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Abstract. Through the study of astrophysical accretion disks, considering the central role of 

angular momentum transport and energy conservation in determining the structure and evolution 

of accretion flow, we have constructed a comprehensive set of descriptions for the structure of 

accretion disks around supermassive black holes in active galactic nuclei (AGNs). The equation 

sets take into account various possible situations (gas pressure dominance, radiation pressure 

dominance, different heat production mechanisms, especially considering the latest research 

results on the turbulent heat production mechanism caused by gravity instability, etc.). By 

solving this system of equations, we give a general solution that covers multiple regions of a 

black hole's accretion disk. This will become an important tool for the community to effectively 

study other physical processes in the disk (such as the birth and evolution of stars, the diffusion 

of heavy elements, and the dynamical interactions of compact objects embedded in the disk). 
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1.  Context 

1.1.  Introduction 

Active galactic nucleus (AGN) is a small, compact and bright region in the center of a galaxy that has 

the highest luminosity. However, with the characteristics shown, the electromagnetic energy emitted 

was not produced by stars, instead, the radiation is produced by the accretion of matter around a central 

supermassive blackhole in the galaxy, which devours all matter that gets close to the region. The emitted 

radiation falls from a wide range of wavelengths, from radio waves to gamma rays, covering across the 

entire electromagnetic spectrum [1].  

The cold matter accrete around the supermassive black hole is based on the conservation of angular 

momentum and mass. Despite the mass losing angular momentum as it falls into the center of the 

blackhole, there must be angular momentum transported outward of the black hole through turbulence, 

hence it redistributes and accretes the cold matter. The turbulence will also heat up the inner region of 

the disk, which is one of the variables that will be investigated in this paper. The most ubiquitous kind 

of turbulence that exists in the disk is caused by the Magnetorotational Instability (MRI) [2], which 

occurs as long as the disk is magnetized and satisfies: 

𝑑𝛺2

𝑑 ln(𝑅)
> 0 (1) 
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Where 𝑣𝑜𝑟𝑏𝑖𝑡𝑎𝑙 = √
𝐺𝑀

𝑅
(2) 

Here 𝛺  represents the Keplerian angular velocity of a fluid, and R represents the distance to the 

rotation centre.  

In terms of the mechanism of momentum transport due to magnetic fields, it can be assumed that two 

arbitrary fluid elements on the inner region of an Keplerian disk can be acted as two mass points 

connected by a massless spring. The magnetic tension can simply be expressed as the spring tension of 

the massless spring. From the orbital velocity equation above, the inner fluid element will have a higher 

orbital velocity than the outer. This makes the ‘massless spring’ to stretch, the closer the region, the 

faster the orbital speed, the more restoring force there will be for the fluid element to slow down, 

decreasing the angular momentum. This process will cause the inner fluid element to move to a region 

with a smaller radius. On the other hand, from the conversation of momentum, the outer fluid element 

will have a greater angular momentum, and will be pulled outward to an orbit with a greater radius. This 

model shows that the spring constant in the ‘mass-spring system’ will increase as the two fluid elements 

move further apart, and gradually cause non-linear growth of perturbation. 

In the outer regions of the AGN beyond a critical self-gravitating radius, the disk can also become 

cold and compact enough to develop gravitational instability or Jeans instability, where the disk tends 

to collapse vertically from its own self-gravity. The non-linear response from gravitational instability 

also causes turbulence, to a higher level than MRI such that it can heat the disk towards a marginally 

gravitationally stable state [3]. 

However, there is still a limit to the capability of gravito-turbulence in heating the disk against 

cooling, and beyond a second critical cooling radius, the turbulence/heating level reaches its maximum 

and runaway cooling is inevitable. In this scenario, the disk will fragment into self-gravitating clumps 

which leads to intense star formation, and the heat input from these stars may become the dominant 

heating source instead of turbulence to maintain the disk at a marginally self-gravitating quasi-steady 

state [4].  

Due to different dominating turbulence and heating mechanisms, there are three main regions of the 

AGN disk, represented by different equations of structure and trends in the turbulent parameter 𝛼. 

1.2.  The Alpha Disk Model 

The alpha disk model was proposed in 1973 by Shakura and Sunyaev [5], with the main property of 

being thermally and viscously unstable. Physical processes present in the disk leads to turbulence, where 

the turbulent viscosity of the disk is estimated as equation 3, where 𝑐𝑠 is the speed of sound, and 𝐻 is 

the scale height, which is represented by equation 4 through vertical hydrostatic equilibrium. Lastly, 𝛺 

is the Keplerian orbital angular velocity, calculated by equation 5, where 𝑀 is the central mass of the 

supermassive black hole (SMBH), and 𝑅 is the distance from its center.  

