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Abstract. With the continuous development and widespread use of quantum mechanics, solving 

the Schrödinger equation has become a hot research topic. The finite difference method has the 

advantages of simple calculation and high accuracy, which means that it has high potential in 

solving the numerical solutions of the Schrödinger equation. In this paper, we deeply explore the 

problem of using the finite difference method to solve the numerical solution of the time-

independent Schrödinger equation, propose a solution method based on the finite difference 

method, and evaluate its performance under different conditions. Firstly, by analyzing the 

principles and characteristics of the finite difference method, we construct a difference format 

for the time-independent Schrödinger equation. Then, by converting the difference format of the 

numerical solutions of the equation into a matrix, the numerical calculation problem is 

transformed into a matrix eigenvalue and eigenvector problem. Finally, for different physical 

scenarios, the established model is numerically solved and its performance is analyzed. This 

study found that the constructed numerical solution method exhibits high accuracy and stability 

in solving the numerical solutions of the time-independent Schrödinger equation. In different 

physical scenarios, this method can provide satisfactory results, thus verifying the feasibility of 

applying the finite difference method to this problem. 

Keywords: finite difference method, Schrödinger equation, numerical solution, eigenvalue. 

1.  Introduction 

The Schrödinger equation is a fundamental equation in quantum mechanics, proposed by Austrian 

physicist Erwin Schrödinger in 1925 [1]. This equation describes the behavior of particles at the atomic 

and subatomic levels, and has been widely applied in various fields such as chemistry, physics, and 

materials science. The equation provides a mathematical framework for understanding the wave-like 

behavior of particles and their probability of existence in different states, and is divided into two types: 

time-dependent and time-independent. Although the equation is essential for understanding the behavior 

of quantum systems, its complexity and the limitations of analytical methods often make its solution 

challenging. 

Finite difference method is a numerical technique used for approximating solutions to differential 

equations [2]. This method is commonly used in various fields such as physics, engineering, and finance 

to solve complex problems that are difficult or impossible to solve using analytical methods. The method 
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divides the domain of the Schrödinger equation into a grid of discrete points and approximates the 

derivatives in the Schrödinger equation using finite differences, which can be easily calculated using 

computer algorithms. 

This paper will use the finite difference method to numerically solve the second and first derivative 

of the time-independent Schrödinger equation in two-dimensional polar coordinates using central 

differences and forward differences respectively, and discuss the advantages and disadvantages of this 

method. In addition, this paper will provide examples of applying this method to various potential 

systems and discuss the accuracy of the obtained numerical solutions. Finally, this paper will discuss the 

potential future developments of using the finite difference method to solve the Schrödinger equation 

and its applications in quantum mechanics. 

This paper is organized into five parts. The second part of the paper reviews the literature on the use 

of finite difference methods to solve physical problems, such as the previous research on finite difference 

methods in heat conduction and wave function. The third part of the paper will focus on the central 

difference format and computational method for the Schrödinger equation. The fourth part of the paper 

will provide examples of the method's application under different conditions and error analysis. Finally, 

the fifth part of the paper will summarize the research, discuss the limitations of this study, and suggest 

future research directions. 

2.  Literature review 

In recent years, the finite difference method has been widely used in solving physical partial differential 

equations. Ge and Liu used the finite difference method to numerically solve the one-dimensional heat 

conduction equation in space [3]: 

 
𝜕𝑢

𝜕𝑡
= 𝑎2 𝜕2𝑢

𝜕2𝑥
  

while exploring the insulation effect of double-layer glass. This equation includes five different media, 

namely outdoor air, outer glass, intermediate air layer, inner glass, and indoor air, corresponding to 

different values of 𝑎 . The first-order and second-order partial derivatives of the equation were 

respectively discretized using backward difference and central difference, resulting in: 

 
𝑢𝑗

𝑛−𝑢𝑗
𝑛−1

𝜏
= 𝛼

𝑢𝑗+1
𝑛 −2𝑢𝑗

𝑛+𝑢𝑗−1
𝑛

ℎ
2   

where 𝜏 is the time step, and ℎ is the spatial step. Through numerical simulations, it was found that 

double-layer glass has strong thermal insulation effect. 

Ge and Xu also applied the finite difference method to solve the one-dimensional source-containing 

equation with the following form of the heat conduction equation inverse problem [4]: 

 𝑢𝑡(𝑥, 𝑡) = 𝐷𝑢𝑥𝑥(𝑥, 𝑡) + 𝑞(𝑥)𝑢(𝑥, 𝑡)  

They used the central difference method to approximate the second-order partial derivative of above 

equation. Then, by letting �̂� = 𝑇 − 𝑡,𝑤(𝑥, �̂�) = 𝑢(𝑥, 𝑡), they obtained the equation: 

 𝑤�̂�(𝑥𝑖, 𝑡) = −𝐷
𝑤(𝑥𝑖+ℎ,�̂�)−2𝑤(𝑥𝑖,�̂�)+𝑤(𝑥𝑖−ℎ,�̂�)

ℎ
2 + 𝑞(𝑥𝑖)𝑤(𝑥𝑖 , �̂�)  

Finally, they transformed the equation into matrix form and performed numerical simulations. They 

proved that this method has the characteristics of good stability and high accuracy in solving the inverse 

problem of heat conduction equation. 

