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Abstract. Structured beams have been extensively studied in the last ten to twenty years. Due to 

its excellent spatial characteristics, it has been widely used in the fields of optical communication, 

optical tweezer and particle manipulation. This paper first analyzes and summarizes the 

formation mechanism of structured beams. Then, based on the eigenmode superposition theory, 

the numerical simulation was carried out for the first three-orders of Hermitian-Gaussian (HG) 

eigenmodes. At the same time, some complex structured beams were obtained through 

experiments. The structured beams obtained from experiments are in good agreement with the 

numerical simulation results, which further verifies that the eigenmode superposition method is 

an effective way to realize complex structured beams. 
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1.  Introduction 

1.1.  Research background 

Photons have multiple degrees of freedom, such as frequency, time, amplitude, phase, and polarization. 

By manipulating the different properties of the photons, structured beams with different characteristics 

can be obtained. In the past, the research on laser beams mainly focused on the power, time and spectral 

characteristics, and the research on the spatial characteristics of lasers was not deep enough. However, 

in the last ten to twenty years, the spatial characteristics of laser beams have received extensive attention 

and research. 

Structured beams can be divided into spatial-structured light beams and spatiotemporal light beams. 

Spatially structured beams refer to the inhomogeneous distribution of the light field in space with 

parameters such as phase, intensity, and polarization. At the same time, the plane where the non-uniform 

distribution of the light field is located is perpendicular to the laser propagation direction. However, the 

light field distribution of spatiotemporal structured beams exists in both the space domain and the time 

domain. 

Compared with the traditional Gaussian modes, the complex structured beams formed by the higher-

order transverse modes can accommodate more modes, making it a prospective application in the fields 

of optical communication and quantum information [1]. At the same time, because some structured 

beams have the characteristics of orbital angular momentum, they are widely used in optical tweezers 
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and atom manipulation [2]. In addition to the above applications, structured beams can also be used in 

light detection, quantum entanglement and other fields [3]. 

1.2.  Research progress 

The generation mechanism of spatially structured beams can be explained by the Maxwell-Bloch (MB) 

field theory or the eigenmodes superposition theory [4]. The MB equation (equation (1)) solves the 

distribution of the electric field on the plane perpendicular to the beam propagation (transverse plane) 

in the space and time domains based on the relationship between the electric field strength and the atomic 

polarization and the number of reversed particles, thus explaining the formation of structured beams [5]. 

{
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Where E is the electric field strength, P is the atomic polarization strength, D is the population 

inversion strength, κ, γ⊥, γ∏ are the decay rates, ωc is the resonant frequency of the cavity, and d is the 

diffraction coefficient. It can be seen from the above equation that since there are three decay rate 

coefficients in the MB equation, by changing the relationship between the three decay coefficients, the 

Complex-Ginzburg-Landau (CGL) equation and the Complex-Swift-Hohenberg (CSH) equation are 

proposed. By manipulating the stimulated emission conditions of the laser, the spot shape and time-

domain characteristics of different laser states are explained. The CGL equation (equation (2)) is 

obtained under the condition of γ⊥ ≈ γ∏ ≫ κ. According to the CGL equation, the transverse structured 

beam can be controlled by changing the length of the resonator [6]. The CSH equation (equation group 

(3)) is obtained under the condition of γ⊥ ≫ γ∏ ≈ κ [7]. 
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One-dimensional and two-dimensional structured beams can be obtained by solving the MB equation, 

CGL equation and CSH equation. And the above equation can simultaneously explain the characteristics 

of beams with different spatial structures in time domain and space domain. However, the light spot of 

the spatially structured beam obtained by the above equation is mainly generated by a single transverse 

mode laser. For the light spot produced by multiple transverse modes and transverse modes with phase 

differences, it is difficult to explain through the above equation. Therefore, eigenmode superposition 

theory is proposed. 