𝜈 = 𝛼𝑐𝑠𝐻 (3) 

𝐻 =
𝑐𝑠

𝛺
(4) 

𝛺 =
(𝐺𝑀)

1
2

𝑅
3
2

(5) 

There are a few factors to consider in the Alpha Disk Model. Consider an accretion disk that orbits 

in the 𝑧 = 0 plane with polar coordinates (𝑟, 𝜙, 𝑧). Assume that the disk is infinitesimally thin, with a 

negligible mass relative to its SMBH, and is hydrostatic balanced since it accretes slowly. If 𝑧 << 𝑟, 

the density as a function of z can be written as, 𝜌(𝑧) = 𝜌0[−
𝑧2

2ℎ2] for a nearly constant sound speed 

Proceedings of the 3rd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/9/20240746

188



(isothermal limit), which corresponds to the density 𝜌0 at the disk at z = 0, the mid-plane point. From 

this relationship, the column integrated surface density, 𝛴, can be defined by equation 6, and the relation 

between the surface density and the density at mid-plane in equation 7. 

𝛴 = ∫  
∞

−∞

𝜌(𝑧)𝑑𝑧 (6) 

𝜌0 =
𝛴

𝑓ℎ
(7) 

In the isothermal limit the factor 𝑓 =  √2𝜋 , but we will generally apply 𝑓 = 2 , which holds 

approximately for any self-similar vertical profile. We will also use 𝜌  to generally refer to the 

characteristic volume density of the disk. 

The presence of viscosity is essential in producing heat when the 𝑟𝜙 component of the stress tensor, 

𝑇𝑟𝜙, is present between two layers of differentially rotating fluid. This shear due to Keplerian differential 

rotation contributes to the transport of angular momentum around the SMBH, and can be estimated by 

equation 8. The product of 𝜈 and 𝜌, the density of the fluid, equals to the dynamic viscosity, 𝜇. 𝑇𝑟𝜙 can 

therefore be linked with viscosity by equation 8. By introducing an ad hoc assumption from dimensional 

analysis that the shear stress is proportional to the pressure of the accretion disk, where 𝛼 is a turbulent 

viscosity parameter, shown in equation 9: 

𝑇𝑟𝜙 = 𝜈𝜌𝑟
𝑑𝛺

𝑑𝑟
≈  𝜈𝜌𝛺 (8) 

𝑇𝑟𝜙 ∼ 𝛼𝑃 = 𝛼𝜌𝑐𝑠
2 (9) 

We arrive at the “alpha description” equation 3.  

Last but not least, the turbulence strength from a SMBH which is characterized by 𝛼 provides a mass 

flux that accrets towards its center is denoted by Ṁ, where: 

Ṁ =  3𝜋𝛼𝑐𝑠𝛴𝐻 (10) 

This is a constant across distance in a quasi-steady state. The viscous dissipation also provides a 

heating rate per area, and can be derived by integrating the heating rate per unit volume in an accretion 

disk by a function of z. The heating rate per unit volume can be expressed by the surface density and the 

Keplerian shear stress on the 𝑟𝜙 component: 

𝑞+ = 𝑇𝑟𝜙𝑟
𝑑𝛺

𝑑𝑟
= 𝜇 (𝑟

𝑑𝛺

𝑑𝑟
)

2

=
9

4
𝜇𝛺2𝜅 (11) 

Integrating over 𝑧, the heating rate per unit surface area is: 

𝑄+ = ∫  
∞

−∞

9

4
𝜇𝛺2𝜅 𝑑𝑧 =

9

4
𝜈𝛴𝛺2𝜅 (12) 

In addition, while the disk cools by radiating from two surfaces at the effective temperature, 𝑇𝑒𝑓𝑓, 

the temperature will decrease from the midplane due to optical depth 𝜏 in an optically thick environment.  

𝑇4 =
3

8
𝑇𝑒𝑓𝑓

4 𝜏 =
3

8
𝑇𝑒𝑓𝑓

4 𝜅𝛴 (13) 

There is, however, a relation between effective temperature and 𝑄+ for optically thick cooling, where 

𝜎 is the cross sectional area of interaction: 

2𝜎𝑇𝑒𝑓𝑓
4 =

9

4
𝜈𝛴𝛺2𝜅 (14) 
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2.  Mathematical Derivations 

2.1.  The Master Equation Sets and Three Disk Regions 

Before giving a description of the model, there are some constants and variables that need to be defined. 

There are three equations sets for three main regions of the accretion disk, while some equations apply 

to more than one region. 

⚫ 
𝜎𝑆𝐵

𝑐
= 𝑎, the radiation constant 

⚫ 
𝑘𝐵

𝑚𝑝
= �̃�, which is the molar gas constant 

⚫ 𝜎𝑆𝐵 is the Stefan-Boltzmann constant 

⚫ 𝜅 =
𝜎

𝜇𝑚𝑝
  is the opacity, which we assume to be a constant in a high temperature region = 

0.4𝑐𝑚2/𝑔 (electron scattering opacity). In the outer regions of the AGN the temperatures will drop 

below 10^4-10^3 K, and realistically the opacity will undergo a drop before settling down to the grain 

opacity ~1 𝑐𝑚2/𝑔 . To first order we neglect this change and apply 𝜅 =  0.4𝑐𝑚2/𝑔  throughout our 

calculations. 

Three equations can be formed by eliminating expressions for midplane density and scale height. 

