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Abstract The logistics equation is the most classical model of population growth. Influenced 

by external environmental factors and growth inertia, the total population is in a state of 

periodic equilibrium. so, studying the stability of the periodic solution of the logistics equation 

is an important issue. If the logistics equation is considered as a function, the general method to 

judge the stability of the periodic point is to bring in the derivative of the function after 

iterating n times to take the value. The Lyapunov exponent is originally an important method 

used to judge the stability of dynamical systems. If the logistics map is considered as a discrete 

dynamical system, applying the Lyapunov exponent to the determination of the periodic 

solution will largely reduce the computational effort. 
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1.  Introduction 

The logistics function is a typical discrete dynamical system that reflects population growth. Mitchell 

derived a population growth equation that takes competition for resources into account and gave a 

model of population growth with a linear effect of resources on population, i.e., logistic growth 

equation [1-4]. Because environmental changes are periodic on a large time scale, it becomes 

meaningful to study the periodic stability points of the logistic map. Robert studied the influence of 

the coefficients of the logistic map on the stability of k-period points and proposed a discriminative 

method for stable k-period points [4-6]. The Lyapunov exponent is an important method to study the 

sensitive dependence of the solution on the initial value conditions [4,7-10]. This concept was first 

introduced in the study of Lorenz attractors and be extended to the general case. Eventually after an 

algebraic change, it is found that for one-dimensional dynamical systems, Robert's discriminant 

method and Lyapunov exponent discriminant method are equivalent. However, using the Lyapunov 

exponent to determine the stability of the periodic points will substantially reduce the computational 

effort. 

2.  Method 

2.1.  Logistics equation 

2.1.1.  Equation derivation. Phenomena that change in time is often described by differential equations 

or difference equations. If the current state of the system now depends entirely on the behavior of the 
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previous system, then this system can be described by a class of iterative relations: 

 𝑥𝑛+1=𝐹(𝑥𝑛) (1) 

where 𝑥n is the state of the variable at year n, and F maps an interval I into itself. One of the most 

representative examples is the population growth model. Assuming that at the initial time t0, the total 

population is 𝑥0, the net population growth rate is 𝑎net. The relationship between 𝑥n and 𝑥n-1 can be 

portrayed by the equation: 

 𝑥𝑛=𝑎net𝑥𝑛−1 (2) 

After n iterations, 𝑥𝑛 =𝑎net
𝑛 𝑥0 , this means that the population will grow exponentially and 

eventually tends to infinity. This clearly does not correspond to the actual situation. Considering 

population mortality and the competition due to lack of resources, the actual population growth rate 

𝑎act will gradually tend to zero as the population increases: 

 lim
𝑥→𝑁

𝑎𝑎𝑐𝑡 = 0 (3) 

 lim
𝑥→0

𝑥𝑎𝑎𝑐𝑡 = 𝑎𝑛𝑒𝑡 (4) 

N is known as the Environmental Capacity(The maximum population that can be achieved under 

limited environmental resource conditions). Assume that the actual population growth rate 𝑎act is 

inversely proportional to the population 𝑥n, and 𝑎act must satisfy the condition (3)(4). 𝑎act can be 

expressed in the following form: 

 𝑎act=𝑎net−𝑥𝑛𝑏  (𝑏 =
𝑎𝑛𝑒𝑡

𝑁
) (5) 

So that 

 𝑥𝑛+1=(𝑎net−𝑥𝑛𝑏)𝑥𝑛 (6) 

For the sake of formal simplicity, defining 𝑥n=N𝑦n, (6)can eventually be reduced to the following 

form 

 𝑦n+1=𝑎net𝑦n(1 − 𝑦n) (7) 

This is the standard logistics equation, 𝑓(𝑥) = 𝑎𝑥(1 − 𝑥), 𝑓 is logistics map.  

