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Abstract. In the era of big data, survival analysis, a statistical method for analyzing the expected 

duration of time until one or more events happen, has gained significant importance, especially 

in medical and biological research. This paper primarily focuses on the comprehensive 

exploration and understanding of survival analysis modelling, from traditional to modern 

approaches, and identifies the existing challenges and future prospects of these models. We 

commence by discussing foundational models such as the Kaplan-Meier and Cox proportional 

hazards models, and then transition into the exploration of the more flexible Accelerated Failure 

Time model. Acknowledging the current challenges faced in survival analysis, such as dealing 

with high-dimensional data, lack of labelled data, and data quality and reliability, we further 

delve into the potential solutions provided by modern techniques like deep learning, transfer 

learning, and semi-supervised learning. Additionally, the paper highlights the issues of 

interpretability and transparency of complex models, offering an overview of interpretability 

methods such as LIME and SHAP. Despite certain limitations, our study offers a valuable 

reference for understanding the evolution of survival analysis and sparks further discussions 

about its future development, emphasizing the profound significance of survival analysis in the 

realm of statistical research. 

Keywords: survival analysis, Kaplan-Meier model, Cox proportional hazards model, 

accelerated failure time model, deep learning.  

1.  Introduction 

Survival analysis is a method that allows for the examination and interpretation of the duration of 

survival in organisms or humans, using data collected from experiments or surveys. This approach is 

crucial for investigating the connections and intensity of impact between survival time, outcomes, and 

a range of influencing factors.  

This statistical method primarily used for studying the probability of a specific event occurring at a 

certain time point or within a certain time frame, and this robust statistical tool, widely employed in 

diverse scientific disciplines such as biomedical studies, engineering, social sciences, and more, is 

dedicated to the analysis of time-to-event data.  

Firstly, survival analysis, originating in biostatistics, has evolved significantly over the years. While 

early models laid foundational insights, contemporary methods, fueled by big data and computational 

growth, now extend to diverse sectors like finance and engineering. This section traces its developmental 

journey from inception to present-day applications. 
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Secondly, survival analysis has a rich history, originating from biostatistics with a focus on studying 

patterns of human survival times, such as disease survival rates, and in the development trajectory 

segment, this passage explores the novel research and data models that have emerged in the field of 

survival analysis in recent years. 

Thirdly, in the future perspectives section, this research forecasts potential paths of survival analysis's 

development and new technologies and ideas that might have an impact. This includes factors such as 

model complexity, data diversity, and growth in computational power. Admittedly, future progress will 

also face certain impediments, so in the technical barriers section, this paper will discuss in detail the 

major technical challenges currently within survival analysis, issues that may hinder further 

advancements and improvements. The passage aims also to delve into how these challenges impact 

existing research efforts and potential strategies to overcome them. 

This paper aims to provide a comprehensive overview of survival analysis, delving into its history, 

development trajectory, future perspectives, and existing technical barriers. By thoroughly examining 

these themes, this paper hopes to provide readers with a holistic perspective of survival analysis and a 

deep understanding of its future development. It is believed that understanding and applying survival 

analysis can not only propel the scientific progress in related fields, but also enhance researchers’ 

perception and comprehension of the world. 

2.  Basic information of survival analysis 

2.1.  Censored data  

Censored data plays a pivotal role in survival analysis, a branch of statistics that predominantly focuses 

on the time until the occurrence of an event of interest such as patient survival or equipment failure. 

However, in real-world observations, researchers often do not have the exact timing of all such events. 

Some events may occur after the observation period has ended, some may have occurred before the 

observation began, and for others, experimental operators only know that they occurred between two 

points of observation. This introduces the concept of censoring. 

The types of censored data and how they are handled significantly impact the accuracy of survival 

analysis outcomes. Censored data can be classified in two primary ways: by types based on research 

design (Type I, II, III) and by directions based on observation (left, right, and interval censoring) [1]. 

Type-based classification pertains to the design of the study and data collection process. Type I 

censoring involves all subjects starting and ending the study at the same time, regardless of the number 

of events that have occurred. Type II censoring starts with all subjects at the same time, but the study 

ends when a predetermined number of events have taken place. Type III censoring allows subjects to 

enter the study at different times, but with a fixed end time for the study.  

The choice between these types of censoring will affect data collection and, consequently, the results 

of survival analysis. 

