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Abstract. A mapping that satisfies two specific axioms provides a common notion of group 

action. A homomorphism translating from a group to a symmetric group of a certain set can 

also be used to describe group action. Therefore, any example of the group actions can be 

stated based on the second equivalent definition, such as the regular action, natural matrix 

action, coset action, and ℤ2 acting on ℝ2, etc. It is necessary to examine the concepts of the 

orbit and stabilizer of a group in order to reveal the orbit-stabilizer theorem. After the 

preparatory work, the orbit-stabilizer theorem can be proved by defining a mapping from the 

orbit to the stabilizer and then checking that the mapping is well-defined and bijective. To 

derive Burnside’s lemma, it needs to introduce the set of fixed points which is related to the 

concept of the stabilizer. Through the orbit-stabilizer theorem along with the fact that a set is a 

disjoint union of orbits, Burnside's lemma can be confirmed. Moreover, it is natural to compose 

a group action with a linear representation, and then a representation would be obtained, which 

is permutation representation. Further, one must calculate the character of the permutation 

representation, the dimension of the fixed subspace, and the dimension of ℂ𝑋𝐺. Then it can 

show Burnside’s lemma in another way by permutation representation. 

Keywords: Group Action, Orbit-Stabilizer Theorem, Burnside’s Lemma, Permutation 

Representation. 

1.  Introduction 

Firstly, this article reviews the concept of group action. For a set 𝑋 and a group 𝐺, the group action is 

often defined as [1]: an action of 𝐺  on 𝑋 is a mapping ρ: 𝐺 × 𝑋 → 𝑋 satisfying two properties: (i) 

𝜌(1𝐺 , 𝑥) = 𝑥 for each 𝑥 ∈ 𝑋; (ii) 𝜌(𝑔𝑔′, 𝑥) = 𝜌(𝑔, 𝜌(𝑔′, 𝑥)) for all 𝑔, 𝑔′ ∈ 𝐺 and 𝑥 ∈ 𝑋. 

But some other works of literature, define the group action as follows [2], which is distinguished 

from [1]: an action of 𝐺 on 𝑋 is a mapping: 

 𝜌: 𝐺 ⟶ Sym(𝑋)    (1) 

which is homomorphic. Then this article will show that those two definitions of group actions are 

equivalent, and then it will list several typical examples to review the concept of group action. 

Meanwhile, this section will introduce the definition of transitive group actions to derive the following 

results. 

In the second section, this article will briefly introduce the notions of an orbit and a stabilizer. Due 

to the similarities between the definitions of orbits and stabilizers, it is natural to assert that they are 
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related closely. Then this article states and proves the orbit-stabilizer theorem by using the group 

action method as [3]. 

Since the stabilizer has been defined before, the set of fixed points which has a similar form to a 

stabilizer can be defined naturally. Then this article in the third section states and shows Burnside’s 

lemma which gives the relationship between orbits and sets of fixed points by analogy to orbit-

stabilizer theorem. Such a lemma states that the average of the set of fixed points determines how 

many orbits a group has on a set [4]. Orbit-stabilizer theorem relates closely to the result and it plays a 

key role in the proof of Burnside's Lemma [5]. 

Moreover, this article reviews the concept of representation; composing a group action of 𝐺 on 𝑋 

and the linear representation of Sym(𝑋) on GL𝑛(ℂ),the concept of permutation representation can be 

derived by [6]. For a permutation representation 

 ρ̃: 𝐺 ⟶ GL(ℂ𝑋),  

it needs to consider the set ℂ𝑋 = {∑ 𝑐𝑥𝑥𝑥∈𝑋 ∣ 𝑐𝑥 ∈ ℂ}. 
A significant fact is that ℂ𝑋 is a vector space with a finite set 𝑋 as the basis, and it is an important 

and difficult point in the following proofs. Having defined the set of fixed points earlier, the article 

then gives the following definition: fixed subspace. Then this article will compute the character of 

permutation representations, the dimension of fixed subspace, and the dimension of ℂ𝑋𝐺. Therefore, 

by the above three results of computation, it follows Burnside’s lemma in another way by an equation 

in [6]. 

