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Abstract. The classification of finite groups is an important topic in mathematics throughout 

history of mathematics. The topic of this paper is to use group action as a tool, to classify some 

special finite groups and some low order groups. First this paper introduces some concepts of 

group action. Then this paper states and proves some important theorems related to group action. 

For example, the Sylow’s theorem, which is very important in this paper. Research has found 

that, groups of specific order, such as groups whose order are 2𝑝, 𝑝2, 𝑝𝑞(𝑝, 𝑞 are distinct prime 
numbers), p3(p is prime) can be classified using group action and the technique of semi-direct 

product, and groups whose order are no more than 15 are classified which can be seen as the 

special situations of the above ones. But in general, to make classification of a larger range of 

finite groups, more tools should be introduced. 

Keywords: Finite Groups, Group Action, Sylow’s Theorem. 

1.  Introduction 

Group theory is a very essential part of mathematics, the occurrence of group theory marks the birth of 

abstract algebra. In the formation of the concept of group, the British mathematician, Cayley, made 

outstanding contributions [1]. The classification problem of finite groups is a very important and 

complex topic in group theory, and it was not until the sixties of the last century that the problem of 

classifying simple groups with finite order was completely solved [2]. A5 is the simple group of the 
smallest order [3]. 

The significance of the topic of classifying finite groups is far-reaching. For example, it is proved 

that every finite abelian group is isomorphic to the direct product of some cyclic groups [4], and this 

result allows us to make some Fourier analysis on finite abelian groups and draw a series of beautiful 

conclusions [5]. 

Group action is the core and basis of group theory. As an important tool, group action reflects some 

essential properties of a group (a set with special structure). Group action also has some strong geometric 

intuition, which can be seen from the action of dihedral groups on regular polygons and some special 

groups acts on the set which consists of all real symmetric matrices whose order is two, which gives an 

interesting result [6]. Also, group action has a broad application in other fields of mathematics. For 

example, in Combinatorial mathematics, it can be used to prove Burnside’s lemma, which can be used 

to solve the ‘coloring problem’ [7]. 
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When mentioning a group action, it is natural to think of its permutation representation, which is 

known as the Cayley's theorem. Furthermore, the famous Sylow’s theorem, is also related to group action. 

There are many ways to proof this theorem, most of which using group action and the orbit-stabilizer 

theorem, but there exist some new ways to proof this old theorem [8]. The Sylow’s theorem, which can 

be seen as the result of a group act on a special set (the set consists of all 𝑆𝑦𝑙𝑜𝑤 − 𝑝 subgroups) by 
conjugation, is very useful since it has many applications. For example, applying this theorem, the 

isomorphic types of some special finite groups can be classified [9], including the group of order 24[10]. 

This paper introduces the group action, proves some important theorems, including Cauchy’s theorem, 

Sylow's theorem, the class equation, etc. Then combine these theorems to classify some special finite 

groups, such as groups of order 𝑝𝑞  (𝑝 , 𝑞  are distinct prime numbers), 𝑝3 (𝑝  is prime), etc. Also, the 
isomorphic types of some groups of lower order will be classified, such as groups of order 8 and 12, etc. 

Their isomorphic table will be listed.  

2.  Methods 

2.1.  Group action 

Definition (Group action): A (left) group action of a group G on a set S is a map: G × S → S, which 
satisfies: Identity law: 1G ∙ s = s  Associative law: (g ∙ g

′) ∙ s = g ∙ (g′ ∙ s)(g, g′ ∈ G, s ∈ S) . A group 
action G × S → S is faithful if the following holds: g ∙ s = s (∀s ∈ S), then g = 1G. 
Remark that when mentioning a group action, it’s important to consider its permutation 

representation, i.e., the homomorphism from G to the permutation group of the set S, which is also 

known as the Cayley’s theorem. If the group action is faithful, then the homomorphism is injective, vice 

versa. 

A group action G × S → S  is transitive if the following holds: ∃s ∈ S, st S = Os, Os  represents the 
orbit of s. 