Direction-based classification, in addition, deals with the knowledge about the timing of the event. 

Left censoring applies when an event occurs before the observation begins; in case researchers know 

that the event has happened, but the experiments are lack of the exact time. Right censoring applies 

when an event occurs after the observation ends; researchers know that the event had not happened by 

the time that the observation ended, but similarly, experimental operators do not know when it occurred 

afterward. Interval censoring applies when an event occurs during the observation period, but 

researchers do not know the exact time, only that it occurred between two points of the entire observation. 

The correct identification and handling of censored data in different directions is a key to obtaining 

accurate results in survival analysis. 

In summary, understanding and properly handling censored data is an essential component of 

survival analysis. Only by correctly dealing with censored data can researchers and experimenters 

achieve accurate and reliable results from survival analyses, which bears significant implications for 

clinical decision-making and policy development. 
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2.2.  Survival time  

Survival Time is the primary focus of study, defined as the time from the initiation of the study (or from 

a particular starting point like diagnosis or start of treatment) to the occurrence of the event of interest. 

This time-to-event data typically encompass two scenarios: the event has already occurred, and 

researchers record an exact time, or the event has not occurred by the end of the study, and researchers 

only have an upper limit of the event's occurrence, the latter being the previously discussed censored 

data [2]. 

2.3.  Survival functions  

The Survival Function (or survival probability) describes the probability of surviving, i.e., not 

experiencing the event of interest, at or before a given time point. The Survival Function is non-

increasing, starting at 1 and gradually decreasing over time, signifying the increasing probability of the 

event occurring with the passage of time.  

2.4.  Hazard functions 

The Hazard Function (or failure rate or instantaneous death rate) denotes the instantaneous probability 

of the event occurring at a given time. Unlike the Survival Function, the Hazard Function does not have 

a fixed range and can increase or decrease over time. The Hazard Function provides information about 

how the risk of the event happening varies over time.  

2.5.  Covariates 

In survival analysis, a primary goal with covariates is to help people understand what factors may 

influence the survival time and to quantify their impact. This requires us to establish a model linking the 

survival time with one or more covariates, enabling us to explain and predict survival time. In this model, 

the coefficients of the covariates represent the relative change in survival time for a one-unit increase in 

the covariate. Positive coefficients imply that an increase in the covariate will increase survival time, 

whereas negative ones indicate that an increase in the covariate will reduce survival time. For instance, 

in clinical trials, certain research may be interested in covariates such as age, gender, type of treatment, 

etc. These covariates could influence the survival time of patients. By incorporating these covariates 

into the survival model, researchers can better understand how these factors affect survival time and 

conduct the experiments or research with a higher magnitude of their influence. 

3.  Early and modern survival analysis development and employments 

Kaplan-Meier non-parametric estimation and semi-parametric estimation of Cox Proportional Hazards 

model proposed by D. R. Cox are the most widely used classical methods [3]. 

3.1.  Kaplan-Meier non-parametric estimation 

The Kaplan-Meier estimator is a non-parametric statistical method designed in 1958, primarily used for 

estimating the survival function from a specific starting time to the occurrence of a certain event. This 

method finds broad application in clinical trials and disease survival analysis. The Kaplan-Meier method 

can handle what is known as censored data, that is, situations where an event does not occur during the 

study period or subjects drop out of the study. This ability to handle censored data gives it an advantage 

in dealing with data that has varying times of censoring and event occurrence. Censored observations 

are subjects who either die of causes other than the disease of interest or are lost to follow-up [4]. 

As mentioned in the paper, if the estimation procedure allows for the best-fitting distribution to be 

chosen from all possible distributions, rather than restricting the choice to a specific category of 

distributions, then it would be reasonable to call this estimation procedure nonparametric [5]. Kaplan-

Meier estimator’s characteristics of non-parametric are reflected in the foundation of this method that it 

does not require the assumption that survival times follow a specific probability distribution.  

The computation of the Kaplan-Meier estimator involves successively multiplying the survival 

probabilities across each time interval. The survival probability for each specific interval is ascertained 
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as the quotient of the count of individuals who endured within that interval over the total count of 

individuals under observation at the onset of that interval. Consequently, this approach facilitates robust 

estimation of the aggregate survival function, even amidst the occurrence of data censoring [5]. 