To compute the character of permutation representations, it needs to determine the matrix of �̃� with 

respect to a basis 𝑋, where �̃� is a permutation representation associated to ρ [7, 8]. To compute the 

dimension of fixed subspaces, it needs to write 𝑉 = ⨁ 𝑛𝑖𝑉𝑖
𝑟
𝑖=1  where any 𝑉𝑖  is an irreducible 𝐺 -

invariant subspace, and all these 𝑉𝑖 s’ sub-representations stretch through the classes of group 𝐺 

representations that are irreducible. Suppose that 𝑉1  is equivalent to a trivial representation. To 

compute the dimension of ℂ𝑋𝐺, it needs to set the orbit of 𝐺 on 𝑋 as the form of disjoint union of 

orbits 𝒪𝑖  and 𝑣𝑖 = ∑ 𝑥𝑥∈𝒪𝑖
. Then it follows that 𝑣1, ⋯ , 𝑣𝑛  span ℂ𝑋𝐺 .After above preparation, 

Burnside's lemma can be proved in the other way. 

2.  Methods 

2.1.  Regarding 𝜌(𝑔, 𝑥) as 𝜌𝑔(𝑥) 

Fixing a set 𝑋 and a group 𝐺. 

Definition 1. A function ρ is used to specify a 𝐺 action on 𝑋: 

 𝜌: 𝐺 × 𝑋 ⟶ 𝑋  

satisfying the next two criteria: (i) 𝜌(1𝐺 , 𝑥) = 𝑥 for every 𝑥 ∈ 𝑋; (ii) 𝜌(𝑔𝑔′, 𝑥) = 𝜌(𝑔, 𝜌(𝑔′, 𝑥)) for 

every 𝑔, 𝑔′ ∈ 𝐺 and 𝑥 ∈ 𝑋. One often denotes the action by 𝜌(𝑔, 𝑥) = 𝑔 ⋅ 𝑥. Then the properties above 

become: (i') 1𝐺 ⋅ 𝑥 = 𝑥 for every 𝑥 ∈ 𝑋; (ii') 𝑔𝑔′ ⋅ 𝑥 = 𝑔 ⋅ (𝑔′ ⋅ 𝑥) for every 𝑔, 𝑔′ ∈ 𝐺 and 𝑥 ∈ 𝑋. 

In the second section, this article will briefly introduce the notions of an orbit and a stabilizer. Due 

to the similarities between the definitions of orbits and stabilizers, it is natural to assert that they are 

related closely. Then this article states and proves the orbit-stabilizer theorem by using the group 

action method. 

Seeing that the form of the definition of group actions in most literature, the method to show both 

two definitions are equivalent is to regard ρ(𝑔, 𝑥)  as ρ𝑔(𝑥) . Then ρ𝑔  is an element of Sym(𝑋) . 

Therefore, it needs to check that ρ𝑔 is a homomorphism and satisfies the properties of group actions. 

The comparable definition of group action is as follows. 

Definition 2. The action of 𝐺 on 𝑋 is homomorphism as (1). 

After showing that group actions can be defined in two ways and that they are equivalent, this 

article will list several typical examples. These examples are the regular action, natural matrix action, 
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coset action, and ℤ2 acting on ℝ2 respectively. Then the article will check the fact those two ways of 

defining a group action are the same. Meanwhile, this article will introduce several concepts by the 

way, such as transitivity, etc., which will play a role in the subsequent arguments. 

2.2.  Proof of Orbit-Stabilizer theorem by group action 

Before stating the orbit-stabilizer theorem, this article reviews the concept of 𝐺-invariant. A subset 𝑌 

of 𝑋 is named 𝐺-invariant if ρ𝑔(𝑦) ∈ 𝑌 for all 𝑔 ∈ 𝐺 , 𝑦 ∈ 𝑌 . One idea is to divide a set into the 

disjoint unions of invariant subsets. Then it obtains the following two definitions. 

Definition 3. For the group action 

 ρ: 𝐺 ⟶ Sym(𝑋),  

an orbit of an element 𝑥 of the set 𝑋 under 𝐺 is defined as 

 𝐺 ⋅ 𝑥 = {ρ
𝑔

(𝑥) ∣ 𝑔 ∈ 𝐺}.  

Definition 4. For a transitive group action 

 ρ: 𝐺 ⟶ Sym(𝑋)  

where |𝑋| ≥ 2 and a fixed element 𝑥 of the set 𝑋, the subgroup of 𝐺 

 𝐺𝑥 = {𝑔 ∈ 𝐺 ∣ ρ
𝑔

(𝑥) = 𝑥}  

is named the stabilizer of 𝑥. 

