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Abstract. Perfectly symmetric curves always have a high degree of aesthetic value. While it is 

difficult to draw them by hand, Spirograph is an old and popular drawing toy that produces 

fascinating symmetric patterns. In playing with drawing software, the author explores types of 

Spirograph patterns, the type identification method, and the parametric equations to express 

Spirograph mathematically. This paper also discusses the key parameters of a Spirograph pattern 

and how they affect the pattern’ shape. Finally, Spirograph pattern design is carried out by 

analyzing the features of a random pattern and estimating its different parameters. These results 

to some extent demystify and predict the seemingly infinite Spirograph patterns, as the 

corresponding parameters of a given Spirograph pattern can be found so that the similar image 

can be drawn by hand through a physical Spirograph set. 
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1.  Introduction 

Being a popular element for artwork decorations, curves can express different senses by changing their 

thickness and degree of curvature. A mashup of curves can deliberately create harmonious symmetry 

which can help observers to find pleasing balance in images. Although a perfectly symmetrical pattern 

is hard to draw by hand, the spirograph is a useful geometric drawing device, with multiple uses like 

educational toys and creative design tools, to produce highly symmetrical roulette curves. Basically, the 

whole set is composed of an annulus with ridged edges and wheel gears with numerous little holes on 

them [1-6]. By putting a pen in one of the perforations on a wheel gear and rolling it around a fixed 

annulus, fascinating and aesthetic patterns can be generated. Although these patterns seem random and 

infinite, the concept behind the spirograph is rooted in a wide range of mathematical topics. 

There are a number of studies that explore the mathematical connections with spirographs. William 

E. Cavanaugh investigated the relationship between the number of cusps of spirograph patterns and the 

Greatest Common Factors (GCD) of gear teeth numbers [2]. However, through this limited concept of 

GCD, a comprehensive mathematical explanation of its rationale was still not provided. Deck, Karin M 

then figured out the mathematical links to the spirograph in a more general way [1]. He presented the 

parametric equations of the coordinates of a tracing point on a spirograph. Although some specific key 

parameters of the spirograph pattern associated with the parameters were not dug deeper in the 1999 

research, Ranjit Konkar analyzed certain special parameters according to predecessors’ research results, 

for example, the cusp connectivity [7]. This could significantly help people to recreate the formation of 
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a spirograph. After understanding the theoretical principles, Bei Wang, Yuejie Geng and Jixun Chu 

explored spirograph’s applications in real life, like how the astroid, a specified curve in spirograph with 

unique characteristics, was used to reduce space when the bus doors opened [8].  

During research, it can be found that the interactions between the parametric equations and possible 

key parameters of Spirograph patterns had rarely been systematically explained. Therefore, the purpose 

of this paper is to predict possible spirograph patterns, which will be achieved by deriving parametric 

equations and analyzing the key parameters. It is suggested that the position of perforations, number of 

teeth on two gears and position of start point are crucial factors. In addition, an interesting experiment 

about spirograph pattern design will be carried out. It will involve parametric-graphic interactions, 

which is to observe and analyze the features of a random spirograph and then estimate its parameters. It 

can not only prove the accuracy of the author’s previous conclusion but also help readers visualize this 

topic in a pellucid way. 

2.  The spirograph 

2.1.  Origin and terminology of spirograph 

Figure 1. Basic spirograph drawing set. 

As shown in figure 1, the idea of spirograph was originally developed in the early 1960s by mechanical 

engineer Denys Fisher. This tool quickly soon became popular in the toy market, and new spirograph-

related versions like the unusual shape deluxe set were updated continuously.  

However, the curves in spirograph patterns were already given mathematical names before the 

invention of spirograph set. In around 1600, Gallileo Gallilei studied the ordinary cycloid in detail [1]. 

A cycloid is a curve traced by a point on the circumference of a circle being rolled along a straight line 

(Figure 2). In spite of its simple appearance, the fascinating properties of cycloid were used by the 

Romans in the ancient Greeks to shape the arches of bridged and aqueducts [9]. It also solved the famous 

brachistochrone problem, which was posed in 1696. The problem asked for the shape of the curve which 

joined two points at different elevations so that a dropping bead would reach the lower point in the least 

time [9]. The solution in fact was a segment of cycloid.  