Considering the drawback of the Kaplan-Meier estimator, it is incapable of handling multiple risk 

factors inherently, necessitating other methods when considering various influences on survival time 

such as age, gender, or disease stage. Being a non-parametric method, it requires a substantial sample 

size for precise estimations. With smaller samples, the survival function estimation may exhibit 

significant fluctuations. Furthermore, the selection of time partitioning, crucial in the calculation of the 

estimator, could impact the shape of the survival function, especially when the occurrence of events in 

the data is sparse [5]. 

While the Kaplan-Meier estimator provides an essential foundation for survival analysis, its 

limitations suggest the necessity for more comprehensive methods when dealing with multifactorial 

influences on survival time, or when operating with smaller or more complex datasets. One approach 

that addresses these concerns and has found widespread use in survival analysis is the Cox Proportional 

Hazards Model. This method permits the simultaneous analysis of the impact of several variables on 

survival time and is not restricted by the same assumptions required by the Kaplan-Meier estimator. 

Therefore, it is necessary to delve deeper into the nuances of the Cox Proportional Hazards Model and 

explore how it complements the Kaplan-Meier estimator in survival analysis. 

3.2.  Cox proportional hazards model  

The Cox Proportional Hazards Model was proposed by British statistician Sir David Cox in 1972 and 

has since become one of the most commonly used models in survival analysis. This method is used to 

evaluate the impact of multiple covariates on survival or event occurrence time. It has been widely 

applied in fields like clinical trials, epidemiological research, and economics for survival data analysis.  

At the core of the Cox model is the proportional hazards assumption, which states that the covariates' 

effects on survival risk are multiplicative and remain constant over the observation period. This means 

that the hazard functions' ratio for any two individuals is a constant that does not depend on time. If this 

assumption does not hold, the model results may be biased. Therefore, it is crucial to test the proportional 

hazards assumption before employing the Cox model. The fundamental form of the Cox model is a 

semi-parametric model:  

The first component, h0(t) , is the baseline hazard function. It represents the risk of the event 

happening at time t for an individual with all covariates equal to zero. It does not rely on any specific 

parameters and is not typically estimated in the Cox model, which instead focuses on the relative 

differences between individuals with different covariate values. 

The second component, exp(𝑋𝛽) , is the exponential of the linear predictor, and it adjusts the 

baseline hazard for the individual covariates. In this component, X represents the covariate values for 

an individual, andβrepresents the coefficients for those covariates (The coefficients of the covariates 

need to be estimated from the data using the method of Maximum Likelihood Estimation). Each 

covariate has its own coefficient, which measures the effect of that covariate on the hazard rate. If the 

coefficient is positive, then an increase in that covariate leads to an increase in the hazard rate (and thus 

a decrease in survival time). Conversely, if the coefficient is negative, an increase in the covariate leads 

to a decrease in the hazard rate (and thus an increase in survival time). 

One key feature of the Cox model is that it does not make any assumptions about the form of h0(t), 

which allows the model to be quite flexible. This is why it is referred to as a semi-parametric model: the 

baseline hazard function h0(t) is non-parametric, and the covariate effects are parametric [6, 7]. 

The Cox model is broadly applicable across various scenarios. For instance, in tumor research, 

scientists might be interested in factors such as age, gender, tumor size, and treatment methods affecting 

patient survival time. In economics, investors might research how covariates such as education and 

economic status impact the duration of unemployment. The Cox model can assist in quantitatively 

describing these factors' influence on survival time [7]. 
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The main advantages of the Cox model are that it can consider the effects of multiple covariates on 

survival time simultaneously and it does not require specific assumptions about the survival time 

distribution. Another advantage of the Cox model is that it can handle censored data, i.e., situations 

where the observed event time is truncated or partial information is missing. This is crucial in survival 

analysis as in many studies, during the experiments, researchers might not observe all individuals' event 

occurrence times. Some individuals might leave the study before its conclusion, or they might not have 

experienced the event by the end of the study. The Cox model can correctly handle such data, making it 

widely used in survival analysis.  

However, the proportional hazards assumption is a significant limitation of the Cox model. If this 

assumption does not hold, the model's results may be biased. Additionally, the Cox model does not 

handle time-dependent covariates very well. Although the Cox survival analysis model has certain 

limitations and many other survival analysis methods have been proposed since, the Cox model remains 

one of the most commonly used and popular methods [8]. 