The equations solve for the surface density, temperature and sound speed as functions of 𝑅, the distance 

from the center of the SMBH, if alpha is a constant. Extra care is needed in writing the equation of state 

(or pressure equation) since for hot regions of AGN disks, both radiation pressure 

𝑝𝑟𝑎𝑑 =
𝑎𝑇4

3
(15) 

and ideal gas pressure 

𝑝𝑔𝑎𝑠 =
𝜌

𝜇
�̃�𝑇 (16) 

needs to be taken into account. Here we take 𝜇 = 0.6 for solar composition gas. 

2.1.1.   The First Disk Region. The first disk region has Q > 1, where Q is the Toomre's stability criterion. 

This criterion displays the relationship between parameters of a gaseous accretion disc that is 

differentially rotating to approximate its stability. With the shear force present, it can act as a stabilizing 

force, and when Q > 1 , it means the system is stable against collapse. 

This region is a hot disk that is gravitationally stable and heated by MRI turbulence. It has minimal 

turbulence, where the viscosity parameter is roughly a constant [5], with 𝛼 = 𝛼𝑚𝑖𝑛 ∼ 0.02. 

The equations below are the continuity, pressure and energy equation for this region: 

Ṁ =
3𝜋𝛼𝑐𝑠

2𝛴

𝛺
(17) 

Σ

2cs

Ω

c𝑠
2

 

 

 

 

=
1

3
aT4 +

Σ

2cs

Ω

R̃
T

μ

 

(18)
 

16σSBT4

3κΣ  

 

=
9

4
(

αcs
2

Ω
) ΣΩ2 (19) 

2.1.2.  The Second Disk Region. The second disk region is marginally gravitationally unstable, so Q is 

maintained to be a constant [3, 4]. The turbulence, 𝛼, adjusts to the cooling rate, so 𝛼 is not a constant, 

and varies between 𝛼𝑚𝑖𝑛 and 𝛼𝑚𝑎𝑥. This region has 4 equations that constrain 4 variables: 

Q = 1, so 
𝑐𝑠𝛺

𝜋𝐺𝛴
= 1 
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Ṁ =
3𝜋𝛼𝑐𝑠

2𝛴

𝛺
(20) 

Σ

2cs

Ω

c𝑠
2

 

 

 

 

=
1

3
aT4 +

Σ

2cs

Ω

R̃
T

μ

 

(21)
 

16σSBT4

3κΣ  

 

=
9

4
(

αcs
2

Ω
) ΣΩ2 (22) 

2.1.3.  The Third Disk Region. This region has a star-forming accretion disk, where its energy balance 

needs to be maintained by extra heating mechanisms, giving 𝛼 takes its largest value. The extra heating 

needed to balance cooling is given by star formation so beyond the radius where 𝛼 ∼ 𝛼𝑚𝑎𝑥, the disk 

turbulence is decoupled from the energy equation. In this region, 3 equations and 3 variables apply: 

Q = 1 

Ṁ =
3𝜋𝛼𝑐𝑠

2𝛴

𝛺
(23) 

Σ

2cs

Ω

c𝑠
2

 

 

 

 

=
1

3
aT4 +

Σ

2cs

Ω

R̃
T

μ

 

(24)
 

2.2.  Limiting Solutions & General Remarks 

Before we present the full numerical solutions that bridge all these regions, we would like to make some 

general remarks.  

⚫ 𝛴 can be expressed by rearranging equation 24: 𝛴 =
Ṁ𝛺

3𝜋𝛼𝑐𝑠
2  

⚫ The generalized equation 25 can be re-written as 
𝛴

2𝑐𝑠/𝛺
𝑐𝑠

2

 

 
=

1

3
𝑎𝑇4  in the radiation dominated 

region since 
𝛴

2𝑐𝑠/𝛺
�̃�𝑇/𝜇 is out of the limit.  

⚫ The equation of 𝑇4 can be expressed after rearranging and by substituting 𝛴: 
Ṁ𝛺2

2𝜋𝛼𝑐𝑠
 
 

 

= 𝑎𝑇4 

⚫ The mass flow rate, Ṁ, is a constant since the density profile remains unchanged. 

The radiation dominated regime of the gravitationally stable region is at very close distance to the 

SMBH, where the following analytical solutions are presented: 

Proceedings of the 3rd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/9/20240746

191



Table 1. Solution A, Limited Solutions for the Gravitationally Stable Region. 

Equation of 𝑐𝑠 from equation 19. 

16𝜎𝑆𝐵𝑇4

3𝜅𝛴  

 

=
9

4
(𝛼𝑐𝑠

2/𝛺)𝛴𝛺2 

32𝜎𝑆𝐵Ṁ𝛺 

27𝜅𝜋𝛼2𝑐𝑠
3𝑎

= 𝛴2   

4√6𝜎𝑆𝐵
1/2

Ṁ
1/2

𝛺1/2 

9𝜅1/2𝜋1/2𝛼𝑐𝑠
3/2

𝑎1/2
= 𝛴    

4√6𝜎𝑆𝐵
1/2

Ṁ
1/2

𝛺1/2 

9𝜅1/2𝜋1/2𝛼𝑐𝑠
3/2

𝑎1/2
=

Ṁ𝛺

3𝜋𝛼𝑐𝑠
2
 

𝑐𝑠
1/2

= 𝛺1/2[
Ṁ

1/2
9𝜅1/2𝜋1/2𝛼𝑎1/2

12√6 × 𝜋𝛼𝜎𝑆𝐵
1/2

] 