For the orbit-stabilizer theorem, the article proves it by defining a mapping: 

 φ: 𝐺 ⋅ 𝑥 ⟶ 𝐺/𝐺𝑥.  

Then it needs to check that φ is surjective and injective respectively. Then it follows the orbit-

stabilizer theorem in the case that 𝐺 is finite. 

2.3.  Proof of Burnside’s lemma by permutation representation 

The stabilizer this paper has defined earlier. It is natural to define the set of fixed points. 

Definition 5. For a group action: 

ρ: 𝐺 ⟶ Sym(𝑋) 

and a fixed 𝑔 ∈ 𝐺, 

𝑋𝑔 = {𝑥 ∈ 𝑋 ∣ ρ
𝑔

(𝑥) = 𝑥} 

is named the set of fixed points of 𝑔. 

The first strategy in this article is based on the discovery that 𝑋 is a disjoint union of orbits and the 

orbit-stabilizer theorem. For the second method, having a group action ρ: 𝐺 → Sym(𝑋) in view, it 

might be put together using a linear representation φ: 𝑆𝑛 → GL𝑛(ℂ) if 𝑋 is a finite set whose order is 𝑛. 

A finite group's linear representation is given by the homomorphism 𝜌 from 𝐺 to GL(𝑉) [9]. Then a 

representation of 𝐺 would be obtained. 

Definition 6. For a group action 𝜌: 𝐺 → Sym(𝑋), the homomorphism �̃�: 𝐺 → GL(ℂ𝑋) is called the 

permutation representation associated to 𝜌 if 

ρ̃
𝑔

(∑ 𝑐𝑥𝑥

𝑥∈𝑋

) = ∑ 𝑐𝑥ρ
𝑔

(𝑥)

𝑥∈𝑋

. 

The set 
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ℂ𝑋 = {∑ 𝑐𝑥𝑥

𝑥∈𝑋

∣ 𝑐𝑥 ∈ ℂ} 

in Definition 6 is a vector space with finite set 𝑋 as a basis. It is easy to check that ρ̃ is a linear 

extension of ρ𝑔 on the basis 𝑋 to ℂ𝑋. Having defined the set of fixed points earlier, this article then 

gives the following definition of the fixed subspace. 

Definition 7. For a linear representation 𝜑: 𝐺 → GL(𝑉), the fixed subspace of 𝐺 is defined as the set: 

𝑉𝐺 = {𝑣 ∈ 𝑉 ∣ φ
𝑔

(𝑣) = 𝑣, ∀𝑔 ∈ 𝐺}. 

A fixed subspace of 𝐺  is clearly 𝐺 -invariant. Then it needs to compute the character of the 

permutation representation �̃�, the dimension of the fixed subspace 𝑉𝐺 , and the dimension of ℂ𝑋𝐺 . 

Once the preparatory work has been done, Burnside's lemma can be proved in the other way. 

3.  Results and Discussion 

3.1.  Equivalent definition and examples of the group action 

Fixing a set 𝑋 and a group 𝐺. For each 𝑔 ∈ 𝐺, define that: 

𝜌𝑔: 𝑋 ⟶ 𝑋,   𝑥 ⟼ 𝑔 ⋅ 𝑥 

which is a bijection from 𝑋 to 𝑋, i.e., an element of Sym(𝑋). Define the mapping: 

ρ: 𝐺 ⟶ Sym(𝑋),   𝑔 ⟼ ρ
𝑔

. 

For any 𝑥 ∈ 𝑋, the second property (ii) of the group action follows that: 

𝜌(𝑔𝑔′)(𝑥) = 𝑔𝑔′ ⋅ 𝑥 = 𝑔 ⋅ (𝑔′ ⋅ 𝑥) = 𝑔 ⋅ (ρ
𝑔′(𝑥)) = ρ

𝑔
(ρ

𝑔′(𝑥)) = (ρ(𝑔) ∘ ρ(𝑔′)) (𝑥) 

Therefore, it has be checked that ρ(𝑔𝑔′) = ρ(𝑔) ∘ ρ(𝑔′), i.e., the mapping ρ is homomorphic. It is 

also easy to check that the homomorphism ρ  defined in Definition 2 satisfies both properties in 

Definition 1. Thus, Definition 1 and Definition 2 are equivalent. 