The cycloid is also called a common trochoid. Trochoid is the path of a point at a distance from the 

center of a circle rolling on a fixed line [7, 10]. To subdivide, if the chosen point is inside the rolling 

circle, the resulting curve is a curtate cycloid and if the chosen point lies outside the rolling circle, it is 

a prolate cycloid [7]. These types and variants are illustrated in Figure 2 for a circle rolling on a straight 

line. 
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Figure 2. The formation of the curves of trochoids and cycloids. 

Since the spirograph pattern is created by rolling one circle along another stationary circle instead of 

a straight line, different terminologies need to be given in order to describe such different formations. If 

the tracking point is on the boundary of a circle, the curve made by rolling the circle inside a fixed circle 

is called a hypocycloid (Figure 3a) [8, 11], which was first conceived by Roemer in 1674 while he was 

studying the best form of gear teeth, and the curve generated by rolling the circle outside a fixed circle 

is called epicycloid (Figure 3b) [11].  

  
(a) (b) 

Figure 3. (a) Example graph of hypocycloid, (b) Example graph of epicycloid. 

However, generally, the perforations in real spirograph set are usually located in the middle of the 

wheel gear rather than at the edge. In this condition, when the point is on the radius or extended radius 

but not on the circumference of the circle, rolling the circle inside a fixed circle results in a hypotrochoid 

(Figure 4a, 4b) [6]. Otherwise, the curve traced by a point on the radius or extended radius of a circle 

rolling on the outside of a fixed circle is called an epitrochoid (Figure 4c, 4d) [12]. 

    
(a) (b) (c) (d) 

Figure 4. (a) A hypotrochoid with traced point on radius, (b) A hypotrochoid with traced point on 

extended radius, (c) An epitrochoid with traced point on radius, (d) An epitrochoid with traced point on 

extended radius. 

Generally, if the tracing point is on the boundary of a circle, the curve formed by rolling the circle 

inside a fixed circle is called a hypocycloid, and the curve formed by rolling the circle outside a fixed 
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circle is called an epicycloid. If the tracing point is on the interior or exterior of a circle, the curve is a 

hypotrochoid or epitrochoid. 

However, there are some interesting special cases. For hypotrochoids, when the small circle is exactly 

half the size of the big one, the various spirograph patterns will become kind of simple [4]. An ellipse 

will appear at such time, and the greater the distance from the center of rolling circle to the point is, the 

pointier the ellipse is. This happens because the small circle completes a full turn each time it rolls 

around, so the line immediately matches again. Therefore, a single line will be produced when such a 

situation happens in hypocycloid. 

For more variations, if the small circle remains stationary while a larger circle rolls around it in 

contact, like a hula-hoop, a point on the rolling circle will generate a peritrochoid [7]. In addition, it 

might be interesting that when there are two circles of equal radius, the formed epitrochoid is called 

Pascal Snail. One special case among the family of the snail is when the traced point lies on the 

circumference of the rolling circle. In this way, the resulting epitrochoid is the famous cardioid. 

After classifying four types of spirograph, it is still unknown why even among the same type there 

are so many different patterns. In the next part, a formula that covers its principles of formations on 

different shapes will be investigated by using mathematical derivation and concepts about geometry and 

trigonometry.  

2.2.  Parametric equations of spirograph 

2.2.1.  Derivation. To obtain the equations that can describe spirograph curves, the type of equation 

required must be decided first. As shown in Figure 3 and Figure 4 (red curves), regarding the centers as 

origins, it is obvious that these curves fail the vertical line test. In other words, every vertical line does 

not intersect these curves in at most one point. Therefore, the spirograph curve cannot be simply 

represented as functions y = f(x). 