2.1.2.  Population growth and stabilization cycle solution. To consider whether the population will 

remain stable or become cyclically stable after a certain period, two concepts need to be introduced: 

fixed point and periodic point. If 𝑥∗ satisfies the condition, 𝑥∗ = 𝑓(𝑥∗), 𝑥∗ is called 𝑓𝑖𝑥𝑒𝑑 𝑝𝑜𝑖𝑛𝑡. 

If 𝑥∗ satisfies the condition, 𝑥∗ = 𝑓(𝑛)(𝑥∗), 𝑥∗ is called 𝑛-𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐 𝑝𝑜𝑖𝑛𝑡. For k-periodic point, 

considering the set consisting of 𝑥𝑖which satisfis: 

𝑥𝑖+1 = 𝑓(𝑥𝑖), 𝑖 = 1,2,3, . . . , 𝑛 − 1  

𝑓(𝑛)(𝑥𝑖) = 𝑥𝑖, 𝑖 = 1,2,3, . . . , 𝑛 − 1 

Such set is called an 𝑛 − 𝑝𝑜𝑖𝑛𝑡 𝑙𝑖𝑚𝑖𝑡 𝑐𝑦𝑐𝑙𝑒. When the population reaches 𝑥∗, the population will 

deviate from 𝑥∗ in a short time due to the inertia of population growth. So figureing out whether 𝑥 

will return to 𝑥∗ or not is an important question. To solve this problem, the concept of stability of 

fixed point needs to be introduced. If 𝑥 deviate away from 𝑥∗, it can return to 𝑥∗ in successive 

generations, the 𝑥∗ is called stable. Fixed point can be viewed as 1-periodic point, so the remaining 

part will only discuss the case of n-period points. From the point of view of dynamical systems, 

{𝑥𝑛}𝑛=1
∞ forms a sequence, which 𝑥𝑛 = 𝑓(𝑛)(𝑥1). For k-period point 𝑥1, it generates a sequence with 

the form X = {𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑘−1, 𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑘−1, . . . }. To study the stability of  𝑥1 , adding a 

certain perturbation 𝑑  to  𝑥1 , letting 𝑥1
′ =  𝑥1 + 𝑑,  then 𝑥1

′  generates a new sequence Y =

{𝑥1
′ , 𝑥2

′ , 𝑥3
′ , . . . , 𝑥𝑛

′ , 𝑥𝑛+1
′ , . . . } , 𝑥𝑛

′ = 𝑓(𝑛)(𝑥1
′ ) . So, studying the stability of  𝑥1  is equivalent to 

studying whether the sequence Y converges to X. That is: 

𝑓(𝑛)(𝑥𝑘) − 𝑓(𝑛)(𝑥𝑘
′ ) → 0    𝑎𝑠    𝑘 → ∞ 

From the above, X is a stable n-point limit cycle if each 𝑥𝑛 is stable fixed point of 𝑓(𝑛).  

For studying the stability of the fixed points of the mapping 𝑓(𝑛), May [4] gives a discriminant 

method. 

𝑥∗ 𝑖𝑠 𝑎 𝑓𝑖𝑥𝑒𝑑 𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 𝑓(𝑛), 𝑖𝑓 |
𝑑

𝑑𝑥
𝑓(n)(𝑥∗)| < 1, 𝑡ℎ𝑒𝑛 𝑥∗ 𝑖𝑠 𝑠𝑡𝑎𝑏𝑙𝑒. 
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They derived the criterion by the linearization idea. The same conclusion will be obtained by 

applying Lyapunov exponent. 

2.2.  Lyapunov exponent 

2.2.1.  Sensitive dependence on the initial condition. Dynamical systems mostly describe the variation 

of a variables respect to time. If the solution of the differential equation can be obtained, the state of 

the variables at time 𝑡 can be predicted. Expressing the equation 𝑥n+1=𝑎net𝑥n(1 − 𝑥n) in the form of 

differential equation 
𝑑𝑁

𝑑𝑡
= 𝑎𝑁(1 − 𝑁), it is easy calculate the analytical solution 𝑥(𝑡). The curve of 

𝑥(𝑡) in the phase plane is called a trajectory and if a point is on this curve, the state of this point at 