𝑐𝑠
 = 𝛺(

3Ṁ𝜅𝑎

32𝜋𝜎𝑆𝐵
) =

3𝐺1/2𝑀1/2Ṁ𝜅𝑎

32𝜋𝜎𝑆𝐵𝑅3/2
 

Equation of 𝑇 by using 
Ṁ𝛺2

2𝜋𝛼𝑐𝑠
 
 

 

= 𝑎𝑇4: 

𝑇4 =
Ṁ𝛺2

2𝜋𝑎𝛼𝑐𝑠
  

𝑇4 =
Ṁ𝐺𝑀𝑅−3/2

2𝜋𝑎𝛼
×

32𝜋𝜎𝑆𝐵𝑅3/2

3𝐺1/2𝑀1/2Ṁ𝜅𝑎
 

𝑇4 =
16𝜎𝑆𝐵𝑅3/2𝐺1/2𝑀1/2

3𝛼𝑎2𝜅𝑅3
 

𝑇4 =
16𝜎𝑆𝐵𝐺1/2𝑀1/2

3𝛼𝑎2𝜅𝑅3/2
 

𝑇 =
2𝜎𝑆𝐵

1/4
𝐺1/8𝑀1/8

31/4𝛼1/4𝑎1/2𝜅1/4𝑅3/8
 

Equation of 𝛴 by using 𝛴 =
Ṁ𝛺

3𝜋𝛼𝑐𝑠
2 

𝛴 =
Ṁ

3𝜋𝛼
×

322𝜋2𝜎𝑆𝐵
2 𝑅3

9𝐺𝑀Ṁ
2
𝜅2𝑎2

×
𝐺1/2𝑀1/2

𝑅3/2
 

𝛴 =
1024𝜋𝜎𝑆𝐵

2 𝑅3/2

27𝛼𝐺1/2𝑀1/2Ṁ𝜅2𝑎2  
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Table 1. (continued). 

Equation of 𝜌 by using 𝜌 =
𝛴

2𝐻
=

𝛴𝛺

2𝑐𝑠
 

𝜌 =
1024𝜋𝜎𝑆𝐵

2 𝑅3/2

27𝛼𝐺1/2𝑀1/2Ṁ𝜅2𝑎2 √
𝐺𝑀

𝑅3

×
32𝜋𝜎𝑆𝐵𝑅3/2

2 × 3𝐺1/2𝑀1/2Ṁ𝜅𝑎
 

𝜌 =
32768𝜋2𝑅3𝜎𝑆𝐵

3 𝑀1/2𝐺1/2

162𝛼𝐺𝑀Ṁ
2
𝜅3𝑎3𝑅3/2

 

𝜌 =
16384𝜋2𝜎𝑆𝐵

3 𝑅3/2

81𝛼𝐺1/2𝑀1/2Ṁ
2
𝜅3𝑎3

 

Equation of 𝐻 by using 𝜌 =
𝛴

2𝐻
 

𝐻 =
𝛴

2𝜌
 

𝐻 =
1024𝜋𝜎𝑆𝐵

2 𝑅3/2

27𝛼𝐺1/2𝑀1/2Ṁ𝜅2𝑎2  ×
81𝛼𝐺1/2𝑀1/2Ṁ

2
𝜅3𝑎3

2 × 16384𝜋2𝜎𝑆𝐵
3 𝑅3/2

 

𝐻 =
27648Ṁ𝜅𝑎

29491𝜎𝑆𝐵
  

 

In this region, there are some properties displayed which can be verified graphically later. Since 𝐺, 

𝑀, 𝜅, 𝛼, 𝜋 and 𝜎𝑆𝐵 are constants, it can be deduced that 𝑐𝑠 ∝ 𝑅−3/2, 𝑇 ∝ 𝑅−3/8, 𝛴 ∝ 𝑅3/2, 𝜌 ∝ 𝑅3/2. 

The scale height is independent from the mass of the black hole and 𝑅, and the temperature is dependent 

on the mass flow rate. 

As the distance from the center of the SMBH increases to the farthest limit, there is a point where we 

always enter the outermost star forming region, which introduces a new equation 25 for the region, and 

forms four new equations for 𝑐𝑠, 𝛴, 𝑇4 and 𝜌, showing different trends. 
𝑐𝑠𝛺

𝜋𝐺𝛴
= 1 (25) 

Table 2. Solution B, Limited Solutions for the Star Formation Region. 

Ṁ

3𝜋𝛼𝑐𝑠
2

𝛺 =
𝑐𝑠𝛺

𝜋𝐺
 

Ṁ

3𝜋𝛼𝑐𝑠
2

 =
𝑐𝑠

𝜋𝐺
 

𝑐𝑠
3 =

Ṁ𝐺

3𝛼
 

𝑐𝑠
 = (

Ṁ𝐺

3𝛼
)1/3 

𝛴 =
𝑐𝑠𝛺

𝜋𝐺
 

𝛴 =
(
Ṁ𝐺
3𝛼 )1/3𝛺

𝜋𝐺
 

𝛴 =
Ṁ

1/3
𝐺−2/3 × √

𝐺𝑀
𝑅3

31/3𝛼1/3𝜋
 

𝛴 =
Ṁ

1/3
𝑀1/2𝐺−1/6

√3
3

𝛼1/3𝜋
𝑅−3/2 
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Table 2. (continued). 