2.2.  Additional theorems 

Orbit-Stabilizer theorem: A bijective map from 𝑂𝑠 to G/Gs by defining as ↦ aGs, this map is well 
defined and bijective. Thus, by the Lagrange’s theorem, |Os||Gs| = |G|. 
Class equation: G is a finite group and assume g1, g2…gn be representatives of the disjoint conjugacy 
classes in G which aren’t in Z(G), then |G| = |Z(G)| + ∑ |G: CG(gi)|

n
i=1 .  

Cauchy’s theorem: G is a finite group, p is prime & 𝑝\𝑛, then G contains an element whose order is p. 
Proof: First consider when G is abelian. If |𝐺| = 1, it’s trivial case. For the inductive step, choose 

g ∈ G whose order is k > 1. If p|k, say k = pl, then gl has order p. If p isn’t divisible by k, consider the 
group H ≜< g > , whose order is k . H ⊲ G  so G/H  is a group & [G: H] =  n/k . Since p|[G:H] , by 
inductive step, ∃aH ∈ G/H  of order p . Assume the order of a  in  G  is m, then (aH)m = H , which 
indicates that 𝑝|𝑚. This sends us back to the first case. 
For the general case, one proves again using induction on |𝐺|. If |G|=1, it’s the trivial case. Let 𝑥 ∈

𝐺 , by the Orbit-Stabilizer theorem, |𝑥𝐺| = [G: 𝐶𝐺(𝑥) ]. Assume 𝑥 ∉ 𝑍(𝐺) , then 𝐶𝐺(𝑥) ≠ 𝐺 , which 
implies |𝐶𝐺(𝑥)| < |𝐺| . If𝑝||𝐶𝐺(𝑥)|  for some x with 𝑥 ∉ 𝑍(𝐺),  then by inductive hypothesis, the 
theorem holds. 

Therefore, one may assume that p doesn’t divide |𝐶𝐺(𝑥)| for every x with x ∉ 𝑍(𝐺). Since 𝑝||𝐺|, we 
conclude that p| [𝐺: 𝐶𝐺(𝑥)]  for all x with 𝑥 ∉ 𝑍(𝐺) , by the Class equation: |𝐺| = |𝑍(𝐺)| +
∑ |𝐺: 𝐶𝐺(𝑔𝑖)|
𝑛
𝑖=1  , 𝑝||𝑍(𝐺)|. Because Z(G) is an abelian group, it has an element whose order is p, so 
does G, thus completes the proof.  

Lemma 1: Consider 𝐺 × 2𝐺 → 2𝐺 by left multiplication, then |Stab(U)|||U| satisfy: 
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𝑔 ∙ 𝑈 ≝ 𝑔𝑈 = {𝑔𝑢|𝑢 ∈ 𝑈} (1) 

Proof: Stab(U)≝  , consider the induced group action: 𝐻 ×𝑈 → 𝑈  by left multiplication.∀𝑢 ∈
𝑈,𝐻𝑈 ≝ {ℎ ∈ 𝐻|ℎ𝑢 = 𝑢} = {1𝐻}, then |𝑂𝑈 |=| |. Since U is the disjoint union of orbits, |U|=∑ |𝑂𝑈𝑖|

𝑛
𝑖=1 , 

we conclude | |||U|.  

Sylow’s theorem: If G is a finite group, p is prime & p||G|=n, then G contains a Sylow-p subgroup. 

Furthermore, ∀ p-subgroup of G is contained in a Sylow-p subgroup and Sylow-p subgroups are 
conjugate groups ( ∀𝐻,𝐻′𝑆𝑦𝑙𝑜𝑤 − 𝑝 𝑠𝑢𝑏𝑔𝑟𝑜𝑢𝑝𝑠, ∃𝑔 ∈ 𝐺 𝑠𝑡 𝑔𝐻𝑔−1 = 𝐻′ ). If 𝑛 =
𝑝𝑒𝑚( 𝑝 𝑖𝑠 𝑛𝑜𝑡 𝑑𝑖𝑣𝑖𝑠𝑖𝑏𝑙𝑒 𝑏𝑦 𝑚), let 𝑡 = # 𝑜𝑓 𝑆𝑦𝑙𝑜𝑤 𝑝 −  𝑠𝑢𝑏𝑔𝑟𝑜𝑢𝑝𝑠 in G, then t|m & 𝑡 ≡ 1(𝑚𝑜𝑑 𝑝).  

