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Abstract. Concrete strength prediction is a complex nonlinear regression task that involves 

multiple ingredients and age as key factors. In order to achieve accurate predictions, the Markov 

Chain Monte Carlo (MCMC) and Gaussian Process Regression (GPR) techniques are employed. 

The dataset, sourced from Kaggle repositories, comprises a comprehensive collection of 1030 

data points. Alongside the existing features (content of ingredients, age and strength), we 

introduce new ones, including water-cement ratio, sand ratio, and water-binder ratio, to enhance 

the model's credibility. To determine the optimal kernel function, the dataset is partitioned into 

training and testing subsets. Notably, the MCMC method yields an R2 of 0.41, while GPR 

demonstrates a significantly improved R2 of 0.89. Further investigation is warranted to refine the 

model's fit and optimize its predictive capacity. 

Keywords: Concrete Strength, Prediction, Markov Chain Monte Carlo (MCMC), Gaussian 

Process Regression (GPR).  

1.  Introduction 

Concrete is the most important and widely used material in civil engineering all over the world and 

consists of four main ingredients: cement, water, coarse and fine aggregates [1]. Mixed ingredients 

provide concrete with the advantages of excellent load-bearing capacity, durability and cost-

effectiveness.  

Concrete strength is a critical indicator to assess its performance, directly influencing the stability, 

safety, and service life of structures [2]. Therefore, accurate prediction of concrete strength is of vital 

importance for structural design, construction quality control, and safe operation during the engineering 

service phase.  

Traditionally, the prediction of concrete strength heavily relied on laboratory experiments, involving 

time-consuming curing processes and subsequent sample testing, which proved to be laborious and 

costly. Another approach is making empirical regression. However, the concrete compressive strength 

is a highly nonlinear function of age and ingredients, so it is quite difficult to conduct the regression 

method to get the accurate results. The third way is to use numerical simulation, which also has 

disadvantages of being time-consuming and inaccurate [3]. 

With advancements in science and technology, disciplines like data science and machine learning 

have provided new solutions for concrete strength prediction. Leveraging advanced predictive models 

and data analysis techniques enables rapid and precise forecasting of concrete strength at an early stage 

or after construction, offering crucial decision-making insights for engineering projects and operations. 
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Markov Chain Monte Carlo (MCMC) and Gaussian Process Regression (GPR) are versatile and 

potent statistical techniques that find utility across diverse data analysis tasks. MCMC excels in its 

ability to explore intricate probability distributions and conduct Bayesian inference, making it well-

suited for situations where exact solutions are challenging or infeasible [4,5]. On the other hand, GPR 

stands out in capturing nonlinear relationships, high-dimensional patterns, and small sample data. Its 

non-parametric nature and ability to model uncertainty render it particularly useful for regression tasks 

where data points may exhibit intricate and nontrivial interactions [6]. Both MCMC and GPR offer 

valuable insights into data-driven analyses, and their combined application holds the potential to 

enhance predictive accuracy and uncover deeper insights from complex datasets. 

Hence, this paper aims to explore and investigate concrete strength prediction by adopting Markov 

Chain Monte Carlo method and Gaussian Process Regression models. Through the construction of 

effective predictive models and the analysis and evaluation of prediction outcomes, we strive to provide 

reliable and efficient decision support for concrete engineering design, construction, and operation, 

thereby advancing scientific development and technological innovation in the field of concrete 

engineering. 

2.  Data Processing 

2.1.  Data Discription 

A dataset consisting of 1030 observations was sourced from Kaggle Datasets. The dataset includes 

information on 7 key ingredients (kg/m3): cement, slag, ash, water, superplastic, coarse aggregates, and 

fine aggregates. Additionally, the dataset contains values for the age (d) and strength of concrete samples 

(MPa). The objective is to utilize the content composition and age data to predict the concrete strength. 

Presented below are details from the first five rows of the dataset. 

Table 1. First five rows of the dataset. 

 cement slag ash water superplastic coarseagg fineagg age strength 

0 141.3 212.0 0.0 203.5 0.0 971.8 748.5 28 29.89 

1 168.9 42.2 124.3 158.3 10.8 1080.8 796.2 14 23.51 

2 250.0 0.0 95.7 187.4 5.5 956.9 861.2 28 29.22 

3 266.0 114.0 0.0 228.0 0.0 932.0 670.0 28 45.85 

4 154.8 183.4 0.0 193.3 9.1 1047.4 696.7 28 18.29 

Statistical information of data is shown in Table 2. 