Moreover, it is obvious that the formation of a spirograph is composed of two movements: the 

rotation of the rolling circle and its revolution around the fixed circle, which makes different spirographs 

depending on the position of revolution. This can link to the combined movements in the projectile 

which include both horizontal and vertical directions. In these cases, it is convenient to consider x and 

y as functions of an independent variable t, known as a parameter. Through the introduction of the 

parameter, it is easier to describe the motion law in x and y directions [11]. For example, x = f(t), y =
g(t). Together, this is called a parametric equation for a curve that is traced by changing the values of 

the parameter t. Therefore, the movements of rotation and revolution in spirograph can be described 

separately using a parameter, and then combined to obtain a final parametric equation. 

In order to apply parametric equations to curves in spirograph patterns, parametrizing a circle is the 

first step because the curves are formed by the rotation of two circles. Circles have a Cartesian general 

equation: 

(𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 = 𝑟2 (1) 

for a circle with center (a, b) and radius r.  

For parametrization, we use a circle whose center is origin (Figure 5). Assume point P (r cos θ, 

r sin θ) on the boundary of the circle. Put the value x = r cos θ , y = r sin θ in x2 + y2 = r2  and 

simplify, it is found that x = r cos θ , y = r sin θ are the parametric form of the equation of the circle, 

regarding θ as the parameter.  
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Figure 5. A circle with center in origin and radius of r. 

Since the spirograph patterns basically have four types: hypocycloid, epicycloid, hypotrochoid, and 

epitrochoid, there must be four parametric equations to generalize each of them.  

Figure 6 illustrates the construction of a hypocycloid. Establish a Cartesian system with point O as 

the origin, denote radius of the fixed circle O by R, radius of the rolling circle Q by r, and the degree of 

rotation of the center of the rolling circle Q by θ. Since the trace of the center of circle Q is a circle with 

radius R-r, the parametric equations of this circle (in red dashed line) are: 

𝑥 = (𝑅 − 𝑟) 𝑐𝑜𝑠 𝜃 
(2) 

𝑦 = (𝑅 − 𝑟) 𝑠𝑖𝑛 𝜃 

The parametric equations of hypocycloid are determined by the coordinates of the tracing point P, so 

denote the orientation of the circle Q after it rolled by α. The coordinates of the tracing point P are: 

𝑥 = (𝑅 − 𝑟) 𝑐𝑜𝑠 𝜃 + 𝑟 𝑐𝑜𝑠 𝛼 

(3) 
𝑦 = (𝑅 − 𝑟) 𝑠𝑖𝑛 𝜃 + 𝑟 𝑠𝑖𝑛 𝛼 

Then, when circle Q rolls inside around circle O, it can be noticed that the arc length of every point 

on circle O that has been in contact with the circle Q equals the arc length of every point on the circle Q 

that has been in contact with circle O. Therefore, the relationship between α and θ can be seen: 

𝑃1𝑇 = 𝑃2𝑇 →  𝑅𝜃 = (2𝜋 − 𝛼 + 𝜃)𝑟 →  𝛼 = 2𝜋 − (
𝑅

𝑟
− 1) 𝜃 (4) 

According to coterminal angles, angle α and angle (1 − R/r)θ have the same initial and terminal 

sides, therefore: 

𝛼 = − (
𝑅

𝑟
− 1) 𝜃 (5) 

Substitute α with θ to express coordinates of P. To simplify, as cosine functions are even and sine 

functions are odd, it can be deduced that the parametric equations of hypocycloid are:  

𝑥 = (𝑅 − 𝑟) 𝑐𝑜𝑠 𝜃 + 𝑟 𝑐𝑜𝑠((
𝑅

𝑟
− 1)𝜃) 

𝑦 = (𝑅 − 𝑟) 𝑠𝑖𝑛 𝜃 − 𝑟 𝑠𝑖𝑛((
𝑅

𝑟
− 1)𝜃) 

(6) 
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Figure 6. Construction of a hypocycloid. 

Parametric equations for the other three types of spirograph patterns are similar to those above. For 

epicycloids, as shown in Figure 7, the main difference between epicycloid and hypocycloid is that the 

rolling circle is placed outside the fixed circle. Hence, the distance from origin to the distance from the 

center of circle Q is R+r. Due to the opposite direction of orientation, the plus sign turns to a minus sign. 