The laser transverse eigenmodes are obtained by solving the Helmholtz equation under different 

coordinate systems. Through the coherent and incoherent superposition of different eigenmodes, 

different structured beams can be obtained. Different from the MB equation field theory, the Helmholtz 

equation in the eigenmode superposition theory does not consider the time-domain characteristics of the 

beam. Based on the Gaussian beam, the Helmholtz equation can be solved in the Cartesian coordinate 

system and cylindrical coordinates, which leads to the Hermite-Gaussian mode (HG) and the Laguerre-

Gaussian mode (LG) [8, 9]. At the same time, based on the HG mode, the LG mode is obtained by 

coherent superposition of HG, and the intermediate state Ince-Gaussian mode (IG) is obtained based on 

the LG and HG modes [10]. Bessel mode and Mathieu-Gauss mode can be obtained by combining the 
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cylindrical coordinates and elliptic cylindrical coordinates of the Helmholtz equation in free space [11, 

12]. At the same time, the Airy beam can be obtained by solving the paraxial wave equation [13]. By 

solving the Helmholtz equation in parabolic coordinates, a parabolic beam and a parabolic accelerated 

vector beam can be obtained [14, 15]. 

𝐸𝑚,𝑛 =∑𝑎𝑚,𝑛𝑋𝐺𝑚,𝑛 ∗ exp [𝑖𝜙𝑚,𝑛 + 𝑖𝑘𝑧 + 𝑖𝑘
𝑥2 + 𝑦2

2𝑅(𝑧)
− 𝑖𝑞Ѱ(𝑧)]

𝑚,𝑛

(4) 

Based on the eigenmodes obtained by solving the above Helmholtz equation in different coordinate 

systems and the Transverse Mode Locking (TML), coherent superposition between different transverse 

modes, the different structured beams can be obtained (as shown in equation (4)). Wang Xin et al. studied 

the structured beams generated by the coherent and incoherent superposition of the HG eigenmodes 

through the transverse mode locking effect [16]. 

1.3.  Research content 

In this paper, based on the eigenmode superposition theory, the formation mechanism of the structured 

beam is analyzed. The first three-orders of structured beams generated by the coherent superposition of 

the HG eigenmodes are given by numerical simulation. At the same time, by setting up the experimental 

system, the complexed structured beams were, and compared with the simulation results to prove the 

correctness of the eigenmode superposition theory. 

2.  Theoretical analysis 

By solving the paraxial approximated Helmholtz equation in Cartesian coordinates, the HG mode is 

obtained: 
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√2𝑦
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) 
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Where 𝐶𝑚,𝑛
𝐻𝐺  is a normalization factor, m and n are the horizontal and vertical mode numbers of the 

HG mode, and ω(z) is the half-width of the beam at the z position 𝜔2 = 𝜔0
2(𝑧2 + 𝑧𝑅

2)/𝑧𝑅
2, ω0 is the beam 

waist of the HG eigenmodes, ZR is the Rayleigh range, Ѱ(z) is the Gouy phase, R(z) is the radius of 

curvature of the wavefront, Hm and Hn are Hermite polynomials. 

By solving the paraxial approximated Helmholtz equation in cylindrical coordinates, the LG beam is 

obtained: 
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Where 𝐶𝑝,𝑙
𝐿𝐺  is the normalization factor, p and l are the radial and angular indices of the LG mode, 

which respectively determine the radius and number of the ring structure of the LG beam, and 𝐿𝑝
|𝑙|

 is the 

generalized Laguerre polynomial. 

Taking HG as an example, this paper obtains the structured beams by coherent superposition of HG 

eigenmodes. First, taking the coherent superposition of two modes as an example, as shown in equation 

(7): 

𝐸(𝑥, 𝑦, 𝑧) = 𝛼1𝐻𝐺1 exp(𝑖𝜑1) + 𝛼2𝐻𝐺2 exp(𝑖𝜑2) (7) 
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Where E is the electric field intensity, α1 and α2 are intensity coefficients, HG1 and HG2 are mode 

numbers, and φ1 and φ2 are phases. 

