context and fine-grained spatial information.

3.2.1. Basic convolution block CBR

Each stage employs a sequence of two layers of convolution, activation, and normalization stacking
(Conv3x3 + ReLU + BatchNorm), written as CBR (in_channels, out_channels). This is consistent
with the CBR function in the code, which can maintain the stable growth of the receptive field while
suppressing the internal covariate shift and improving the training stability.

3.2.2. Encoder (downsample), decoder (upsample) and bottleneck

The input is a single-channel grayscale imagel xHxW. There are three layers:
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1. encl = CBR (1—64), maintain resolution.

2. enc2 = CBR (64—128), followed by MaxPool2d (2) halves the resolution.

3. enc3 = CBR (128—256), the down-sampling is also achieved through the maximum pooling
operation.

The maximum pooling gradually expands the receptive field layer by layer, enabling the
bottleneck layer to gather more contextual information from a wider range.

middle = CBR (256—512), used to extract high-level semantic features at the minimum spatial
resolution, serving as the global condition for the decoder's reconstruction.

At the decoding end, the resolution is restored through deconvolution upsampling, and it is
concatenated with the encoded features of the symmetric layer:

1. up3: ConvTranspose2d (512—256) upsample and followed by e3, dec3 = CBR (512—256).

2. up2: ConvTranspose2d (256—128) upsample and followed by e3, dec2 = CBR (256—128).

3. upl: ConvTranspose2d (128—64) upsample and followed by e3, decl = CBR (128—64).

The jump connection provides high-resolution edge and texture features of the same scale as the
input, significantly reducing the detail loss caused by multiple downsampling.

3.2.3. Output layer

Map the channel numbers back to a single channel through Conv2d (64—1, kernel size=1), and
obtain the reconstruction result x* & [0,1]1xHxW. Since the training loss uses MSE, the output does
not necessarily require explicit activation. The reasoning and visualization stage will trim the results
to the interval [0, 1].

3.2.4. Tensor dimension flow (taking 512x512 as an example)

1x512%512 — 64x512x512 — 128%x256%256 — 256x128x128 — 512x64x64 —256x128x128 —
128%256x256 — 64x512x512 — 1x512x512

Here, “—” indicates the size changes resulting from convolution/pooling/upsampling and
concatenation, ensuring that the output has the same resolution as the input.

3.2.5. Design trade-offs

1. Using ConvTranspose2d facilitates end-to-end learning of the upsampling weights; if
checkerboard-like artifacts occur, they can be replaced with bilinear upsampling + convolution.

2. Three-layer downsampling and upsampling strike a balance between performance and memory
usage; deeper layers can increase the receptive field but will also increase computational complexity
and the risk of overfitting.

3. The combination of BatchNorm and ReLU has good compatibility with mini-batch training; if
the batch size is very small, GroupNorm can be considered.

3.2.6. Loss function and optimization strategy

The loss function is the mean squared error (MSE) (2):

L=4 Y (x-x)’ @)
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The optimizer is Adam, with an initial learning rate of 1 x 1072 , a batch size of 4, and 10
epochs of training.

4. Result

The image reconstruction model based on U-Net proposed in this paper was evaluated on a dataset
consisting of 800 grayscale images. As Figure 1 shows, the Bernoulli-dropped image (p=0.3) is
input to the model to be reconstructed.

Figure 1. The damaged input image. Data from [9]

As shown in Figure 2, the damaged input image is processed by the trained model to generate a
reconstruction result, which is then compared with the real image.

Input (Bernoulli Dropped) Prediction

Figure 2. Image of a train reconstructed using the model. Data from [9]

The result indicates that the model is able to reconstruct most of the information and texture
under the condition of high density of dropped pixels.
To show the performance further, the MLE method is also used to construct an image in Figure 3.
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(a) Observed data (10-frame) (b) ML estimate (using 1000 frames)

A Y

Figure 3. Image of a cat reconstructed using the MLE algorithm. (Picture credit: original)

The MLE method uses 1000 frames of observed data for statistical reconstruction, while the U-
Net model in this paper can complete the reconstruction with just a single damaged image. In the
comparison, the method presented in this paper outperforms others in terms of the sharpness of edge
restoration and the preservation of fine details in high-frequency textures. However, the MLE results
often exhibit excessive smoothing in certain areas due to their reliance on statistical averaging.

The advantages of using the deep learning method over the traditional method:

1. Data-driven learning - The model can adapt to changes in data distribution and has greater
robustness against noise, ambiguity, and random artifacts.

2. The inference speed is fast - after the model is trained, reconstructing a single image takes only
milliseconds, making it suitable for real-time applications.

3. Higher reconstruction capability - The U-Net architecture is capable of capturing multi-scale
features, thereby achieving more accurate restoration in structurally complex images.

Overall, the deep learning image reconstruction method proposed in this paper not only
outperforms the classical methods in terms of visual quality but also has significant advantages in
terms of efficiency and scalability. It provides an efficient and feasible solution for image restoration
tasks in practical applications.

5. Discussion

This paper describes an experiment on reconstructing a Bernoulli-dropped image using the U-Net
CNN. The results show that this method is significantly better than the one using MLE in terms of
structural information recovery and detail restoration, especially in situations with a high pixel-
dropped rate. The advantages mainly stem from the skip connection in the U-Net, enabling the
model to preserve partial edge and texture characteristics effectively.

Although there is a limitation, first of all, in an extreme situation, such as having an extremely
high pixel drop rate (p < 0.2), the problem of excessive smoothing or blurred texture will easily
occur. This indicates that the model still has room to improve when handling extremely sparse
observations. Secondly, in this experiment, only single-channel grayscale images were used for
training and evaluation. In contrast, in actual situations, colorful images and more complex data
distributions may require a higher ability from the model. Additionally, this paper only uses MSE as
the loss function. MSE can ensure pixel-level restoration accuracy, but it is not good at sensing
quality. In the future, it can be attempted to combine perceptual loss or structural similarity (SSIM)
loss to further enhance the reconstruction effect.
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Another notable aspect is the model's generalization ability. Although the experiments show that
the U-Net performs stably on both the training set and the test set, its applicability when dealing
with cross-domain data (such as switching between medical images and natural images) still needs
further verification. This suggests that future research can introduce self-supervised or transfer
learning methods to enhance the model's universality and robustness.

This paper proposes implementing the novel deep learning method based on the U-Net, aiming to
reconstruct an image with randomly missing pixels. The research first constructed Bernoulli-
dropped images using the DIV2K dataset. The experiment results show that this method outperforms
the traditional maximum likelihood estimation method in terms of structure restoration, detail
restoration, and reconstruction efficiency. To be more specific, the U-Net model remains capable of
producing complete images despite high pixel loss rates and has an advantage in computational
speed, making it suitable for real-time or large-scale image restoration scenarios.

The contributions of this paper are primarily in three parts: first, formalizing the Bernoulli-
dropped image reconstruction problem as a deep learning task and providing a reproducible
implementation framework. Secondly, the effectiveness of U-Net in the scenario of random data loss
was verified, and it was compared with the classical methods. Lastly, this laid the foundation for
subsequent research in color images, extreme missing rates, and cross-domain tasks.

The future work includes further optimizing the design of the loss function to enhance the
perception quality; exploring deeper architectures or introducing an attention mechanism in the
network structure to improve the performance; extending the method to color images and real
transmission data; and combining self-supervised learning with generative adversarial networks
(GAN) to enhance the robustness and generalization ability of the model.

Overall, this study not only demonstrates the potential of U-Net for reconstructing images with
random pixel loss but also provides both practical and theoretical references for future researchers
and scholars interested in similar subjects.
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