The coordinates of tracing point P become: 

𝑥 = (𝑅 + 𝑟) 𝑐𝑜𝑠 𝜃 − 𝑟 𝑐𝑜𝑠 𝛼 
(7) 

𝑦 = (𝑅 + 𝑟) 𝑠𝑖𝑛 𝜃 − 𝑟 𝑠𝑖𝑛 𝛼 

For the relationship between α and θ: 

𝑃1𝑇 = 𝑃2𝑇 →  𝑅𝜃 = (𝛼 − 𝜃)𝑟 →  𝛼 = (
𝑅

𝑟
+ 1) 𝜃 (8) 

Therefore, the parametric equations for epicycloid are: 

𝑥 = (𝑅 + 𝑟) 𝑐𝑜𝑠 𝜃 − 𝑟 𝑐𝑜𝑠((
𝑅

𝑟
+ 1)𝜃) 

𝑦 = (𝑅 + 𝑟) 𝑠𝑖𝑛 𝜃 − 𝑟 𝑠𝑖𝑛((
𝑅

𝑟
+ 1)𝜃) 

(9) 

Figure 7. Construction of an epicycloid. 

However, the tracing point is not always on the boundary of the rolling circle, which means the 

distance from the tracing point to the center of the rolling circle is not always r. Consequently, the only 
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change in the parametric equations for the hypotrochoid and epitrochoid is the factor on their second 

terms. Let h be the factor, which indicates the distance between the tracing point and the center of the 

rolling circle. Then the parametric equations for hypotrochoid are:        

𝑥 = (𝑅 − 𝑟) 𝑐𝑜𝑠 𝜃 + ℎ 𝑐𝑜𝑠((
𝑅

𝑟
− 1)𝜃)) 

𝑦 = (𝑅 − 𝑟) 𝑠𝑖𝑛 𝜃 − ℎ 𝑠𝑖𝑛((
𝑅

𝑟
− 1)𝜃)) 

(10) 

Similarly, for epitrochoid, the parametric equations are: 

𝑥 = (𝑅 + 𝑟) 𝑐𝑜𝑠 𝜃 − ℎ 𝑐𝑜𝑠((
𝑅

𝑟
+ 1)𝜃)) 

𝑦 = (𝑅 + 𝑟) 𝑠𝑖𝑛 𝜃 − ℎ 𝑠𝑖𝑛((
𝑅

𝑟
+ 1)𝜃)) 

(11) 

2.2.2.  Verification. To verify the accuracy of these four parametric equations, they are sequentially input 

into Desmos to compare the presented patterns with the actual situations. As shown in Figure 8, the 

equations are valid.  

    
(a) (b) (c) (d) 

Figure 8. Spirograph patterns in Desmos, (a) A hypocycloid with R=7, r=1, (b) An epicycloid with R=7, 

r=1, (c) A hypotrochoid with R=6, r=1, h=4.5, (d) An epitrochoid with R=7, r=1, h=5.5. 

2.2.3.  Discussion of parameters r and h. Looking at Figure 6 and Figure 7 and considering the formation 

process of four types of spirographs, spirographs can be regarded as subtracting or adding parts of a 

smaller circle from a larger circle. In Formula 1, 2, 3 and 4 above, the front part represents the larger 

circle, and the back part represents the smaller circle. Therefore, if the coefficient of the part of the 

smaller circle (which can be r or h depending on different types) is large, it means that more things are 

subtracted or added from the original large circle, then the remaining pattern will relatively fluctuate 

more. Conversely, if r or h is small, the resulting pattern will fluctuate less and tend to be close to circle. 

This is related to Figure 8 and can be seen by comparing the four graphs.  

2.2.4.  Identification of spirograph types through resulting figures. In addition to distinguishing types 

by drawing process, the law of directly identifying the type through the resulting figures can be derived, 

by summarizing above and more figures. 