Based on the superposition of two modes, it can be further extended to the coherent superposition of 

multiple modes, as shown in equation (8): 

𝐸(𝑥, 𝑦, 𝑧) = 𝛼1𝐻𝐺1 exp(𝑖𝜑1) + 𝛼2𝐻𝐺2 exp(𝑖𝜑2) + ⋯+ 𝛼𝑛𝐻𝐺𝑛 exp(𝑖𝜑𝑛) (8) 

represented by the sum formula: 

𝐸(𝑥, 𝑦, 𝑧) =∑𝛼𝐾𝐻𝐺𝑚𝐾,𝑛𝐾 exp(𝑖𝜑𝐾)

𝐾

1

(9) 

3.  Numerical simulation 

Through the above theoretical analysis, this paper simulates the coherent superposition of the first three-

orders of HG beams, and obtains the structured beams. 

3.1.  Coherent superposition of first-order HG beams 

The structured beam is obtained by the coherent superposition of the first-order HG beams (HG01+HG10). 

The intensity coefficient αK is set to 1:1, and the phase φK interval is set to π/4. Through the simulation, 

25 patterns are obtained. There are 5 different patterns, as shown in Figure 1.  

 
HG01+HG10 HG01+HG10*exp(iπ/4) HG01+HG10*exp(iπ/2) HG01+HG10*exp(i3π/4) HG01+HG10*exp(iπ) 

Figure 1. Structured beams obtained by coherent superposition of first-order HG beams. 

3.2.  Coherent superposition of second-order HG beams 

The structured beam is obtained by the coherent superposition of the second-order HG beams 

(HG02+HG11+HG20). The intensity coefficient αK is set to 1:1, and the phase φK interval is set to π/4. 

Through the simulation, 125 patterns are obtained. Among them, there are 31 different patterns, and 10 

typical structures beams are selected from them and listed in Figure 2.  

 

Figure 2. Structured beams obtained by coherent superposition of second-order HG beams. 
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3.3.  Coherent superposition of third-order HG beams 

The structured beam is obtained by the coherent superposition of the third-order HG beams 

(HG03+HG12+HG21+HG30). The intensity coefficient αK is set to 1:1:1:1:1, and the phase φK interval is 

set to π/4. Through the simulation, 625 patterns are obtained. Among them, there are 189 different 

patterns from which 10 typical spatial structure beams are selected and listed in Figure 3.  

 
HG03+HG12 

+HG21+HG30 
HG03+HG12* exp(iπ/2) 

+HG21* exp(iπ/4)+HG30 
HG03*exp(iπ/4)+HG21+ 

HG12*exp(i3π/4) 

+HG30*exp(iπ/2) 
HG03+HG12 

+HG21+HG30* exp(iπ/2) 
HG12*exp(iπ/2) 

+HG30*exp(iπ/2) 

+HG03 +HG21*exp(i3π/4) 

 
HG03+HG12* exp(iπ/2) 

+HG21*exp(i3π/4)+HG30* exp(iπ/4) 
HG03+HG21*exp(iπ/4) 

+HG12*exp(i3π/4)+HG30* 

exp(iπ/4) 

HG03* exp(iπ/4)+HG12* 

exp(iπ/2) 

+HG21* exp(i3π/4)+HG30 
HG03+HG12* exp(iπ/2) 

+HG21+HG30* exp(iπ/2) 
HG03+HG12*exp(iπ) 

+HG21*exp(iπ/2)+HG30* exp(iπ/2) 

Figure 3. Structured beams obtained by coherent superposition of third-order HG beams. 

4.  Experiments 

4.1.  Introduction to Experimental System 

The experimental system mainly includes: a fiber-coupled 808 nm semiconductor laser, a coupling lens 

group, a microchip resonator, a polarizing prism, and a CCD camera. The schematic diagram and 

physical setup of the experimental system are shown in the Figure 4. 