Proof: Observe that p is NOT divisible by (
𝑛
𝑝𝑒). Consider G acts on {subsets of G of order 𝑝

𝑒}, then 

(
𝑛
𝑝𝑒) = ∑ |𝑂|𝑂𝑟𝑏𝑖𝑡𝑠  , since p is NOT divisible by (

𝑛
𝑝𝑒) , 𝑡ℎ𝑒𝑛 𝑡ℎ𝑒𝑟𝑒  exists some orbit 𝑂𝑈   st p is not 

divisible by |𝑂𝑈 |.{
𝑝𝑒𝑚 = 𝑛 = |𝐺| = |𝑂𝑈 ||𝐺𝑈|
(𝑏𝑦 𝑙𝑒𝑚𝑚𝑎)|𝐺𝑈||𝑝

𝑒 = |𝑈|

𝑦𝑖𝑒𝑙𝑑𝑠
→    |𝐺𝑈| = 𝑝

𝑒, |𝑂𝑈 | = 𝑚, which completes the first 

part of this theorem. 

Let K be any p subgroup of G and let   be any Sylow p-subgroup of G. We prove:∃𝑔 ∈ 𝐺, 𝑠𝑡 𝐾 ≤
𝑔𝐻𝑔−1 . Consider the group action:𝐺 × 𝐺/𝐻 → 𝐺/𝐻  by left multiplication. Observation: 𝐺𝐻 =  & 

𝐺𝑔𝐻 =𝑔𝐻𝑔
−1 , consider the restriction: 𝐾 × 𝐺/𝐻 → 𝐺/𝐻 , since m=|G/ |=∑ |𝑂𝑖|

𝑘
𝑖=1  &|𝑂𝑖| ||K| and p is 

NOT divisible by m, then there exists an orbit, denoted by 𝑂𝑔𝐻, st |𝑂𝑔𝐻| = 1, i.e. 𝐾 ≤ 𝐺𝑔𝐻 = 𝑔𝐻𝑔
−1, 

which completes the second part of this theorem. 

Consider the group action:𝐺 × {𝑆𝑦𝑙𝑜𝑤 𝑝 − 𝑠𝑢𝑏𝑔𝑟𝑜𝑢𝑝} ≝ 𝑆 → 𝑆 𝑏𝑦 𝑐𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑖𝑜𝑛 , i.e. 𝑔 ∙ 𝐻 ≝
𝑔𝐻𝑔−1, t=|S|, by Orbit-Stabilizer theorem, 𝑝𝑒𝑚 = |𝐺| = 𝑡|𝑁𝐺(𝐻)|, also, |𝐻| = 𝑝

𝑒||𝑁𝐺(𝐻)|, then 𝑡|𝑚. 
Next, consider the restriction: 𝐻 × 𝑆 → 𝑆 , note that ∀ 𝑜𝑟𝑏𝑖𝑡 𝑂, 𝑒𝑖𝑡ℎ𝑒𝑟 𝑝||𝑂|𝑜𝑟|𝑂| = 1  since 

|𝐻| = 𝑝𝑒 . 𝐻 ≤ 𝑁𝐺(𝐻) 
𝑦𝑖𝑒𝑙𝑑𝑠
→     orb( )={ } Suppose 𝐻′𝑎 𝑆𝑦𝑙𝑜𝑤 𝑝 − 𝑠𝑢𝑏𝑔𝑟𝑜𝑢𝑝 𝑡ℎ𝑎𝑡 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠: 𝐻 ≤