Table 2. Statistical information of data. 

 cement slag ash water 
Super-

plastic 
coarseagg fineagg age strength 

Count 1030 1030 1030 1030 1030 1030 1030 1030 1030 

Mean 281.2 73.9 54.2 181.6 6.2 972.9 773.6 45.7 35.8 

Std 104.5 86.3 64.0 21.4 6.0 77.8 80.2 63.2 16.7 

Min 102.0 0.0 0.0 121.8 0.0 801.0 594.0 1.0 2.33 

max 540.0 359.4 200.0 247.0 32.2 1145.0 992.6 365.0 82.60 

2.2.  Feature engineering 

Feature engineering plays a pivotal role in enhancing the predictive power of machine learning models. 

In the realm of concrete strength prediction, three innovative features have been introduced, 

demonstrating a significant impact on concrete strength: water-cement ratio, water-binder ratio, and 
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sand ratio. These additional features are derived from the original data according to the equations (1) to 

(3) and are carefully designed to capture significant aspects of concrete composition and performance. 

𝑟𝑤
𝑐

 =
𝑚𝑤

𝑚𝑐
(1) 

𝑟𝑤
𝑏

 =
𝑚𝑤

𝑚𝑐 + 𝑚𝑠 + 𝑚𝑎
(2) 

𝑟𝑠 =
𝑚𝑓𝑎

𝑚𝑓𝑎 + 𝑚𝑐𝑎
(3) 

Where 𝑟𝑤/𝑐, 𝑟𝑤/𝑐 and 𝑟𝑠 denote water-cement ratio, water-binder ratio and sand ratio respectively. 

𝑚𝑤 , 𝑚𝑐 , 𝑚𝑠 , 𝑚𝑎 , 𝑚𝑓𝑎  and 𝑚𝑐𝑎  denote kilograms per cubic meter for water, cement, slag, ash, fine 

aggregate and coarse aggregate respectively. 

Following the incorporation of these features, it becomes imperative to assess the interrelationships 

between variables within the dataset. The exploration of data correlation serves as a fundamental step in 

understanding the complex interactions among different attributes. In order to acquire the prediction of 

strength, this analysis involves generating scatter plots that visually depict the pairwise relationships 

between strength and other 11 variables (as shown in Fig.1). By examining the distribution and trends 

exhibited in these plots, we gain a comprehensive understanding of how changes in one feature may 

impact the strength of concrete. 

Figure 1. Scatter plots of concrete strength and 11 variables. 

Based on the correlation plots, it is evident that concrete strength exhibits a significant correlation 

with both the water-binder ratio and the water-cement ratio, displaying similar inverse relationships (as 

shown in Fig. 2). This phenomenon can be attributed to the similarities in their respective calculation 

formulas. 
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Figure 2. Scatter diagrams between concrete strength and water-cement ratio and water-binder ratio. 

2.3.  Data Normalization 

In this study, all independent variables were subjected to data normalization, transforming them into 

distributions with a mean of 0 and a variance of 1. However, the dependent variable, concrete strength, 

was not subjected to normalization. Furthermore, during the process of splitting the dataset into training 

and testing sets, the standardization procedure applied to the training set was utilized to normalize the 

testing set as well. This approach ensured consistent and comparable transformations across both the 

training and testing data subsets. 

3.  Modeling 

3.1.  Inference and modelling 

3.1.1.  Markov Chain Monte Carlo (MCMC). Markov Chain Monte Carlo is a powerful technique used 

for sampling probability distributions, particularly widely applied in Bayesian statistics. MCMC is 

designed to address complex sampling problems involving probability distributions that may be 

challenging to solve using traditional numerical or analytical methods [7]. 