3.3.  Accelerated failure time (AFT) model 

Kaplan-Meier estimator and Cox proportional hazards model, undeniably, have made significant 

contributions to the field of survival analysis. They brought forth a fresh perspective to assess survival 

data, with the Kaplan-Meier estimator providing an empirical method to chart the survival curve and the 

Cox model introducing a semi-parametric approach that allows incorporating covariates without making 

strong assumptions about the form of baseline hazard. 

However, an inherent limitation with these approaches lies in their inability to explicitly model the 

survival times, and the dependence of survival times on covariates is often non-intuitive and complex 

to interpret. The Cox model’s dependence on the proportional hazard assumption, while allowing the 

introduction of covariates, might prove restrictive in certain scenarios, particularly when the hazards are 

not proportional [8]. 

Addressing these concerns, the AFT model offers a compelling alternative. The AFT model, in 

contrast to the Cox model, provides a more direct interpretation by assuming a parametric form for the 

survival distribution and modeling the effect of covariates multiplicatively on the survival time, hence 

intuitively expressing how covariates can "accelerate" or "decelerate" the occurrence of the event of 

interest. This directness, coupled with the model's flexibility in handling different underlying survival 

distributions and its ability to accommodate non-proportional hazards, makes the AFT model a versatile 

tool in modern survival analysis.  

The AFT model is a commonly used statistical model in survival analysis, which directly models 

survival time. The primary assumption of the AFT model is that the influence of covariates on survival 

time can be depicted as "accelerating" or "decelerating" the "speed" of survival time, hence the name 

"Accelerated Failure Time Model". 

In the AFT model, survival time is assumed to be composed of a deterministic part (determined by 

covariates) and a random part (determined by the error term). 

T =  Y ∗  exp(𝑋𝛽) (1) 

Here, T is the observed survival time, Y is the random survival time (following a certain known 

probability distribution), X is the matrix of covariates, and β represents the effect size of covariates. 

A key feature of this model is its assumption that the effect of covariates on survival time is 

multiplicative, not additive. This means that the impact of covariates on survival time is achieved by 

multiplying a coefficient (i.e., exp(𝑋𝛽)), rather than by adding or subtracting a quantity. This contrasts 

with the assumption of another common survival analysis model, the Cox proportional hazards model, 

which posits that the effect of covariates is multiplicative, influencing the hazard function, not the 

survival time itself. 

In many demonstrations, the specific formula of the model is log 𝑇𝑖 = 𝑊𝑖𝛽 + 𝜀𝑖. One advantage of 

this is that it makes the model's expression closer to the linear regression model, simplifying 

computations and interpretation. It transforms the nonlinear relationship of the model into a linear one, 
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enabling the regression coefficient to be directly interpreted as an effect on the logarithm of survival 

time. The specific derivation simplifies exp(𝑋𝑖𝛽 + 𝜀𝑖) to 𝑋𝑖𝛽 + 𝜀𝑖 [8]. 

3.4.  A comparison of the AFT model with the Kaplan-Meier and Cox models 

The AFT model directly models survival time and can intuitively explain the impact of covariates on 

survival time. The Kaplan-Meier and Cox models, on the other hand, focus more on modelling survival 

functions and hazard functions. 

Compared to the Cox model, one advantage of the AFT model is that it has weaker assumptions 

about the relationship between covariates and survival time. The Cox model requires the proportional 

hazards assumption (that is, the influence of covariates is constant throughout the study period), while 

the AFT model does not have this requirement [8]. 

In addition, compared to the Kaplan-Meier model, the AFT model can handle continuous and 

categorical covariates, while the Kaplan-Meier model is mainly used to describe the overall distribution 

of survival time and cannot directly handle the impact of covariates. 

The modern landscape of survival analysis has seen these models find broad applications, 

contributing to diverse areas such as biomedicine, engineering, and social sciences. More recently, novel 

techniques, such as machine learning and high-dimensional data handling, are being integrated into 

survival analysis, pushing its boundaries. The continuous development of these models, along with the 

integration of advanced analytical techniques, is paving the way for more sophisticated and nuanced 

understanding of time-to-event data, asserting the vibrant and dynamic future of survival analysis. 