𝑁𝐺(𝐻′) (note that 𝐻 ≤ 𝑁𝐺(𝐻
′)𝑖𝑓𝑓 𝑜𝑟𝑏(𝐻′) = {𝐻′}) , then {

H ≤ 𝑁𝐺(𝐻′)

H′ ≤ 𝑁𝐺(𝐻′)

𝑦𝑖𝑒𝑙𝑑𝑠
→      𝐻 =

𝐻′𝑠𝑖𝑛𝑐𝑒 𝑡ℎ𝑒𝑦 𝑎𝑟𝑒 𝑐𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑒 𝑖𝑛 𝑁𝐺(𝐻′) , then 𝑡 ≡ 1(𝑚𝑜𝑑 𝑝) , which completes the last part of this 
theorem. 

3.  Results and discussion 

3.1.  Group whose order is 𝑝2(p is prime) 

Group G of order 𝑝2(p is prime) is either isomorphic to 𝐶𝑝2  or 𝐶𝑝 × 𝐶𝑝. 

Proof: If there exists an element in G of order 𝑝2, then it’s clear that 𝐺 ≈ 𝐶𝑝2. Otherwise, we may 

assume that no element in G is with order 𝑝2. Consider the center of G, since the center of a p group is 
nontrivial, we conclude that 𝑍(𝐺)  ≈ 𝐶𝑝. Choose an element in G but not in 𝑍(𝐺), say y, and denote   

the group generated by y. Consider the map 𝑓: 𝐻 × 𝑍(𝐺) → 𝐺: 
Where f is injective since 𝐻 ∩ 𝑍(𝐺) = {1𝑔} (by Lagrange’s theorem), (ℎ, 𝑘) ↦ ℎ𝑘 , f is group 

homomorphism since ∀ℎ, 𝑘, ℎ𝑘 = 𝑘ℎ .(the definition of Z(G)), f is surjective since |𝐻𝑍(𝐺)| =
|𝐻||𝑍(𝐺)

|𝐻∩𝑍(𝐺)|
=𝑝2=|G|. Thus, f is isomorphism, G≈ 𝐻 × 𝑍(𝐺) ≈ 𝐶𝑝 × 𝐶𝑝. 

3.2.  Group whose order is 2𝑝(p is prime) 

If 𝑝 = 2, then G is an abelian group and |𝐺| = 4 = 𝑝2, by the results in group with order 𝑝2(p is prime) 
above, 𝐺 ≈ 𝐶4𝑜𝑟 G≈ 𝐶2 × 𝐶2 ≈ 𝐾4. If 𝑝 > 2, by Cauchy’s theorem, G has a subgroup   whose order 
is 𝑝. Because the index of   in G is 2,   is normal in G,  ≈ 𝐶𝑝 ≝< 𝑥 >. Also there exists a subgroup 

K≝< 𝑦 > of G whose order is 2. Because  K=G, by introducing the concept of semi-direct product, 
one concludes that 𝐺 ≈ 𝐻 ⋊ 𝐾 . Consider all homomorphisms from 𝐾 𝑡𝑜 𝐴𝑢𝑡(𝐻) , since 𝐴𝑢𝑡(𝐻) ≈
𝐶𝑝−1, there are only two possible situations: (a) 𝜑:𝐾 → 𝐴𝑢𝑡(𝐻) 𝑤𝑖𝑡ℎ 𝑦𝑥𝑦

−1 = 𝑥, which represents the 
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trivial homomorphism, then 𝐺 ≈ 𝐻 ⋊𝐾 ≈ 𝐻 × 𝐾 ≈ 𝐶𝑝 × 𝐶2 ≈ 𝐶2𝑝 . (ii) WLOG, 𝜑:𝐾 →

𝐴𝑢𝑡(𝐻) 𝑤𝑖𝑡ℎ 𝑦𝑥𝑦−1 = 𝑥−1, then {
𝑥𝑝 = 𝑦2 = 1𝐺
𝑦𝑥𝑦−1 = 𝑥−1

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐺 ≈ 𝐷2𝑝. Thus, if |𝐺| = 2𝑝 (p is prime), then 

G is either isomorphic to 𝐷2𝑝 𝑜𝑟 𝐶2𝑝. 