𝑇4 =
3𝛴𝛺𝑐𝑠

2𝑎
 

𝑇4 =
3𝛴𝛺𝑐𝑠

2𝑎
 

𝑇4 =

3 (
Ṁ

1/3
𝑀1/2𝐺−1/6𝑅−3/2

√3
3

𝛼1/3𝜋
) ×  √

𝐺𝑀
𝑅3  ×  (

Ṁ𝐺
3𝛼

)1/3

2𝑎
 

𝑇4 =
Ṁ

2/3
𝑀𝐺2/3

2√3
3

𝛼4/3𝜋
𝑅−3 

𝑇 =
Ṁ

1/6
𝑀𝐺1/6

21/431/12𝜋1/4𝛼1/3
𝑅−3/4 

𝜌 =
𝛴

2𝐻
=

𝛴𝛺

2𝑐𝑠
 

𝜌 =
Ṁ

1/3
𝑀1/2𝐺−1/6

√3
3

𝛼1/3𝜋
𝑅−3/2 × √

𝐺𝑀

𝑅3

× (
6𝛼

Ṁ𝐺
)1/3 

𝜌 =
√6
3

Ṁ
1/3

𝑀𝐺1/3𝑀1/2𝛼1/3

√3
3

𝛼1/3𝑅3𝜋Ṁ
1/3

𝐺1/3
 

𝜌 =
√2
3

𝑀

𝑅3𝜋
 

𝐻 =
𝛴

2𝜌
 

𝐻 =
Ṁ

1/3
𝑀1/2𝐺−1/6𝑅−3/2

√3
3

𝛼1/3
×

𝑅3

2√2
3

𝑀
 

𝐻 =
Ṁ

1/3
𝐺−1/6𝑅3/2

2√6
3

𝑀1/2𝛼1/3
 

In this region, the four sets of equations can show an accurate prediction on several properties of 

different variables in the region. Firstly, the speed of sound in the star formation disk is independent 

from R, meaning that it remains unchanged throughout the region. It is also unaffected by the mass of 

the black hole. Meanwhile, 𝑇 and 𝛴 has a steeper gradient in this region than the radiation dominated 

regime of the gravitationally stable region. Last but not the least, the volume density, 𝜌, is independent 

from both 𝛼 and Ṁ, meaning that the mass flow rate and the maximum turbulence does not affect 𝜌. 

The limiting solutions above also show trends of the variables. For example, 𝛴 and 𝜌 will generally 

increase in the inner region and decrease in the outer region against R. 𝑇 will decrease continuously but 

at two different rates. 𝑐𝑠 will decrease at the start and then become a constant in the star forming region. 

Last but not least, the scale height, 𝐻, is a constant in the radiation domination region, and then increases 

after. 

2.2.1.  Radiation vs. Gas Pressure Ratio. The radiation/gas pressure ratio is denoted by 𝛱 =
𝑝𝑟𝑎𝑑

𝑝𝑔𝑎𝑠
=

𝑎𝑇4/3
𝜌

𝜇
�̃�𝑇

∝
𝑇3

𝜌
: 

In the inner solution, since 𝑇 ∝ 𝑅−3/8 and 𝜌 is independent of 𝑅, as the distance from the center 

increases in the region, the radiation pressure/gas pressure will decrease. However in the outer solution, 

𝑇3 ∝ 𝑅−9/4 and 𝜌 ∝ 𝑅−3, which makes 𝛱 to be proportional to 𝑅3/4, hence the radiation pressure/gas 

pressure will increase across the region. This gives a conclusion that there is a transition region which 

is sandwiched in between the two regions, where radiation pressure vs gas pressure ratio reaches a 

minimum and the scaling for temperature/density diverges from these limiting solutions. This will be 

also tested graphically below. 
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3.  Numerical Solutions 

3.1.  The Fiducial Case 

Full numerical solution for the fiducial case, across different disk regions, is shown with black lines in 

Figure 3. The parameters are defined as shown: 

Ṁ =  
𝑀⊙

𝑦𝑟
(26) 

𝑀 = 108𝑀⊙ 

𝛼𝑚𝑖𝑛 = 0.01 

𝛼𝑚𝑎𝑥 = 0.3 

The most inner region of the SMBH is gravitationally stable, and it is entirely heated by MRI 

turbulence, with 𝛼𝑚𝑖𝑛  as a constant at approximately 0.02. With low turbulence, there are some 

properties displayed in this region which conforms with our solution A) in section 2.2. The scale height, 

𝐻, remains constant against R, and the volume density and surface density both have a steady increase 

until it reaches gravitational instability. However, from ¾ the way out from the gravitational stable 

region, the rate of increase in surface density slows down, which displays another trend when gas 

pressure begins to take dominance, but before this transition is complete the disk enters the marginally 

gravitationally unstable region at ~ 0.01pc. 