Then, in order to comprehend and compare the equivalent definition of the group action, it is 

required to provide several typical instances. 

Example 1 (Regular action). Let 𝐺 be a group. Define a mapping: 

𝜎: 𝐺 ⟶ Sym(𝐺),   𝑔 ⟼ 𝜎𝑔 

where 𝜎𝑔(𝑥) = 𝑔𝑥. The mapping σ defined above is named a regular action of 𝐺 on 𝐺. Regular action, 

one of the simplest types of group action, is essential to Cayley's theorem's verification. 

Theorem 1 (Cayley’s theorem). Any group is able to be isomorphic to a set's permutation group. 

Proof. Define the mapping σ and σ𝑔 as in Example 1. Then σ maps 𝐺 to the symmetric group of 𝐺. 

For any σ𝑔1
, σ𝑔2

∈ σ(𝐺), 𝑥 ∈ 𝐺, since: 

σ𝑔1
σ𝑔2

−1(𝑥) = σ𝑔1
σ𝑔2

−1(𝑥) = 𝑔1𝑔2
−1𝑥 = σ𝑔1𝑔2

−1(𝑥), 

It follows that 𝜎𝑔1
𝜎𝑔2

−1 = σ𝑔1𝑔2
−1 ∈ σ(𝐺), i.e., σ(𝐺)<Sym(𝐺). Then 𝐺 is isomorphic to σ(𝐺).  

Example 2 (Natural matrix action). Define the general linear group GL𝑛(ℤ) acting on ℤ𝑛 as: 

𝑔: GL𝑛(ℤ) × ℤ𝑛 ⟶ ℤ𝑛 ,   𝐴 × 𝑥 ⟼ 𝐴𝑥, 

where ℤ𝑛 can be regarded as the set of 𝑛 × 1 column vectors. 

The group action defined in Example 2 can be also state as: 

𝑔: GL𝑛(ℤ) ⟶ Sym(ℤ𝑛),   𝐴 ⟼ 𝑔𝐴 

with 𝑔𝐴(𝑥) = 𝐴𝑥 where 𝑥 ∈ ℤ𝑛 as Definition 2. 
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Example 3 (Coset action). For a group 𝐺 and its subgroup 𝐻 < 𝐺, the action 

τ: 𝐺 ⟶ Sym(𝐺/𝐻) 

given by 𝜏𝑔(𝑥𝐻) = 𝑔𝑥𝐻 is named a coset action of 𝐺 on 𝐺/𝐻. 

A group action ρ: 𝐺 ⟼ Sym(𝑋) is called to be transitive if for both 𝑥, 𝑦 ∈ 𝑋, there exists a 𝑔 ∈ 𝐺 

satisfying ρ𝑔(𝑥) = 𝑦. Now choose 𝑥, 𝑦 ∈ 𝐺/H, where 𝑥 = 𝑥𝐻, 𝑦 = 𝑦𝐻. For 𝑥, 𝑦 ∈ 𝐺, there must exist 

a 𝑔 ∈ 𝐺 satisfying 𝑔𝑥 = 𝑦. Therefore, 

τ𝑔(𝑥) = τ𝑔(𝑥𝐻) = 𝑔𝑥𝐻 = 𝑦𝐻 = 𝑦. 

Thus, the action τ in Example 3 (Coset action) is transitive. 

Example 4 (ℤ𝟐 acting on ℝ𝟐). The group ℤ2 acting on ℝ2 can be defined as: 

𝑓: ℤ2 × ℝ2 ⟶,   (𝑎, 𝑏) × (𝑥, 𝑦) ⟼ (𝑎 + 𝑥, 𝑏 + 𝑦). 

It is straightforward to verify that 𝑓 satisfies the properties in Definition 1. It can be also defined as: 

𝑓: ℤ2 ⟶ Sym(ℝ2),   (𝑎, 𝑏) ⟼ 𝑓(𝑎,𝑏) 

with 𝑓(𝑎,𝑏)(𝑥, 𝑦) = (𝑎 + 𝑥, 𝑏 + 𝑦) where (𝑥, 𝑦) ∈ ℝ2 as Definition 2. 