3.3.  Groups of order 𝑝𝑞(𝑝, 𝑞 𝑝𝑟𝑖𝑚𝑒𝑠 𝑤𝑖𝑡ℎ 𝑝 < 𝑞) 
Let P≝< 𝑥 > denote the Sylow-p subgroup of G and R denote the Sylow-q subgroup of G. Note that R 
is normal. Furthermore, if P is normal, then G is a cyclic group. Let 𝑛𝑝  denote # 𝑜𝑓 𝑆𝑦𝑙𝑜𝑤 −

𝑝 𝑠𝑢𝑏𝑔𝑟𝑜𝑢𝑝𝑠 𝑖𝑛 𝐺  and 𝑛𝑞  denote # 𝑜𝑓 𝑆𝑦𝑙𝑜𝑤 − 𝑞 𝑠𝑢𝑏𝑔𝑟𝑜𝑢𝑝𝑠 𝑖𝑛 𝐺 . By Sylow’s theorem, 𝑛𝑞 =

1, 𝑠𝑜 𝑅 ⊲ 𝐺.  Since 𝑃𝑅 = 𝐺 & 𝑃 ∩ 𝑅 = {1𝐺}& 𝑅 ⊲ 𝐺 , we conclude that 𝐺 ≈ 𝑅 ⋊ 𝑃 . Since |R|=q, 
𝐴𝑢𝑡(𝑅) ≈ 𝐶𝑞−1. 

Consider all the homomorphism from 𝑃 𝑡𝑜 𝐴𝑢𝑡(𝑅). If 𝑝 doesn’t divide 𝑞 − 1, then the map can only 
be trivial. Thus, the semi-direct product is actually direct product, and 𝐺 ≈ 𝑅 ⋊ 𝑃 ≈ 𝐶𝑞 × 𝐶𝑝 ≈

𝐶𝑝𝑞 , 𝐺 𝑖𝑠 𝑐𝑦𝑐𝑙𝑖𝑐. If 𝑝|𝑞 − 1, since 𝐴𝑢𝑡(𝑅) is a cyclic group, it has a unique subgroup of order p, say 𝐻 ≝

< 𝑦 > . Let 𝜑: 𝑃 → 𝐴𝑢𝑡(𝑅) 𝑏𝑒 𝑡ℎ𝑒 ℎ𝑜𝑚𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚, 𝐾𝑒𝑟(𝜑) = {1𝐺}(Otherwise, it’s the trivial map.), 
so 𝜑 𝑖𝑠 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑣𝑒. It must map P to  . WLOG, assume 𝜑(𝑥) = 𝑦, then 𝐺 ≈ 𝑅 ⋊𝜑P, which is a non-

abelian group. 

Thus, all the isomorphic types of groups of order 𝑝𝑞(𝑝, 𝑞 𝑝𝑟𝑖𝑚𝑒𝑠 𝑤𝑖𝑡ℎ 𝑝 < 𝑞) are given. 

3.4.  Groups of order 𝑝3( 𝑝 𝑎𝑛 𝑜𝑑𝑑 𝑝𝑟𝑖𝑚𝑒) 
If G is an abelian group, then by the fundamental theorem of finite abelian groups, 𝐺 ≈ 𝐶𝑝3 or 𝐺 ≈

𝐶𝑝2 × 𝐶𝑝 𝑜𝑟 𝐺 ≈ 𝐶𝑝 × 𝐶𝑝 × 𝐶𝑝. If G is not cyclic, we first claim that G must contain an element of order 