The disks in the gravitational instability region 2 is heated mainly the gravito-turbulence, where the 

value of 𝛼 varies in the range 𝛼𝑚𝑖𝑛 < 𝛼 < 𝑎𝑚𝑎𝑥. It has a value of Q = 1, full equation displayed in 

equation 25. This shows that the turbulence can change to accommodate the radiative cooling rate in 

order to maintain the Q value. Figure 1 shows that the 𝛼 increases steeply as the distance from the disk 

to the center of the SMBH increases in this region between ~ 0.01pc and 0.3pc. 

In addition, through Figure 3 it shows that as the disk approaches the gravitationally unstable region, 

there is a continued decline in the ratio of radiation pressure to gas pressure. This indicates that their 

values are approaching to be equal, and eventually reaches the minimum at the transition to the third 

region at ~ 0.3 pc. The scalings are slightly nonlinear because gas pressure and radiation pressure are 

comparable to each other. 

Approaching this radius beyond the point where 𝛼 ∼ 𝛼𝑚𝑎𝑥, the disk will fragment and form stars. 

The turbulence will reach its highest level, where the 𝛼 value is fixed at 𝛼𝑚𝑎𝑥. Then cooling remains 

more efficient than the heating sector, mainly due to the turbulence parameter remaining constant. The 

outer region is where star formation occurs, hence the stars provide heat. There are several properties 

that conform to the solution B) in section 2.2 in this region, such as the sound speed converges to a 

constant, since it is independent of 𝑅, and both the surface and volume density decreases linearly as 𝑅 

increases. 

3.2.  Dependence on Ṁ & M 

We vary the mass flux and mass of the black hole by an order of 10 to observe the changes of disk profile 

depending on these two parameters. Four cases with Ṁ = [0.1, 10] 
𝑀⊙

𝑦𝑟
 and 𝑀 = [0.1, 10] × 108𝑀⊙ are 

plotted together with the fiducial cases in Figure 2. The labels indicate their “Ṁ” (accretion rate) and 

“𝑀” (SMBH mass) ratio with the fiducial case, respectively e.g., Md_1_M_10 means the same accretion 

rate as the fiducial case but a 10 times larger SMBH mass. 

First of all, changing the mass of the black hole changes the location of the star formation disk from 

the center of the SMBH, and Figure 3 shows that the greater the mass of a black hole, the further away 

the star formation disk is, and vice versa. As the limiting equations from section 2.2 shows that 𝑐𝑠 is 

independent from 𝑅 in the star formation region, the point on the graph where 𝑐𝑠 starts to be constant 

and can determine its location. For instance, after increasing the mass of the black hole by a factor 10, 

the point where 𝑐𝑠 becomes constant changes from ~ 0.3 pc to ~ 0.55 pc. In addition, changing the mass 
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and mass flux also impacts the magnitude of the speed of sound, where changing the mass flux makes 

greater change in 𝑐𝑠 . From the equation in section 2.2, If 𝑅  is constant, then the sound speed is 

proportional to 𝑀1/2 and Ṁ, therefore the equations conform with the graph shown.  

The surface density has similar trends with the volume density, where when the mass flux (accretion 

rate) is lower, there tends to have a slower increase against 𝑅  at the gravitational stable disk. The 

densities all reach their maximum at the point right before entering the star formation disk, and decrease 

linearly after that, which conforms to the two limiting equations. Figure 3 shows that the surface density 

changes slightly more when the mass of the black hole is changed than its mass flux, and this matches 

with the limiting equations, as it shows that 𝛴  is proportional to 𝑀−1/2  or Ṁ  assuming if all other 

variables are constant. However, surface density and volume density both decrease at the same rate in 

the star forming region, no matter if the black hole has a different mass flux or mass. The mass flux does 

not have any impact in the volume density of a black hole in the same region as the equation does not 

have Ṁ, and this corresponds to the Solution B) in section 2.2.  

The scale height is independent from the mass of the black hole in the gravitationally stable disk, and 

this is shown in Solution A), which matches with the graph in Figure 3. The graph shows that black 

holes with mass by a scale factor of 0.1 and 10 from the normal one all have the same scale height from 

the center of the SMBH until they approach the gravitationally unstable region and they start to separate 

and increase non-linearly. However, the scale height at very large distances increases linearly and at the 

same rate for all black holes shown on the graph with different mass fluxes or masses, though it is greater 

for black holes with greater mass flux or smaller mass. This matches with the limiting solutions, as the 

scale height is proportional to Ṁ1/3 and 𝑀−1/2. 

The temperature profile mildly increases with larger Ṁ and 𝑀, but the scalings are non-linear in the 

middle regions. It is close enough to the SMBH where profiles converge to Solution A) in section 2.2, 

the temperature converges to the profile for different Ṁ, and only has a mild positive correlation with 

𝑀. Last but not the least, Figure 3 shows that the radiation vs. gas pressure ratio decreases at a constant 

rate at the start, and then at a different gradient in the gravitational unstable disk, then at the point of 

reaching a minimum, it increases non-linearly since it enters the star formation disk, which is radiation 

dominated. The trend and graphics correspond with the conclusions stated earlier, which states that the 

gas pressure and radiation pressure is approximately equal in the transition region between the 

gravitationally stable and the star formation region. 