time t can be predicted. But in the real world, there is always an error between the measured value and 

the exact value due to the accuracy of the measuring instrument. If the solution of the equation is 

calculated by using the measured values, the measured orbit will deviate from the actual orbit. So, to 

use the measured track to predict the future state, it is necessary to consider one question - if the initial 

value deviates from the original value, can the error between the measured trajectory and actual 

trajectory be kept within a very small range? This phenomenon in which the solution changes 

dramatically due to a change in the initial measurement conditions is called sensitive dependence on 

the initial condition. Lyapunov's exponent is possible to discriminate whether the solution is sensitive 

to the initial value condition.                                                                                                                                                                                                                                                                                               

2.2.2.  Lyapunov exponent. This concept was first discovered while studying the Lorenz model. 

δ(𝑡)denotes the distance between two trajectories at time 𝑡 (figure 1). 

 

Figure 1. the distance between two trajectories at time 𝑡. 

If plot ln|δ(𝑡)|versus 𝑡, it can be clearly found that a curve which is close to a straight line with a 

positive slope--λ. According to the graph (figure 2), an equation can be obtained for δ(𝑡) with respect 

to 𝑡. 

 ln|δ(𝑡)| ≈ λ𝑡 + ln|δ(0)| (8) 

 

Figure 2. The graph of ln|δ(𝑡)| about 𝑡. 

After algebraic deformation 

 |δ(𝑡)| ≈ |δ(0)|eλ𝑡 (9) 

λ is called the Lyapunov's exponent. Due to the properties of the exponential function, δ(𝑡) has a 

fast growth rate whenλis positive and it tends to infinity when t tends to infinity. That means 𝐶1 does 

not converge to 𝐶2. This makes it impossible to predict the actual state from the measured trajectory. 

The Lyapunov's exponent is very useful in the problem of determining the dependence of the 
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trajectory on the initial conditions. Observing Figure 1, the distance between the two trajectories is 

smaller at one time and bigger at another time. Averaging ln|δ(𝑡)| over 𝑡 can help to measure the 

average separation of the two trajectories. The linear relationship between ln|δ(𝑡)| and 𝑡 is obtained 

by averaging ln|δ(𝑡)| over 𝑡, and can find the finger of λ. Being inspired by this example, the strict 

definition of Lyapunov exponent and calculation formula of it is given as follow.  

Definition: Lyapunov's exponent denotes the numerical characteristics of the average exponential 

dispersion rate of adjacent trajectories in phase space. 

For a one-dimensional discrete dynamical system, the calculation of Lyapunov exponent is derived 

as follows: 

Consider two systems: 

𝑥𝑛+1=𝐹(𝑥𝑛) and 𝑦𝑛+1=𝐹(𝑦𝑛)  

with small errors in initial conditions |𝑥0 − 𝑦0| < 𝜀 

After one iteration, |𝑥1 − 𝑦1| = |𝐹(𝑥0) − 𝐹(𝑦0)| =
|𝐹(𝑥0)−𝐹(𝑦0)|

|𝑥0−𝑦0|
|𝑥0 − 𝑦0| since |𝑥0 − 𝑦0| < 𝜀, 

|𝐹(𝑥0) − 𝐹(𝑦0)|

|𝑥0 − 𝑦0|
|𝑥0 − 𝑦0| ≈ 𝐹′(𝑥0)|𝑥0 − 𝑦0| 

After n iterations,  

|𝑥𝑛 − 𝑦𝑛| ≈ |∏ 𝐹′(𝑥𝑖)

𝑛

𝑖=0

| |𝑥0 − 𝑦0| 

To ensure a strong separation, δ(𝑛) = |𝑥𝑛 − 𝑦𝑛| should grow exponentially. So 

 
|𝑙𝑛δ(𝑛)| = ∑ 𝑙𝑛|𝐹′(𝑥𝑖)|

n

i=1
+ 𝑙𝑛δ(0) (10) 

In the discrete case, the time is taken as positive integer. Imitating equation (9), the equation (10) 

can be rewritten as |𝑙𝑛δ(𝑛)| =
∑ 𝑙𝑛|𝐹′(𝑥𝑖)|n

i=1

n
n + 𝑙𝑛δ(0) , furthermore, |δ(𝑛)| = |δ(0)|e

∑ 𝑙𝑛|𝐹′(𝑥𝑖)|n
i=1

n
n
. 