 

Figure 9. Identification methods of spirograph types through features in resulting figures.  
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For identification methods in Figure 9, when there is no line intersection in the resulting pattern, the 

features of sharp and rounded cusps are regarded as hypocycloids and epicycloids respectively, without 

passing through the center. Meanwhile, the situation of no line intersection only happens on 

hypotrochoids and epitrochoids at one specific value when h>r, with a line passing through the center, 

while hypotrochoids have edged petals on the outer side and epitrochoids have smooth outer side like a 

circle. When there are line intersections, the features of a more edged outer side than the inner side lead 

to hypocycloids and hypotrochoids, while the features of a more edged inner side than the outer side 

cause epicycloids and epitrochoids. To distinguish further, in hypoicycloids, the outer side always has 

sharp cusps, whereas in hypotrochoids, the outer side can have curved petals. Similarly, in epicycloids, 

the inner side always has sharp cusps, in contrast to the curved petals on the inner side in epitrochoids. 

  
(a) (b) 

Figure 10. Two more complicated spirograph patterns, (a) A hypotrochoid, (b) An epicycloid. 

To apply the methods, according to the pattern in Figure 10 a, it has a more edged outer side than the 

inner side, so it is either a hypocycloid or a hypotrochoid. It can be discovered that it has rounded petals 

on the outer side, therefore, this pattern is a hypotrochoid. Regarding the pattern in Figure 10b, its inner 

side is more edged than the outer side, as well as the sharp cusps on the inner side. Therefore, this pattern 

is an epicycloid. 

In the next section, different parameters will be discussed so that the rules which determine the 

specific appearance of the graph can be discovered. 

2.3.  Key parameters of Spirograph 
By deriving parametric equations of spirographs and applying them in drawing software, the essential 

key parameters of spirographs can be deduced according to the parameters. 

In physical spirograph sets, the assumption is that possible key parameters might be the position of 

perforations, the position of starting point, and the number of teeth on the ring and the gear. 

2.3.1.  Position of perforations. Firstly, the position of perforations in related to factor h in the equations 

for hypotrochoids and epitrochoids. This key parameter will affect curvature of the spirograph patterns 

[7]. By varying h only in Desmos (Figure 11), it can be seen that the cusps of spirograph patterns retract 

inward and become more rounded as h decreases while not exceeding r. This means that if the 

perforation is closer to centre of the gear, the pattern looks more like a circle, and the equations result 

in exactly a circle if the perforation is at the center [1]. Furthermore, when the tracing point is placed at 

extended radius of the gear which cannot be simulated by physical spirograph sets, the greater h is, the 

more rings are formed and the more complex the pattern. 
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(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 11. Variation of h in a hypotrochoid R=45, r=10, (a) h=0, (b) h=2, (c) h=5, (d) h=9, (e) h=15, (f) 

h=25, (g) h=35, (h) h=44. 

Apart from the differences between the graphs in Figure 11, it is noticeable that the number of petals 

or the lines of symmetry are always the same as long as R and r are constant. Therefore, the position of 

perforation affects the curvature and complexity of spirograph patterns, while it does not impact the 

number of cusps in patterns.  

2.3.2.  Position of starting point. Secondly, by gradually restoring the spirograph’s formation from 

different starting points as shown in Figure 12, it can be discovered that no matter where to start, as long 

as all other conditions remain the same, the resulting patterns will be the same. As a result, the position 

of starting point tends to have no influence on spirograph patterns, because the patterns are always closed 

graphs.  

Besides, the graph closes when the ratio of the number of teeth of the ring and the gear is a rational 

number. If the ratio is irrational like π, the curve will continue infinitely. This will be discussed in detail 

in part 2.3.4. 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 12. (a-d) The processes of formation of a pattern starting at point A, (e-f) The processes of 

formation of the same pattern starting at point B. 
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2.3.3.  Number of teeth. Thirdly, in the derivation of parametric equations, the radius of circles is crucial 

data. In a spirograph set, devices have teeth instead of smooth edges in order to keep pen stationary 

during rotation and stop it sliding. In particular, each gear and ring are numbered according to the 

number of teeth around it. As it turns out, there are 30 teeth for each millimeter of the radius [1]. Hence, 

the ratio of radius (R/r) will be the same as the ratio of number of teeth. As shown in Figure 13, regardless 

of magnitude, the pattern will present the same as long as the M/N is constant. Therefore, the ratio of 

teeth number in ring and gear is a significant key parameter rather than their teeth number respectively. 