𝑝2 or every nontrivial element of G has order p. This can be seen from the homomorphism f: 𝐺 →
𝑍(𝐺) by sending 𝑔 𝑡𝑜 𝑔𝑝. 
Case 1. G contains an element whose order equals to 𝑝2. Let 𝑥 be the element with order 𝑝2 and 

define   ≝ < 𝑥 > .   is abelian since   is of order  𝑝2 .   ⊲ 𝐺 𝑠𝑖𝑛𝑐𝑒 𝐻 𝑖𝑠 𝑡ℎ𝑒 𝑢𝑛𝑖𝑞𝑢𝑒 𝑆𝑦𝑙𝑜𝑤 −
𝑝 𝑠𝑢𝑏𝑔𝑟𝑜𝑢𝑝 𝑖𝑛 𝐺.  Denote K the kernel off, then K≈ 𝐶𝑝 × 𝐶𝑝 , 𝐸 ∩ 𝐻 =< 𝑥

𝑝 > . Choose 𝑦 ∈ 𝐾 −

𝐻, 𝑎𝑛𝑑 𝑃 ≝< 𝑦 >. 𝑇ℎ𝑒𝑛 𝐻 ∩ 𝑃 = {1𝐺}, since   is normal, we have 𝐺 ≈ 𝑃 ⋊  ≈ 𝐶𝑝2 ⋊ 𝐶𝑝. Consider 

all the homomorphism 𝜑 from P to 𝐴𝑢𝑡(𝐻): (a) 𝜑 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑟𝑖𝑣𝑖𝑎𝑙 𝑚𝑎𝑝, then 𝐺 ≈ 𝐶𝑝2 × 𝐶𝑝, which is the 

abelian case. (b) 𝜑 𝑖𝑠 𝑛𝑜𝑛𝑡𝑟𝑖𝑣𝑖𝑎𝑙, 𝑠𝑖𝑛𝑐𝑒 𝐴𝑢𝑡(𝐻) ≈ 𝐶𝑝(𝑝−1). 𝐴𝑢𝑡(𝐻) contains a unique element of order 

p, say 𝛾,𝑤𝑖𝑡ℎ 𝛾(𝑥) = 𝑥𝑝+1 . Then, up to a choice of generator of P, obtaining the only homomorphism 
𝜑 from P to 𝐴𝑢𝑡(𝐻) 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦 𝜑(𝑦) = 𝛾.  ence 𝐺 ≈ 𝐻 ⋊𝜑P in this case. 

Case 2. The order of every nontrivial element in G equals to p. Denote   a subgroup with order 

𝑝2, 𝑡ℎ𝑒𝑛 𝐻 ≈ 𝐶𝑝 × 𝐶𝑝.  Choose 𝑦 ∈ 𝐺 − 𝐻, 𝑑𝑒𝑛𝑜𝑡𝑒 𝐾 =< 𝑦 > , then   ⊲ 𝐺 𝑎𝑛𝑑 𝐻 ∩ 𝐾 = {1𝐺}.  Thus, 

𝐺 ≈ 𝐻 ⋊ 𝐾 ≈ (𝐶𝑝 × 𝐶𝑝) ⋊ 𝐶𝑝.  Again, consider all the homomorphism 𝜑  from K to 𝐴𝑢𝑡(𝐻):  1. 𝜑  is 

the trivial map, then 𝐺 ≈ 𝐶𝑝 × 𝐶𝑝 × 𝐶𝑝 , which is the abelian case. 2. 𝜑 𝑖𝑠 𝑛𝑜𝑛𝑡𝑟𝑖𝑣𝑖𝑎𝑙 , observe that 

𝐴𝑢𝑡(𝐻) ≈ 𝐺𝐿2(𝐹𝑝) , |𝐴𝑢𝑡(𝐻)| = 𝑝(𝑝 + 1)(𝑝 − 1)
2 . So, these Sylow-p subgroups all have order p. 

These Sylow-p subgroups are conjugate in G. Say < 𝛾 > a Sylow-p subgroup, denote 𝐻 =< 𝑎 >×<
𝑏 >, then define 𝛾 ∶ 𝛾(𝑎) = 𝑎𝑏 𝑎𝑛𝑑 𝛾(𝑏) = 𝑏; 𝜑:𝜑(𝑦) = 𝛾. One can prove that in this situation, this is 
the only isomorphism type of G, so 𝐺 ≈ 𝐻 ⋊𝜑K. 