λ𝑛 =
∑ 𝑙𝑛|𝐹′(𝑥𝑖)|n

i=1

n
 measures the average degree of separation after n iterations. To get the behavior of 

the two trajectories as time tends to infinity, lim
𝑛→∞

|δ(𝑛)| = lim
𝑛→∞

|δ(0)|enλ𝑛 = |δ(0)|enλ , which 

λ= lim
𝑛→∞

∑ 𝑙𝑛|𝐹′(𝑥𝑖)|n
i=1

n
 is the Lyapunov exponent of system.λ denotes the average degree of exponential 

separation caused by each iteration of the system over multiple iterations. When λ < 0, two adjacent 

points finally coincide after infinite iterations, which implies stability and cyclicality. When λ > 0, two 

adjacent points are separated after infinite iterations, which implies local instability. 

3.  Result----Applying the Lyapunov’s exponent 

3.1.  K-periodic point 

From the previous discussion it is clear that studying the stability of the k-periodic point of the 

logistics function 𝑥𝑛+1=𝐹(𝑥𝑛) , which 𝐹(𝑥) = 𝑎𝑥(1 − 𝑥), is equivalent to studying the stable solution 

of the equation 𝑥𝑛+1=𝐹(𝑘)(𝑥𝑛). 

From equation 4 (𝑥∗ 𝑖𝑠 𝑎 𝑓𝑖𝑥𝑒𝑑 𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 𝑓(𝑛), 𝑖𝑓 |
𝑑

𝑑𝑥
𝑓(n)(𝑥∗ )| < 1, 𝑡ℎ𝑒𝑛 𝑥∗ 𝑖𝑠 𝑠𝑡𝑎𝑏𝑙𝑒). If 𝑥∗ is 

a k-periodic point, F has to satisfy |
𝑑

𝑑𝑥
𝐹(k)(𝑥∗)| < 1. There is another way to determine the stability of 

point 𝑥∗  by using the Lyapunov exponent, which λ= lim
𝑛→∞

∑ 𝑙𝑛|𝐹′(𝑥𝑖)|n
i=1

n
. Because the 𝑥∗  is the 

k-periodic, 𝐹′(𝑥𝑖)has only a finite number of values  {𝐹′(𝑥𝑖)}
𝑖=0

𝑘−1
, for 𝑥𝑖 = 𝐹(𝑖)(𝑥∗) , and λ =

∑ 𝑙𝑛|𝐹′(𝑥𝑖)|k−1
i=0

k
.  
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|𝐹(k)′
(𝑥∗ )| < 1 ⇔ |∏

𝑑

𝑑𝑥
𝐹(𝑥𝑖)

𝑘−1

𝑖=0

| < 1 ⇔ |∑ ln (
𝑑

𝑑𝑥
𝐹(𝑥𝑖))

𝑘−1

𝑖=0

| < 0 ⇔ |
∑ 𝑙𝑛|𝐹′(𝑥𝑖)|k−1

i=0

k
| < 0 

⇔ λ < 0 

3.2.  Two equivalent determinations  

①Assume 𝑥∗  is a k − period point of 𝐹, 𝑖𝑓 |
𝑑

𝑑𝑥
𝐹(k)(𝑥∗)| < 1, then 𝑥∗ is the stable k-period point 

of 𝐹.  

⇔  ②Assume  𝑥∗  is a k − period point of 𝐹, 𝑖𝑓 λ < 0, then 𝑥∗ is the stable k-period point of 𝐹. 