MCMC is used for establishing the relationship between concrete strength and water-cement ratio,  

water-binder ratio. The formula is assumed as equation (5): 

𝑓𝑐 = 𝑎 ∗ 𝑟−𝑏 + 𝜀 (5) 

where a and 𝑏  are unknown parameters, 𝑓𝑐  is concrete strength, 𝑟  is 𝑟𝑤/𝑐  or 𝑟𝑤/𝑏 , and 𝜀  is error 

respectively.Priors play a crucial role in Bayesian modelling. In the study, a and b are both positive. 

Strength is assumed to follow a normal distribution with mean 𝑎 × 𝑟−𝑏 and standard deviation 𝜎, which 

is positive. Exponential distribution with 𝜆 = 1 is adopted to describe 𝑎, 𝑏 and 𝜎. 

𝑓𝑐  ~ 𝑁(𝑎 ∗ 𝑟−𝑏 , 𝜎2) (6) 

𝑎, 𝑏, 𝜎 ~ 𝐸𝑥𝑝(1) (7) 

3.1.2.  Gaussian Process Regression (GPR). Gaussian Process Regression is a non-parametric model 

within the Bayesian framework, commonly employed for nonlinear modeling. Rooted in probability 

theory, this model introduces randomness explicitly, enabling the seamless fusion of prior knowledge 

with learned insights from observed data. Through Bayesian inference, it diminishes uncertainty and 

yields estimates imbued with probabilistic significance. GPR is characterized by strong generalization 

ability, simplicity in model training, adaptive hyperparameters, interpretability, and robustness. It is 

particularly suitable for addressing regression problems involving nonlinearity, high dimensions, and 
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small sample sizes [8], quite suitable for the prediction of concrete strength. GPR not only delivers 

accurate concrete strength predictions but also provides uncertainty information, aiding engineers and 

decision-makers in risk assessment and reliable project planning. The basic function is: 

𝑓(𝑥) ~ 𝐺𝑃 (𝑚(𝑥), 𝐾(𝑥, 𝑥 ′)) (8) 

where 𝑚(𝑥) is mean function and 𝐾(𝑥, 𝑥′) is covariance function. The detailed derivation of GPR is 

provided in [9]. 

Kernel functions play a pivotal role in GPR when modeling the relationships between variables. A 

kernel function, also known as a covariance function, defines the similarity or correlation between data 

points in the input space. It encapsulates the underlying structure of the data and allows GPR to make 

flexible and adaptive predictions. A diverse range of kernel functions can be employed in GPR, each 

having its own characteristics and implications for modeling various patterns in the data. Radial Basis 

Function (RBF) kernels and Matern kernels are selected in equations (9) and (10).  

𝑘(𝑥𝑖 , 𝑥𝑗) = exp (−
𝑑(𝑥𝑖, 𝑥𝑗)

2

2𝑙2
) (9) 

𝑘(𝑥𝑖, 𝑥𝑗) =
1

Γ(𝜈)2𝜈−1
(

√2𝜈

𝑙
𝑑(𝑥𝑖, 𝑥𝑗))

𝜈

𝐾𝜈 (
√2𝜈

𝑙
𝑑(𝑥𝑖, 𝑥𝑗)) (10) 

where 𝑑(𝑥𝑖, 𝑥𝑗) is the Euclidean distance, 𝑙 is length scale, 𝐾𝜈(·) is a modified Bessel function and Γ(·) 

is the gamma function respectively [10]. 

RBF kernels, also known as Gaussian kernels, are characterized by their smoothness and the ability 

to capture local patterns. These kernels are defined by a length scale parameter that determines the range 

of influence between data points. Variants of the RBF kernel, with different amplitudes and length scales, 

can be utilized to adapt to various data characteristics. 

Matern kernels are a versatile class of kernels that offer a flexible trade-off between smoothness and 

roughness in modeling. They are parameterized by the nu parameter, which controls the degree of 

smoothness. When nu is set to 0.5, the Matern kernel is equivalent to the absolute exponential kernel, 

exhibiting a sharp and non-smooth behavior. In contrast, higher values of nu (e.g., 1.5 or 2.5) result in 

smoother functions with differentiable transitions. 

3.2.  Modeling results  

3.2.1.  MCMC. The estimates of a, b and σ after 10000 draws are demonstrated in Fig. 1. The mean 

values of three parameters using water-cement ratio are 26.887, 0.656 and 13.795 respectively, while 

the mean values of three parameters using water-binder ratio are 14.650, 1.069 and 12.753 respectively. 