4.  Application 

The results above can be used for classifying some finite groups of low order (no more than 15). Let G 

be the finite group and let n denote the cardinality of G. For n=1, 2, 3, 5, 7, 11, 13 which are primes, 

𝐺 ≈ 𝐶𝑛 . If n=6, 10, 14 then this is the case where the groups are of order 2p (p prime), so 𝐺 ≈
𝐶2𝑝 𝑜𝑟 𝐷2𝑝. If n=4, 9, this is the case that the groups are of order 𝑝

2(p is prime), so 𝐺 ≈ 𝐶𝑝2  𝑜𝑟 𝐶𝑝 × 𝐶𝑝. 

If n=15, this is the case that the groups are of order 𝑝𝑞 (𝑝, 𝑞 primes with 𝑝 < 𝑞), so 𝐺 ≈ 𝐶15. If n=8, 
there are 5 isomorphic types:𝐶8, 𝐶2 × 𝐶4, 𝐶2 × 𝐶2 × 𝐶2, 𝑄8, 𝐷8.  
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Proof: Assume G has an element whose order is 8, 𝐺 ≈ 𝐶8. Assume G has an element whose order 
is 4, say 𝑎, denote 𝑀 =< 𝑎 >. Choose 𝑏 ∈ 𝐺 −𝑀, with 𝑏2 ∈ 𝑀 (this is possible), denote 𝐾 =< 𝑏 >
. Then either 𝑏2 = 1𝐺  𝑜𝑟 𝑏

2 = 𝑎2. If 𝑏2 = 1𝐺, then 𝑀 ∩ 𝐾 = {1𝐺} and 𝑀 ⊲ 𝐺, so 𝐺 ≈ 𝑀 ⋊ 𝐾. There 
are two types of semi-product in this case, which leads to 𝐺 ≈ 𝐶2 × 𝐶4 𝑜𝑟 𝐺 ≈ 𝐷8. If 𝑏

2 = 𝑎2, consider 
𝑏𝑎𝑏−1, then either 𝑏𝑎𝑏−1 = 𝑎 or 𝑏𝑎𝑏−1 = 𝑎3. In the first one, 𝐺 ≈ 𝐶2 × 𝐶4; in the second one, 𝐺 =
{𝑎, 𝑏|𝑎4 = {1𝐺}, 𝑏𝑎𝑏

−1 = 𝑎3, 𝑏2 = 𝑎2}, so 𝐺 ≈ 𝑄8. Assume the order of every nontrivial element in G 
is 2, then clearly 𝐺 ≈ 𝐶2 × 𝐶2 × 𝐶2. 
Thus, all the isomorphic types of group G of order 8 are shown. If n=12, then there are 5 isomorphic 

types of G, which are represented by: 𝐶12, 𝐶2 × 𝐶2 × 𝐶3, 𝐴4, 𝐷12, < 𝑥, 𝑦|𝑥
4 = 𝑦3 = 1𝐺 , 𝑥𝑦 = 𝑦

2𝑥 > . 
Proof: From Sylow’s theorem, there is a Sylow-2 subgroup in G, denoted by M. Also, a Sylow-3 

subgroup of G, denoted by N. Denote m and n the number of Sylow-p subgroups respectively. Then by 

Sylow’s theorem, m=1 or 3; n=1 or 4. Observation: At least one of M & N is normal in G. Denote f: 