3.3.  Dependence on 𝛼𝑚𝑎𝑥 

There are recent radiation hydrodynamic simulations that suggest the maximum level of turbulence 

supported by gravitational instability in disks with non-negligible radiation pressure (>~10%) is not as 

large as gas-only simulations previous literature suggests and may be as low as 0.02 [6]. We have tested 

𝛼𝑚𝑎𝑥 at three different values (0.3, 0.1, 0.02) for 𝑀 = 108 and Ṁ = 0.1, and observe how they depend 

on the maximum turbulence. The default maximum turbulence is  𝛼𝑚𝑎𝑥 ∼ 0.3 . There are some 

remarkable trends which are observed, and noticeable changes occur from the start of the star formation 

disk. The temperature continuously decreases as we go further away from the center of a SMBH, 

however, as it reaches the star formation disk, the temperature decreases at a faster rate, and different 

maximum turbulence changes the initial temperature at the disk. The lower maximum turbulence, the 

higher temperature at a certain 𝑅, however the turbulence does not affect the rate of the temperature 

drop as 𝑅 increases.  

There are also some similar trends which show that the transition from the gravitationally unstable 

disk to the star-forming disk is closer with a lower maximum turbulence. For example, the sound speed 

evidently shows that it approaches zero gradient in a lower 𝑅  value at 𝛼𝑚𝑎𝑥 = 0.02  at 𝑟 ∼ 0.01 𝑝𝑐 

while at 𝛼𝑚𝑎𝑥 = 0.3, the gradient turns zero at 𝑟 ∼ 0.05 𝑝𝑐. This property also matches to the graphs 

with other parameters, such as the surface density and the scale height as the gradient changes later for 

higher 𝛼𝑚𝑎𝑥  values. The volume density, however, has the same values throughout the SMBH, 

unaffected by the maximum turbulence, which conforms with the equations in Sec. 2. Last but not least, 
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the radiation vs. gas pressure ratio also conforms with the conclusions from the limited solutions, which 

shows that there is a minima which is sandwiched between the gravitational unstable region and the star 

formation region. It also matches the trend where lower turbulence limit corresponds to a smaller 

transition region, as the graphs also shows that star formation region begins at 𝑟 ∼ 0.01 𝑝𝑐  when 

𝛼𝑚𝑎𝑥 = 0.02 , and  𝑟 ∼ 0.05 𝑝𝑐  when 𝛼𝑚𝑎𝑥 = 0.3 . We do expect there to be no region 2 if 𝛼𝑚𝑎𝑥  = 

𝛼𝑚𝑖𝑛. 
Because the onset of star formation (or the limit on turbulence parameter) reverses the trend of 

radiation to gas pressure fraction with respect to radius, an early transition to region 3 at larger radiation 

pressure fraction (for our low 𝛼𝑚𝑎𝑥 values) suggests that the disk may simply not be able to reach low 

enough radiation pressure fraction in order for a gas pressure supported disk to provide larger levels of 

turbulence, therefore the low 𝛼𝑚𝑎𝑥 solutions will be more realistic. 

 

Figure 1. Corresponding Graphs for Different Parameters Against the Distance from the Center of 

SMBHs with Different Accretion Rates. 
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Figure 2. Graph of the Turbulence Constant, 𝛼, against the Distance from the SMBH Center. 

 

Figure 3. Corresponding Graphs for Different Parameters Against the Distance from the Center of 

SMBHs with Different Maximum Turbulences. 
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4.  Further Applications 

Our disk models can be applied to the modeling of multiple scenarios. First of all, the modeling is 

directly useful for understanding different temperature profiles of AGN accretion disks probed by 

reverberation mapping observation [7], and discussing what processes resulted in different dependencies 

of surface temperature with respect to distance R. Secondly, a disk of stars in the galactic center with a 

low mutual inclination is suggested to originate from gravitational collapse in an accretion disk while 

Sgr A* was still in an active phase [8, 9]. In this case, our AGN solutions effectively map out regions of 

star formation for accretion disk of any Ṁ  and 𝑀 , and can be used to study the properties of the 

fragments or proto-stars as functions of 𝑅 in the galactic center as well as in the outskirts of other AGNs. 

In addition, another strong evidence for star formation in AGNs lies in the metallicities measured in 

AGNs. If the metallicities in AGNs are the same as their background environment, it should become 

more metal poor or “younger” when redshift increases. However, observation of line ratios in AGN 

spectra show their super-solar abundances do not vary with redshift [10, 11]. This means that stars born 

in AGNs can pollute their environment through their evolution off the main sequence and their 

supernovae. Therefore, understanding the disk structure can be useful in calculating the diffusion of 

elements from embedded stars and how they enhance the metallicity of the whole accretion disk. 

Lastly, massive black hole merger components detected in LIGO mergers have been proposed to be 

of AGN origin [12, 13]. A stellar-mass black hole with approximately 10 solar masses can quickly grow 

to 30-50 solar mass in an AGN disk either from accreting gas or frequent mergers with their neighbors. 

This process takes place in the AGN origin, as it is highly dense, lots of stars and black holes can be 

formed, hence collisions known as galaxy merger occur. In such circumstances, understanding accurate 

disk structures are crucial in our understanding of the swarm of black holes’ migration and dynamical 

interaction with the accretion disk, and their thermal feedback onto the disk, in order to predict distinct 

features of LIGO sources produced from the AGN channel. 