 

 

Figure 4. Schematic diagram and physical setup of the experimental system. 
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4.2.  Experimental pattern 

Firstly, under the condition of normal incidence of the laser beam, different first-order structure beam 

outputs are obtained by changing the pump power. Figure 5(a)-(c) shows three different first-order 

structure beams, and Figure 5(a) shows the spot obtained when the pump power is 3.1 W. Compared 

with the simulation results, it can be concluded that it is HG01; as the pump power increases to 3.3 W, 

the facula is consistent with the simulation results of HG01+HG10. With the further increase of the pump 

power (3.5 W), the light spot changes, corresponding to the simulation results, the available light spot 

is the coherent superposition after the phase difference between HG01 and HG10 (HG01+HG10*exp(iπ/4)). 

 

Figure 5. The first-order structured beam obtained in the experiment; pump power: (a) 3.1W; (b) 3.3W; 

(c) 3.5W; (d) Simulation result of HG01+ HG10; (e) Simulation result of HG01+HG10* exp(iπ/4). 

At the same time, under the condition of the same pump power (3.5 W), the structured beam in Figure 

6 is obtained by adjusting the angle of the pump light. The appearance of different structured beams is 

due to the difference in the gain distribution by adjusting the angle of the pumped light, resulting in a 

change in the mode distribution. 

Table 1. Corresponding intensity coefficients and phase parameters used in simulations in Figure 6. 

Simulation 

pattern 
HG modes Intensity coefficient αK  Phase φK 

9(e) HG20+HG03 
0.7 (HG20) 

1 (HG03) 

0 (HG20) 

π/4 (HG03) 

9(f) HG40+HG31+HG22+HG13+HG04 

2 (HG40) 

1 (HG31) 

0.7 (HG22) 

1 (HG13)  

1 (HG04) 

π/2 (HG40) 

0 (HG31) 

π/2 (HG22) 

π/4 (HG13) 

0 (HG04) 

9(g) HG03+HG12+HG21+HG30 

1 (HG03) 

1 (HG12) 

1 (HG21) 

1 (HG30)  

0 (HG03) 

3π/4 (HG12) 

π/2 (HG21) 

π/2 (HG30) 

9(h) HG03+HG12+HG21+HG30 

1.6 (HG03) 

1 (HG12) 

0.8 (HG21) 

1.6 (HG30) 

0 (HG03) 

π/2 (HG12) 

0 (HG21) 

π/2 (HG30) 

Figure 6(a) and (b) are the experimental and simulation results respectively. HG20 and HG03 were 

coherently superimposed through the aforementioned eigenmode superposition theory. By comparing 

the above simulated coherent superposition results with the experimental patterns, the experimental 

results are consistent with the simulation results. Figures 6(c) and (d), 6(e) and (f), and 6(g) and (h) are 

the corresponding experimental and simulation results. Table 1. lists the specific intensity coefficients 

and phase parameters used in the simulation in Figure 6. 
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Figure 6. Experimentally obtained complex structured beams with complex spatial structures. 

5.  Conclusion 

This paper firstly analyzes the basic theories of structured beams, and uses the eigenmode superposition 

theory to explain the formation mechanism of structured beams when there are multiple transverse 

modes and phase differences. Based on the eigenmode superposition theory, the intensity coefficient αK 

is set to 1, and the phase φK interval is set to π/4, and the simulated structured beams were obtained by 

the coherent superposition of the first-order, second-order and third-order HG eigenmodes. The first-

order structured beams exist 25 combinations, of which there are only 5 different patterns; there are 125 

combinations of second-order structured beams, of which there are 31 different patterns; after the 

superposition of third-order HG eigenmodes, there are 625 combinations, of which 186 different pattens. 

Finally, by comparing the experimental results with the simulation results, it can be concluded that the 

experimental results are in good agreement with the theoretical simulation results. It is fully proved that 

the transverse mode superposition method is an effective way to generate beams with complex spatial 

structures. 
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