Using the Lyapunov exponent to determine the stability of k-period points can significantly reduce 

the computational effort. Taking logistics function as an example, 𝐹(𝑥) = 𝑎𝑥(1 − 𝑥) is a quadratic 

function with a single peak, which becomes a 2𝑘-th polynomials with 2𝑘 peaks after 𝑘 iterations. In 

computing 
𝑑

𝑑𝑥
𝐹(k)(𝑥∗ ), it is necessary to derive the 2𝑘-th polynomial function and perform 2𝑘2 + 1 

times multiplication and 2𝑘 − 1 times addition, so the total number of operations is equal to 𝑂(𝑘2). 

If the Lyapunov exponent is used to perform the calculation, only the derivative of the quadratic 

function is needed, then {𝑥𝑖}𝑖=0
𝑘−1 is calculated by 𝑘 − 1 times multiplication and addition, and finally 

{𝑥𝑖}𝑖=0
𝑘−1  is brought into the formula λ =

∑ 𝑙𝑛|𝐹′(𝑥𝑖)|𝑘−1
i=0

𝑘
 for 𝑘  times multiplication and 2𝑘 − 1 

addition. The total number of operations is equal to 𝑂(𝑘). From Table 1, obviously the calculation of 

the Lyapunov exponent is much less computationally intensive. 

Table 1. Comparison of the computational effort of the two algorithms. 

 Derivatives multiplication addition 
calculation 

volume 

𝐹(𝑘)′
(𝑥∗) 

2𝑘-th 

polynomials 
2𝑘2 + 1 2𝑘 − 1 𝑂(𝑘2) 

∑ 𝑙𝑛|𝐹′(𝑥𝑖)|k−1
i=0

k
 

Quadratic 

functions 
2𝑘 − 1 3𝑘 − 2 𝑂(𝑘) 

4.  Conclusion 

An important segment of the logistics map research problem is to study the effect of parameter 

changes on the behavior of the dynamical system [4]. It is necessary to find the parameter critical 

values(the parameter value that changes the equilibrium point from stable to unstable) by determining 

the stability of many periodic points. Applying the Lyapunov exponent to determine the stability of the 

periodic point will reduce the computational effort to a great extent. 

References 

[1] Feigenbaum, Mitchell J. "Quantitative Universality for a Class of Nonlinear Transformations." 

Journal of Statistical Physics 19.1 (1978): 25-52. Web. 

[2] May, Robert M. "Simple Mathematical Models with Very Complicated Dynamics." Nature 

(London) 261.5560 (1976): 459-67. Web. 

[3] May, Robert M. "Biological Populations Obeying Difference Equations: Stable Points, Stable 

Cycles, and Chaos." Journal of Theoretical Biology 51.2 (1975): 511-24. Web. 

[4] Hirsch, Morris W.; Smale, Stephen, and Devaney, Robert L. Differential Equations, Dynamical 

Systems, and an Introduction to Chaos (Third Edition). Academic, 2013. Web. 

[5] Li, Tien-Yien, and James A. Yorke. "Period Three Implies Chaos." The American Mathematical 

Monthly 82.10 (1975): 985-92. Web. 

[6] Zhang, Cheng. "Period Three Begins." Mathematics Magazine 83.4 (2010): 295-97. Web. 

[7] Lorenz, Edward N. "The Problem of Deducing the Climate from the Governing Equations." 

Tellus 16.1 (1964): 1-11. Web. 

Proceedings of the 2023 International Conference on Mathematical Physics and Computational Simulation
DOI: 10.54254/2753-8818/10/20230318

89



[8] Barreira, Luís. Lyapunov Exponents. Springer International, 2017. Web. 

[9] Barreira, Luis, and Pesin, Ya. B. Lyapunov Exponents and Smooth Ergodic Theory. AMS, 2015. 

Web. 

[10] Lian, Zeng, and Lu, Kening. Lyapunov Exponents and Invariant Manifolds for Random 

Dynamical Systems in a Banach Space. American Mathematical Society, 2010. Web. 

 

Proceedings of the 2023 International Conference on Mathematical Physics and Computational Simulation
DOI: 10.54254/2753-8818/10/20230318

90