  
(a) (b) 

Figure 13. (a) A hypocycloid with R=10, r=8, (b) A hypocycloid of R=30, r=24.  
In addition, another thing can be discovered that if the ring has m teeth, the hypocycloid formed with 

a gear of k teeth has the same shape as the hypocycloid formed with a gear of (m-k) teeth, which is the 

double generation theorem [13]. By investigating this property, it can be found that when the ring has 

m teeth, every epicycloid formed with gear of k teeth can be generated as a hypocycloid formed with 

gear of (m+k) teeth, which is not practical through physical sets. 

Overall, the position of perforations and ratio of teeth number of rings and gears are the main key 

parameters of spirograph patterns and are also called outer parameters, which are similar to independent 

variables and can directly determine patterns’ shapes. There are also some features of the patterns that 

depend on outer parameters, which are called inner parameters [14]. They are the main characteristics 

in patterns like dependent variables, which are affected by in independent variables. For example, the 

number of cusps on the pattern and the angle between two consecutive cusps.  

2.3.4.  Number of cusps in relation to ratio of teeth. Cusps are significant characteristics of a spirograph 

pattern, and this part will focus on the relationship between the number of cusps and outer parameters. 

According to part 2.3.1, it is proved that pen point distance on gear has no effects on cusps number. 

Regarding Figure 13 in part 2.3.3, it can be found that the designs have five cusps when R/r is 5/4. As 

R/r equals ring teeth over gear teeth, one can predict what the resulting designs look like by using the 

reduced fraction of number of teeth (M/N). 

By looking at patterns in Figure 14 and comparing their cusps and reduced fractions of number of 

teeth, it can be seen that number of cusps is the reduced numerator [1].  

   
(a) (b) (c) 

Figure 14. Different patterns drawn by different M/N, (a) 54/18=3/1, (b) 30/12=5/2, (c) 96/60=8/5. 

Then, in order to analyze the significance of the reduced denominator, one might look at the number 

of revolutions of the rolling gear until it traces out all cusps. In Figure 15, for a pattern with M/N=11/2, 

the rolling circle completes two revolutions when it produces the resulting pattern, which indicates that 

the number of revolutions needed for the trace to meet its starting point is the reduced denominator [15-

16].  

Proceedings of the 2023 International Conference on Mathematical Physics and Computational Simulation
DOI: 10.54254/2753-8818/10/20230311

73



   
(a) (b) (c) 

Figure 15. The process of formation of a spirograph pattern when its M/N=11/2, (a) At staring point, 0 

revolution, (b) 1 revolution, (c) Meet the starting point, 2 revolution. 

Overall, denote the most reduced form of ring teeth over gear teeth by M/N where M>N, the resulting 

spirograph pattern will have M cusps and is formed by N complete revolutions. 

Consequently, by considering this rule, the larger N is, the more revolutions are needed, the more 

crowded pattern becomes. So it is clear that to form a closed spirograph, the number of revolutions must 

be finite, which means M/N must be a rational number that can be expressed as a fraction. When M/N 

has no finite fractional representation (such as π) M and N have no least common multiple, the 

revolution and rotation will not meet at the same point once they start [7]. Therefore, when M/N is 

irrational, the spirograph pattern will be endless. 