5.  Conclusions 

In this paper, we developed a numerical framework to conveniently generate AGN disk profiles across 

a wide distance and parameters space, by specifying basic inputs like Ṁ, 𝑀, 𝛼𝑚𝑎𝑥, 𝛼𝑚𝑖𝑛, and the opacity. 

Starting from the center of the SMBH, enters the innermost region where the disk will be radiation 

dominated, and gravitationally stable heated by MRI, to a radiation-dominated, star formation region in 

the outermost parts. Meanwhile, the middle region displays a minimum of radiation pressure fraction 

and gravito-turbulence heating which may prevent star formation. We have provided full analytical 

solutions to the two (closest and furthest) limits of the SMBH, which are verified by numerical solutions 

of AGN disk that also include the non-linear transition between these two limits. They will be useful in 

studies of physical processes in AGNs that require modeling of the AGN disk structure. 
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Appendix A: Derivations on Gas Dominated Region 1 

Starting from equation 19, we can solve analytically in the radiation dominated limit which results in 

solution A in section 2.2. With a relatively lower temperature, the disk can become gas pressure 

dominated at the outer parts in the first region before transitioning to region 2 in certain parameter space. 

In this process, the pressure equation is simplified to: 

𝑇 =  
𝜇𝑐𝑠

2

�̃�
(A1) 

To find the trend of sound speed, surface density and temperature of the accretion disk against the 

distance from the center of the SMBH, the proportionality between the two variables need to be found. 

In the gas dominated region, it is known that equation 24 holds. 

Meanwhile, equation A1 only holds when gas pressure dominates. 

⚫  To find the relationship between the sound speed and the distance from the black hole, variables 

such as 𝛴 and 𝑇 has to be eliminated. From equation 24, the surface density can be written in terms of 

𝛴 =
Ṁ

3𝜋𝛼𝑐𝑠
2 𝛺. Then, substitute it in equation 19, making:  

9

4(𝛼𝑐𝑠
2) (

Ṁ

3𝜋𝛼𝑐𝑠
2) 𝛺2

=
16𝜎𝑆𝐵𝑇4(3𝜋𝛼𝑐𝑠

2)

3𝜅(Ṁ𝛺)
(A2)
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𝑇 can then be eliminated by substituting equation A1 into A2:  

3

4
(𝛼𝑐𝑠

2)(
Ṁ

𝜋𝛼𝑐𝑠
2
)𝛺2 =

16𝜎𝑆𝐵𝜇4𝑐𝑠
4(3𝜋𝛼𝑐𝑠

2)

3�̃� 4𝜅(Ṁ𝛺)
 

1

4𝜋
Ṁ𝛺2 =

16𝜎𝑆𝐵𝜇4𝑐𝑠
4(𝜋𝛼𝑐𝑠

2)

3�̃� 4𝜅(Ṁ𝛺)
 

1

4𝜋
Ṁ𝛺2(

Ṁ𝛺

𝜋𝛼𝑐𝑠
2
) =

16𝜎𝑆𝐵𝜇4𝑐𝑠
4

3�̃� 4𝜅
 

Ṁ
2
𝛺3

4𝜋2𝛼𝑐𝑠
2

=
16𝜎𝑆𝐵𝜇4𝑐𝑠

4

3𝜅�̃� 4
 

𝑐𝑠
10 =

3𝜅�̃� 4Ṁ
2
𝛺3

64𝜋2𝛼𝜎𝑆𝐵𝜇4
 

Then, eliminate 𝛺 by substituting it with equation 1.5: 

𝑐𝑠
10 =

3𝜅�̃� 4Ṁ
2
𝐺3/2𝑀3/2

64𝜋2𝛼𝜎𝑆𝐵𝜇4𝑅9/2
 

Since the other variables are all constants, the proportionality between sound speed and distance from 

the center of the SMBH is computed: 𝒄𝒔
 ∝ 𝑹−𝟗/𝟐𝟎 

⚫  For the relationship between temperature 𝑇 and the distance, equation 24 can be used: 

𝑇 =  
𝜇𝑐𝑠

2

�̃�
  and since 

𝜇

�̃�
 is a constant, 

𝑻 ∝ 𝑐𝑠
2, which gives the final proportionality, where 𝑻 ∝ 𝑹−𝟗/𝟏𝟎 

⚫  Using equation 25, the relationship between the surface density of the disk 𝛴 and the distance can 

be found: 

𝛴 =
Ṁ

3𝜋𝛼𝑐𝑠
2 𝛺, since 

Ṁ

3𝜋𝛼
 is a constant and 𝛺 is dependent on 𝑅−3/2, 

𝛴 ∝
𝑹−𝟑/𝟐

𝑹−𝟗/𝟏𝟎, which gives the final proportionality, where 𝛴 ∝ 𝑹−𝟑/𝟓  

This branch of solution does not appear for all our accretion rate and SMBH mass parameters since 

some of them become gravitationally unstable within the radiation dominated part already. However, 

this solution does coincide with the solution for a viscously heated inner part of a protoplanetary disk 

[14]. 
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