4.  Technical barriers with some solutions 

4.1.  High-dimensional data 

With the development of big data, analysis in this area often needs to deal with high-dimensional data, 

where traditional survival analysis methods may no longer be applicable. Therefore, mathematicians 

and other researchers need to develop new statistical methods and computational tools to handle high-

dimensional data. In dealing with high-dimensional data, machine learning and deep learning algorithms 

have already shown great potential. For instance, deep learning methods can be used to learn higher-

level abstract features of data and perform effective dimensionality reduction. Moreover, feature 

selection methods can also be applied to deal with high-dimensional data by filtering out the most 

important features to reduce data dimensions. 

4.2.  Lack of labelled data 

In many circumstances, researchers may not have sufficient labelled data to perform survival analysis. 

For example, for rare diseases, they might not be able to collect enough case data. When facing the issue 

of lack of labelled data, transfer learning and semi-supervised learning are two possible solutions. 

Transfer learning is the application of knowledge learned in one domain (the source domain) to another 

domain (the target domain). Semi-supervised learning, on the other hand, involves using a small amount 

of labelled data and a large amount of unlabelled data for learning [9, 10]. 

4.3.  Data quality and reliability 

Due to irregularities in data collection, there might exist some erroneous, inaccurate, or missing data, 

all of which could impact the results of survival analysis. Adopting appropriate strategies during the 

data pre-processing stage can effectively handle issues related to data quality. For example, methods 

like data cleaning, anomaly detection, and data interpolation can be used to deal with erroneous, 

inaccurate, or missing data. 

In survival analysis, complex machine learning models, such as deep learning and random forests, 

often outperform traditional statistical models in terms of prediction accuracy. However, the complexity 

of these models often reduces their interpretability. This is because their predictions are often based on 

intricate, hard-to-understand internal computations, making it difficult to comprehend how the model 
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operates and the basis of its predictions. In the medical, financial, and other fields that require explicit 

interpretation of model predictions, this lack of transparency and interpretability could be problematic. 

To address this issue, researchers have proposed a range of methods to enhance the interpretability 

of machine learning models. These methods can be roughly divided into two categories: intrinsic 

interpretability methods and post-hoc interpretability methods. 

Intrinsic interpretability methods primarily consider interpretability when designing the model. For 

example, decision trees and linear regression are naturally interpretable models. Another approach is to 

constrain model complexity to enhance interpretability, such as applying regularization terms to limit 

model complexity. Post-hoc interpretability methods, in addition interpret the workings of the model by 

analyzing its prediction results after training. Among them, Local Interpretable Model-Agnostic 

Explanations (LIME) and Shapley Additive explanations (SHAP) are widely used post-hoc 

interpretation methods. LIME interprets the original model’s predictions by generating interpretable 

models locally, while SHAP explains the model's predictions by calculating the contribution value of 

features [11].  

In summary, although complex machine learning models face challenges in interpretability, 

satisfactory interpretive results can still be achieved through appropriate model design and post-hoc 

interpretation methods. Furthermore, this remains an active area of research, with the potential for more 

innovative methods to improve the interpretability of machine learning models in the future. 

5.  Conclusion 

This comprehensive review traverses the journey of survival analysis, from the pioneering Kaplan-Meier 

and Cox models to contemporary Accelerated Failure Time (AFT) models. While traditional models 

have been instrumental in medical and statistical research, delineating the distribution of survival times 

and analyzing relationships between covariates and survival, they sometimes fall short due to inherent 

assumptions, such as proportional hazards. The AFT model, with its more lenient assumptions, offers a 

promising alternative in certain scenarios. 

In the era of big data, survival analysis confronts new challenges: grappling with high-dimensional 

data, ensuring data reliability, and handling the scarcity of labelled data. The silver lining in this evolving 

landscape is the advent of innovative solutions like deep learning, transfer learning, and data pre-

processing techniques that promise to mitigate these challenges. However, as the complexity of models 

heightens, ensuring their transparency and interpretability emerges as a crucial hurdle. This has led to 

the development of techniques like LIME and SHAP, specifically designed to enhance the clarity of 

intricate models. 

Despite the thoroughness of this research, it isn't without limitations. The discourse leans heavily on 

statistical theories, side-lining practical challenges. Furthermore, while novel techniques are introduced, 

the paper lacks empirical studies validating their efficacy, which might restrict its real-world 

applicability. Nevertheless, this paper positions itself as a pivotal resource for understanding survival 

analysis, its evolution, and prospective trajectory. It aspires to catalyze further discussions and 

innovations in this domain. 
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