Meanwhile, using quantitative analysis, the relationship between M/N and the number of rotations 

of larger and smaller circles can be discovered. Denote number of teeth of larger and smaller circles by 

M and N respectively. In order to go back to the starting point at the same time, they both have to turn 

an integer cycle. Although they have the same linear velocity (assume 1 tooth per second), they have 

different angular velocity: 

𝜔𝑀 =  
360

𝑀
 °/𝑠 (12) 

Let T be the time when the larger and smaller circle meet at the starting point at the same time for 

the first time: 

𝑇 ∙ 𝜔𝑀 =  𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 𝑇 ∙ 𝜔𝑁 =  𝑖𝑛𝑡𝑒𝑔𝑒𝑟, →  T =  lcm (M, N) (13) 

Where lcm (a,b) represents the least common multiple of integer a and b [17] 

Therefore:  

𝑇 ∙ 𝜔𝑀 =  𝑁 𝑝𝑒𝑟𝑖𝑜𝑑𝑠 (14) 

The reduced fraction M/N hence means: M is the number of rotations of the smaller circle, while N 

is the number of rotations of the larger circle.    

2.3.5.  Cusp connectivity in relation to ratio of teeth. In Figure 16, every pattern has 7 cusps as their 

numerators of the reduced fraction are all 7. When the denominator is 2 (Figure 16b), there must be 2 

revolutions to produce complete pattern and this will introduce 1 more cusp equally spaced between the 

cusp 1, 3, 5, 7 formed during the first revolution. As a result, M/N=7/2 will cause a cusp connectivity 

of 1-3-5-7-2-4-6-1, which in other words is that every second one of the 7 points is linked, in contrast 

to 1-2-3-4-5-6-7-1 when M/N=7/1 (Figure 16a) and 1-4-7-3-6-2-5-1 when M/N=7/3 (Figure 16c).  

    
(a) (b) (c) (d) 

Figure 16. Spirograph patterns of 7 cusps, but connected differently, (a)M/N=7/1, (b) M/N=7/2, (c) 

M/N=7/3, (d) M/N=7/4. 
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In addition, by applying the double generation theorem mentioned at front in this part, M/N=7/3 will 

produce the same curves as M/N=7/4 (Figure 16d), and so do M/N=7/1 and M/N=7/6, except with 

tracing order reversed (for example, α = 7/4 will produce a connectivity 1–5–2–6–3–7–4–1). Such 

similar curves are called congruent [7]. 

Overall, by generalizing this finding, another significance of the reduced denominator can be 

expressed: Given M/N where M and N are mutually prime, the spirograph pattern produced will have 

M cusps in which every cusp is connected to Nth one sequentially during revolutions [7]. Meanwhile, 

this rule is helpful during the reverse identification which is to determine parameter M/N through the 

given spirograph pattern. And this will be mentioned in the next part which will focus on pattern design 

using parametric-graphic interactions.  

2.4.   Spirograph pattern design 
Looking at Figure 17, this spirograph pattern can be regarded as a hypotrochoid according to the 

identification method mentioned in 2.2.4. 

Figure 17. A random spirograph pattern chosen from the Internet. 
For the number of teeth which is a key parameter, by observing its features, it can be seen that it has 

32 cusps, and every cusp is connected to the 7th one. According to the rules mentioned in 2.3.4 and 

2.3.5, the M/N is 32/7 or 32/25. This means that the ring teeth number can be 32k, and the gear teeth 

number can be 7k or 25k, for a positive integer k.  

Moreover, for the position of perforations which is the other key parameter, it is important to estimate 

the factor h. It can be seen that the cusps of this pattern kind of extend outward and are less rounded 

compared to a circle. Hence, according to the rule mentioned in 2.3.1, h should be relatively large but 

still smaller than r, which means the chosen pen hole on the gear should be farther from the center. 

Therefore, after determining the parameters, this pattern can be drawn through a physical spirograph 

set. For the equipment shown in Figure 18a, the ring with 96 teeth and the gear with 75 teeth are chosen 

(k=3), and the hole1 that has the largest distance to the center is chosen. Figure 18b is a final drawn 

image and it is very similar to the sample spirograph pattern. 