3.2.  Orbit-Stabilizer theorem 

Due to the similarities between the definitions of orbits and stabilizers, it can assert that they are 

related closely. Then it derives the following theorem. 

Theorem 2 (Orbit-stabilizer theorem). For a finite set 𝑋 under the action of the finite group 𝐺, it has 

|𝐺 ⋅ 𝑥| =
|𝐺|

|𝐺𝑥|
(2) 

for any 𝑥 ∈ 𝑋. 

Proof. For a fixed 𝑥 ∈ 𝑋, define the function: 

φ: 𝐺 ⋅ 𝑥 ⟶ 𝐺/𝐺𝑥,   ρ
𝑔

(𝑥) ⟼ 𝑔𝐺𝑥 . 

Suppose ρ𝑔(𝑥) = ρℎ(𝑥) for some 𝑔, ℎ ∈ 𝐺. Then 

ρ
ℎ
−1ρ

𝑔
(𝑥) = ρ

ℎ
−1ρ

ℎ
(𝑥). 

Further, 

ρ
ℎ

−1𝑔
(𝑥) = ρ

ℎ
−1

ℎ
(𝑥) = ρ

1𝐺
(𝑥) = 𝑥. 

Thus ℎ−1𝑔 ∈ 𝐺𝑥. Then φ is well-defined since 𝑔𝐺𝑥 = ℎ𝐺𝑥 by left cosets partitioning groups. 

Let φ (ρ𝑔1
(𝑥)) = φ (ρ𝑔2

(𝑥)) for some 𝑔1, 𝑔2 ∈ 𝐺. Then 𝑔1𝐺𝑥 = 𝑔2𝐺𝑥  and 𝑔2
−1𝑔1 ∈ 𝐺𝑥 . So φ is 

injective since 𝑥 = ρ𝑔2
−1𝑔1

(𝑥) and 

ρ
𝑔2

(𝑥) = ρ
𝑔2

(ρ
𝑔2

−1𝑔1
(𝑥)) = ρ

𝑔2𝑔2
−1𝑔1

(𝑥) = ρ
𝑔1

(𝑥). 

By the definition of φ, 

φ (ρ
𝑔

(𝑥)) = 𝑔𝐺𝑥 , 

so φ is surjective. Therefore, φ is bijective and since 𝑋 is a finite set, it follows (2) for any 𝑥 ∈ 𝑋.  

In fact, it can be done to expand the orbit-stabilizer theorem to include more situations, that is, 𝐺 is 

any group, see [10]. The idea to show the general case is consistent to the above proof of Theorem 2. 
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3.3.  Burnside’s lemma 

Having defined the set of fixed point, this article gives the following theorem by analogy to orbit-

stabilizer theorem. This theorem gives the relationship between orbits and sets of fixed points. 

Theorem 3 (Burnside’s lemma). For a group action ρ: 𝐺 → Sym(𝑋), let 𝒪 be the set of orbits of 𝐺 on 

𝑋. It has 

|𝒪| =
1

|𝐺|
∑|𝑋𝑔|

𝑔∈𝐺

. 

Burnside’s lemma clarifies that the quantity of a group's orbits on a set is the average of the set 

fixed points. Orbit-stabilizer theorem relates closely to the above theorem (Burnside’s lemma). 

Proof. It needs to exploit the orbit-stabilizer theorem along with the fact that a set is a disjoint 

union of orbits, i.e., 

∑|𝑋𝑔|

𝑔∈𝐺

= | {(𝑔, 𝑥) ∈ 𝐺 × 𝑋 ∣∣ 𝑔 ⋅ 𝑥 = 𝑥} | = ∑|𝐺𝑥|

𝑥∈𝑋

= ∑
|𝐺|

|𝐺 ⋅ 𝑥|
𝑥∈𝑋

 

= |𝐺| ∑ ∑
1

|𝒪𝑖|
𝑥∈𝒪𝑖𝒪𝑖∈𝒪

= |𝐺| ∑ 1

𝒪𝑖∈𝒪

= |𝐺||𝒪|. 

For the group action 𝜌: 𝐺 → 𝑆𝑛 , a natural idea is to compose this group action 𝜌  with a linear 

representation 𝜑: 𝑆𝑛 → GL𝑛(ℂ) and then a new representation of 𝐺 would be obtained. This motivates 

the concept of permutation representation as Definition 6. Hence it needs to compute the character of 

the permutation representation �̃�, the dimension of fixed subspace 𝑉𝐺, and the dimension of ℂ𝑋𝐺, etc. 