𝑀 ×𝑁 → 𝐺, (𝑚, 𝑛) ↦ 𝑚𝑛 , then f is bijective. Case1: Both M and N are normal in G. Then 𝐺 ≈
𝑀 ×𝑁 ≈ 𝐶12 𝑜𝑟 𝐶2 × 𝐶2 × 𝐶3.  Case2: N isn’t normal in G. Claim: 𝐺 ≈ 𝐴4 . Proof: Let G act on 
{𝑁1, 𝑁2, 𝑁3, 𝑁4}  by conjugation, then look at the permutation representation: 𝜑:𝐺 → 𝑆4 , then 𝜑  is 
injective, so 𝐺 ≈ 𝜑(𝐺) ≤ 𝑆4, therefore 𝐺 ≈ 𝐴4. Case3: N is normal but M isn’t normal in G and 𝑀 ≈
𝐶4 . Suppose 𝑀 =< 𝑥 >,𝑁 =< 𝑦 > . Consider 𝑥𝑦𝑥

−1 = 𝑦𝑖 , then either 𝑖 = 1  or 𝑖 = 2 . If 𝑖 = 1 , then 
back to Case1. If 𝑖 = 2, then 𝐺 ≈ 𝐶3 ⋊𝜑 𝐶4 with 𝜑:𝐶4 → 𝐴𝑢𝑡(𝐶3);  𝜑(𝑥) = 𝛾 𝑎𝑛𝑑 𝛾(𝑦) = 𝑦

2. So 𝐺 ≈

< 𝑥, 𝑦|𝑥4 = 𝑦3 = 1𝐺 , 𝑥𝑦 = 𝑦
2𝑥 >. Case4: 𝑁 ⊲ 𝐺 but M isn’t normal in G and 𝐻 ≈ 𝐾4.Iin this case, 

we again look at the semi-direct product and conclude that 𝐺 ≈ 𝑆3 × 𝐶2 ≈ 𝐷12. Thus, all the isomorphic 
types of group G of order 12 are shown. 

We then make Table 1 to demonstrate all the isomorphic types of the groups whose order is no more 

than 15: 

Table 1. Groups of small order. 

Order of G # of isomorphic types of G Abelian Non-abelian 

1 1 {1𝐺} null 

2 1 𝐶2 null 

3 1 𝐶3 null 

4 2 𝐶4, 𝐾4 null 

5 1 𝐶5 null 

6 2 𝐶6 𝑆3 

7 1 𝐶7 null 

8 5 𝐶8, 𝐶2 × 𝐶4, 𝐶2 × 𝐶2 × 𝐶2 𝑄8, 𝐷8 

9 2 𝐶9, 𝐶3 × 𝐶3 null 

10 2 𝐶10 𝐷10 

11 1 𝐶11 null 

12 5 𝐶12, 𝐶2 × 𝐶2 × 𝐶3 𝐴4, 𝐷12 

13 1 𝐶13 null 

14 2 𝐶14 𝐷14 

15 1 𝐶15 null 

5.  Conclusion 

Group action indicates the relation between an arbitrary group and a symmetry group. To be more 

specific, it says that every element in an arbitrary group can always be embedded into a symmetry group.  

Through applying group action to group classification, some groups of low order can be classified, 

and some specific types of finite groups can also be classified. The key of this method is that one can 

use the theorems above to find a normal Sylow-p subgroup in the big group first then one can use other 
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subgroups act on this normal subgroup by conjugation to find more information of the big group. To use 

this method, there are two things that are indispensable. The first thing is that one can manage to find a 

normal Sylow-p subgroup in G, say  . The second thing is that one can find the complement of this 

normal subgroup  , which is a subgroup, say K, which satisfies two conditions: G= K.  ∩K= {1𝐺}. 
Then one can construct a semi-direct product of the two subgroups, so that G≈ ⋊K. After finding all the 
possible types of the semi-direct product and identify the same ones, one can obtain all the isomorphic 

types of G. This method is useful to classify the group where the order of the group is small because in 

those cases, the two conditions are easy to be satisfied. 

 owever, this method is limited because in more general cases, where the order of G may be very 

large, it may be very difficult to find one normal Sylow-p subgroup, and so its complement. So, in order 

to classify a larger range of finite groups, more techniques should be considered and applied, such as 

the techniques from the representation theory of finite groups. 
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