The predicted strength is compared with the true strength in a scatter figure as shown in Fig. 4. The 

magnitude of σ represents the dispersion of the model, where a lower dispersion indicates a better fit. 

As the model utilizing the water-binder ratio exhibits a lower σ, it implies that the water-binder ratio is 

more capable than the water-cement ratio in capturing variations in concrete strength. This observation 

is further supported by its lower R2, reinforcing this notion. 
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Figure 3. Trace figures using water-cement ratio and water-binder ratio. 

Table 3. Sampling results of using water-cement ratio and water-binder ratio. 

 
Water-cement ratio Water-binder ratio 

mean 𝜎 mean 𝜎 

𝑎 26.887 0.570 14.650 0.564 

𝑏 0.656 0.030 1.069 0.039 

𝜎 13.795 0.303 12.753 0.281 

R2 0.31 0.41 

Figure 4. Comparing figure using water-cement ratio and water-binder ratio. 

3.2.2.  Gaussian Process Regression. The dataset is partitioned into training and testing sets, and various 

kernels are evaluated for their performance on the training sets. Among the kernels compared, the 

Matern kernel with a nu value of 0.5 emerges as the most effective choice. The Matern kernel offers a 

flexible framework that balances the trade-off between smoothness and robustness in modeling complex 
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relationships. The choice of nu=0.5 strikes a balance between capturing both short-range and long-range 

dependencies in the data. Subsequently, the selected model is applied to the test sets, yielding insightful 

outcomes depicted in Fig. 5. The coefficient of determination (R2) attains a commendable value of 0.99 

and 0.89 in training and testing sets respectively, underscoring the model's robust predictive capabilities. 

Figure 5. Scatter plot of predicted and true strength in training and testing sets. 

4.  Conclusions 

Footnotes should be avoided whenever possible. If required they should be used only for brief notes that 

do not fit conveniently into the text. 

This paper introduces two distinct approaches for predicting concrete strength. The first method 

employs Markov Chain Monte Carlo (MCMC) to discern the intricate relationships between concrete 

strength and the water-cement ratio, as well as the water-binder ratio. These ratios, both displaying an 

inverse relationship with strength, are investigated through assumed formulas and a comprehensive 

sampling of 10,000 iterations. The analysis reveals that the water-binder ratio emerges as the more 

influential factor, attributed to its notably lower standard deviation of error and a higher R2. 

However, MCMC, relying on a single feature, falls short of achieving precise strength predictions, 

highlighting the complexity of deriving accurate formulas when multiple features interact. To address 

the challenge of nonlinearity, high-dimensional spaces, and limited sample sizes, the paper turns to the 

Gaussian Process Regression (GPR). Through a strategic division of data into training and testing sets, 

GPR systematically assesses various kernel functions, culminating in the selection of the optimal kernel 

for testing data. This meticulous process results in a R2 value of 0.89, signifying the model's substantial 

predictive capabilities. 

While significant progress has been achieved in the realm of predicting concrete strength, it becomes 

apparent that further refinement and exploration are imperative to fully unravel the intricate web of 

multi-feature interactions. The incorporation of additional cross-features holds the promise of unveiling 

previously unrecognized relationships that could significantly enhance predictive accuracy. 

Moreover, the combined utilization of both the MCMC and GPR holds the potential for a more 

comprehensive and robust predictive framework. The synergistic application of these techniques can 

harness the strengths of each approach, potentially mitigating the limitations inherent in singular 

methodologies. By leveraging the unique strengths of MCMC for uncovering feature correlations and 

GPR for tackling nonlinearity, high dimensions, and small sample sizes, a more comprehensive 

understanding of concrete strength prediction could be attained. 

To address these challenges, future research endeavors might explore advanced techniques such as 

ensemble modeling, hybrid approaches, or the incorporation of domain-specific knowledge. Ultimately, 

a concerted effort to integrate diverse strategies and harness their collective power could pave the way 

Proceedings of the 3rd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/9/20240712

60



for more accurate and reliable predictions of concrete strength, thereby elevating the field of 

construction and engineering. 
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