Lemma 1 (Character of permutation representation). For a group action 𝜌: 𝐺 → Sym(𝑋), it has 

𝜒�̃�(𝑔) = |𝑋𝑔|. 

Proof. Let [�̃�𝑔] be the matrix of �̃� with respect to the basis 𝑋, and set 𝑋 = {𝑥1, ⋯ , 𝑥𝑛}. Then 

[�̃�𝑔]
𝑖𝑗

= {
1, 𝑥𝑖 = 𝜌𝑔(𝑥𝑗);

0, 𝑒𝑙𝑠𝑒.
(3) 

It follows the form of this matrix. Thus 𝜒�̃�(𝑔) = tr([�̃�𝑔]) = |𝑋𝑔|.  

Lemma 2 (Dimension of fixed subspace). For a linear representation φ: 𝐺 → GL(𝑉), let 𝜒1  be a 

trivial character of 𝐺. It has 

dim 𝑉𝐺 =
1

|𝐺|
∑ 𝜒𝜌(𝑔)𝜒1(𝑔)

𝑔∈𝐺

. 

Proof. Without loss of generality, writing 𝑉 = ⨁ 𝑛𝑖𝑉𝑖
𝑟
𝑖=1  where any 𝑉𝑖 is an irreducible 𝐺-invariant 

subspace. Then all of 𝑉𝑖s’ sub-representations stretch through the equivalent classes of irreducible 

representations of 𝐺. Suppose that 𝑉1 is equivalent to a trivial representation. Let 𝑣 = ∑ 𝑣𝑖
𝑟
𝑖=1  with 

𝑣𝑖 ∈ 𝑛𝑖𝑉𝑖, and φ𝑔𝑣 = ∑ (𝑛𝑖φ|𝑉𝑖
)𝑔𝑣𝑖

𝑟
𝑖=1 = 𝑣1 + ∑ (𝑛𝑖φ|𝑉𝑖

)𝑟
𝑖=2 𝑔𝑣𝑖. Hence 𝑔 ∈ 𝑉𝐺 if and only if 𝑣𝑖 ∈

𝑛𝑖𝑉𝑖
𝐺 for any 2 ≤ 𝑖 ≤ 𝑟, i.e., 

𝑉𝐺 = 𝑛1𝑉1 ⊕ ⨁ 𝑛𝑖𝑉𝑖
𝐺

𝑠

𝑖=2

. 

Since 𝑉𝑖
𝐺’s is 𝐺-invariant and 𝑉𝑖s are not equivalent to the trivial representation for any 𝑖 ≥ 2, it has 

𝑉𝑖
𝐺 = 0. Then 𝑉𝐺 = 𝑛1𝑉1. Hence it obtains the equation (3).  

Having stated Lemma 1 and Lemma 2, it can compute the dimension of ℂ𝑋𝐺 with a permutation 

representation. 
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Lemma 3 (Dimension of ℂ𝑿𝑮). Let ρ: 𝐺 → Sym(𝑋) be a group action. Then 

dim ℂ 𝑋𝐺 = |𝒪|. 

Proof. Set the orbit of 𝐺 on 𝑋 as 𝒪 = {𝒪1, ⋯ , 𝒪𝑛} and 𝑣𝑖 = ∑ 𝑥𝑥∈𝒪𝑖
. Let 𝑦 = ρ𝑔(𝑥) and ρ̃ be the 

permutation representation associate to ρ. Then 

ρ̃
𝑔

(𝑣𝑖) = ∑ ρ
𝑔

(𝑥)

𝑥∈𝒪𝑖

= ∑ 𝑦

𝑦∈𝒪𝑖

= 𝑣𝑖 . 

So 𝑣1, ⋯ , 𝑣𝑛 ∈ ℂ𝑋𝐺. Since 𝑋 is a disjoint union of orbits, 

⟨𝑣𝑖, 𝑣𝑗⟩ = {
|𝒪𝑖|, 𝑖 = 𝑗,

0, 𝑒𝑙𝑠𝑒.
 