   
(a) (b) (c) 

Figure 18. (a) The ring, gear and pen hole required to draw the image, (b) The process image, (c) The 

drawn image. 
Figure 19 is a very different and more complex spirograph pattern from Figure 17. It includes four 

closed curves. According to the identification method mentioned in 2.2.4, all four curves can be regarded 

as hypotrochoids. 
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Figure 19. Another random spirograph pattern chosen from the Internet. 
By observing features of this pattern, curves all have 8 cusps, and every cusp is connected to the 3rd 

one. Therefore, for the teeth number, all four curves are formed by the same ring and gear. By applying 

rules summarized in 2.3.4 and 2.3.5, the M/N should be 8/3 or 8/5, so the ring teeth number can be 8k, 

and the gear teeth number can be 3k or 5k, for a positive integer k.  

The only difference between the four curves is their curvature, which is that the outermost curve is 

the sharpest and the closer the curves are to the center, the more rounded they are. Therefore, for the 

position of perforations, the h of these curves is different, and this means the pen should be placed at 

different holes each time. According to rule mentioned in 2.3.1, the outermost curve has the largest h, 

and the closer the curve is to the center, the smaller its h value. 

As a result, for the drawing process, the required equipment is illustrated in Figure 20a. The ring has 

96 teeth and the gear has 60 teeth (k=12), while the pen holes required for the curves from the outside 

to the inside are 1, 3, 5, 7 respectively (closer to the center). Figure 20b is the final drawn image and it 

also has high similarity with the sample. 

   
(a) (b) (c) 

Figure 20. (a) The ring, gear and pen holes required to draw the image, (b) The process image, (c) The 

drawn image. 

Overall, the experiment of pattern design indicates that theoretically, according to the given 

spirograph pattern, the corresponding parameters can be found and the similar image can be drawn by 

hand. 

3.  Conclusion 

Spirograph is a popular drawing tool and the resulting various and seemly infinite patterns have aroused 

interests of exploring its formation and pattern prediction. Hence, the research is aimed to analyze the 

key parameters of spirograph using parametric equations and design spirograph patterns through 

parametric-graphic interactions.  

Through literature, the spirographs can be classified into hypocycloid, epicycloid, hypotrochoid and 

epitrochoid based on their formation, according to the position of the tracing point and whether the small 

circle rolls inside or outside the fixed circle. To link this with resulting patterns, identification methods 

of spirograph types through patterns’ features is introduced in this paper. The parametric equations of 

four types of spirograph are also derived. It is clear that in the equations of hypocycloids and 
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hypotrochoids, the x value consists of the addition of two monomials and the y value consists of the 

subtraction of two monomials; while both x and y values in parametric equations of epicycloids and 

epicycloids are composed of subtraction of two monomials. Through further analysis, the key 

parameters that determine spirograph patterns are position of perforations and the ratio of teeth number 

of the gear and ring. The former only affects its curvature, indicating the cusps of spirograph patterns 

will be more rounded when the pen hole becomes closer to the center, and the latter impacts the number 

of cusps and the cusp connectivity, which are presented by the reduced numerator and denominator 

respectively. Therefore, in pattern design, the combination of the number of cusps and cusp connectivity 

should be considered first to pick the ring and gear with the proper teeth number, and the degree of 

curvature of cusps can help to choose appropriate pen holes. 

This paper thoroughly investigates and explains the impacts of spirographs’ key parameters and it 

combines parameters and graphs to predict and design spirographs, which can help designers draw the 

complex spirographs they have in mind more precisely. However, there are still some limitations. Firstly, 

the feature-related type identification method could involve quantitative and pithier metrics rather than 

basic observation. For instance, numerical parameters can appear in type identification so that this 

process can be simplified and become easier to use. Also this paper is based on the ideal situation that 

the pen holes on gears are just a point, but in reality they are tiny circles. Hence the radius of perforations 

should be considered as well. In addition, since the pen holes on gears are fixed and arranged with equal 

distance in spirals, the change in patterns’ curvature according to position of each hole can be further 

explored. Because otherwise repetition of drawing in different holes and then comparison is the only 

possible option to obtain the expected spirograph while designing. 

Additional research could focus on the definition expression of curvature combined with parametric 

equations to study the change of curvature in the trajectory of spirographs, which not only improves the 

aspect of quantitative analysis but also provides more accurate data to electronic visualization of 

spirograph formation as well as its pattern design. 
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