Thus {𝑣1, ⋯ , 𝑣𝑛} is an orthogonal set of non-zero vector. Let 

𝑣 = ∑ 𝑐𝑥𝑥

𝑥∈𝑋

∈ ℂ𝑋𝐺 . 

Suppose 𝑧 = ρ𝑔(𝑦) ∈ 𝐺 ⋅ 𝑦. It has 

𝑣 = ∑ 𝑐𝑥𝑥

𝑥∈𝑋

= ρ̃
𝑔

𝑣 = ∑ 𝑐𝑥ρ
𝑔

(𝑥)

𝑥∈𝑋

= ∑ 𝑐𝑥𝑦

𝑥∈𝑋

, 

and then 

ρ
𝑔

(𝑣) = ∑ 𝑐𝑥

𝑥∈𝑋

ρ
𝑔

(𝑥) = ∑ 𝑐𝑥𝑦

𝑥∈𝑋

= ∑ 𝑐𝑥𝑧

𝑥∈𝑋

. 

Hence 𝑐𝑦 = 𝑐𝑧. Then there exists 𝑖 ∈ ℕ for all 1 ≤ 𝑖 ≤ 𝑛 such that 𝑐𝑥 = 𝑐𝑖 for all 𝑥 ∈ 𝒪𝑖. Therefore, 

𝑣 = ∑ 𝑐𝑥𝑥

𝑥∈𝑋

= ∑ ∑ 𝑐𝑥𝑥

𝑥∈𝒪𝑖

𝑛

𝑖=1

= ∑ 𝑐𝑖

𝑛

𝑖=1

∑ 𝑥

𝑥∈𝒪𝑖

= ∑ 𝑐𝑖𝑣𝑖

𝑛

𝑖=1

[6]. 

Thus 𝑣1, ⋯ , 𝑣𝑛 span ℂ𝑋𝐺.  

Now this article can use another method of permutation representation to prove Burnside’s lemma. 

Proof (Another proof of Burnside’s lemma). By above three lemmas, i.e., Lemma 1-3, it has 

|𝒪| =
1

|𝐺|
∑ χ

ρ̃
(𝑔)χ

1
(𝑔)

𝑔∈𝐺

=
1

|𝐺|
∑|𝑋𝑔|.

𝑔∈𝐺

 

In fact, Theorem 3 (sometimes known as Burnside's lemma) was really discovered by Frobenius in 

1887, who Burnside only acknowledges in his book [4]. 

4.  Conclusion 

The standard definition of a group action is given by a mapping satisfying two axioms, which is 

equivalent to another definition that is defined as a homomorphism which is from a group to a 

symmetric group of a certain set equivalently. The examples of group actions, stated based on the first 

definition, such as the regular action, natural matrix action, coset action, and ℤ2 acting on ℝ2, etc, can 

be restated as the homomorphisms satisfying the second definition equivalently. In particular, the 

regular action defined as the second way plays a key role on showing Cayley’s theorem. 

It is necessary to examine the concepts of the orbit and stabilizer of a group in order to understand 

the orbit-stabilizer theorem. After the preparation, the orbit-stabilizer theorem can be proved by 

defining a mapping 𝜑 from the orbit 𝐺 ⋅ 𝑥 to the stabilizer 𝐺/𝐺𝑥 and then checking that the mapping 𝜑 

is well defined and bijective. Thus, it follows the relation between the orbit and the stabilizer. 
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Moreover, the general case of the orbit-stabilizer theorem, that 𝐺 is any group can be reached, whose 

verification is consistent to the above proof of the finite case. 

For Burnside’s lemma, deriving the set of fixed points is necessary, which is connected to the 

concept of the stabilizer. Then Burnside’s lemma stating that the average of the set of fixed points 

determines how many orbits a group has on a set can be proved through the orbit-stabilizer theorem. 

On the other hand, it is natural is to compose a group action ρ: 𝐺 → Sym(𝑋)  with a linear 

representation φ: 𝑆𝑛 → GL𝑛(ℂ) where the order of the finite set 𝑋 is 𝑛, and then a representation of 

would be obtained, which is named permutation representation. Furthermore, it needs to compute the 

character of the permutation representation �̃� , the dimension of the fixed subspace 𝑉𝐺 , and the 

dimension of ℂ𝑋𝐺. Then it can show Burnside’s lemma in another way by permutation representation. 
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