Zhan et al. used the finite difference method to solve the heat conduction equation with a nonlinear 

convection term in a one-dimensional spatial model [5]: 

 𝑢𝑡(𝑥, 𝑦) − 𝑢𝑥𝑥(𝑥, 𝑡) + |𝑢𝑥(𝑥, 𝑡)|𝑝 = 𝑓(𝑥, 𝑡)   

They used forward difference for the first-order derivative term and central difference for the second-

order derivative term. Let 𝑓𝑗
𝑛 represent 𝑓(𝑥𝑗, 𝑡𝑛), the equation can be written as: 

Proceedings of the 2023 International Conference on Mathematical Physics and Computational Simulation
DOI: 10.54254/2753-8818/11/20230388

113



 
𝑢𝑗

𝑛+1−𝑢𝑗
𝑛

𝜏
−

𝑢𝑗+1
𝑛 +𝑢𝑗−1

𝑛 −2𝑢𝑗
𝑛

ℎ
2 + |

𝑢𝑗+1
𝑛 −𝑢𝑗

𝑛

ℎ
|
𝑝

= 𝑓𝑗
𝑛   

Then, they performed numerical calculations to investigate the influence of the exponent parameter 

𝑝 on the numerical difference solution. They compared the calculated results with the actual results and 

calculated the 𝐿2  norm of the exact solution 𝑢exact  and the numerical solution 𝑢app , given by 𝐿2 =
||𝑢exact − 𝑢app||2, as well as the infinite norm 𝐿∞ = ||𝑢exact − 𝑢app||∞, to represent the error. They found 

that when 𝑝 > 1, the error of the numerical solution of the equation is close at different times. When 

𝑝 < 1, the error of the numerical solution of the equation increases with time. 

LHP de Assis and EC Romao used fourth-order difference methods in cylindrical and spherical 

coordinate systems to discretize the heat conduction equation [6]: 

 𝜌𝑐𝑝 (
𝜕𝑇

𝜕𝑡
+ 𝑣𝑟

𝜕𝑇

𝜕𝑟
) = 𝑘 (

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑇

𝜕𝑟
)) + �̇�  

and 

 𝜌𝑐𝑝 (
𝜕𝑇

𝜕𝑡
+ 𝑣𝑟

𝜕𝑇

𝜕𝑟
) = 𝑘 (

1

𝑟2

𝜕

𝜕𝑟
(𝑟2 𝜕𝑇

𝜕𝑟
)) + �̇�  

The time derivative terms in above equations  were discretized using the Crank-Nicolson method to 

obtain: 

 𝑇𝑛+1 = 0.5𝛥𝑡

[
 
 
 𝛼 (

𝜕2 𝑇𝑛+1

𝜕𝑟2
) + (

𝛼

𝑟
− 𝑣𝑟) (

𝜕𝑇𝑛+1

𝜕𝑟
) + (

�̇�

𝜌𝑐𝑝
)
𝑛+1

+𝛼 (
𝜕2 𝑇𝑛

𝜕𝑟2
) + (

𝛼

𝑟
− 𝑣𝑟) (

𝜕𝑇𝑛

𝜕𝑟
) + (

�̇�

𝜌𝑐𝑝
)
𝑛

]
 
 
 

+ 𝑇𝑛  

and 

 𝑇𝑛+1 = 0.5𝛥𝑡

[
 
 
 𝛼 (

𝜕2 𝑇𝑛+1

𝜕𝑟2
) + (

2𝛼

𝑟
− 𝑣𝑟) (

𝜕𝑇𝑛+1

𝜕𝑟
) + (

�̇�

𝜌𝑐𝑝
)
𝑛+1

+𝛼 (
𝜕2 𝑇𝑛

𝜕𝑟2
) + (

2𝛼

𝑟
− 𝑣𝑟) (

𝜕𝑇𝑛

𝜕𝑟
) + (

�̇�

𝜌𝑐𝑝
)
𝑛

]
 
 
 

+ 𝑇𝑛  

Then, the spatial derivative terms were discretized using fourth-order central differences: 

 
𝜕𝑇

𝜕𝑟
=

−𝑇𝑖+2+8𝑇𝑖+1−8𝑇𝑖−1+𝑇𝑖−2

12𝛥𝑟
  

and 

 
𝜕2𝑇

𝜕𝑟2
=

−𝑇𝑖+2+16𝑇𝑖+1−30𝑇𝑖+16𝑇𝑖−1−𝑇𝑖−2

12𝛥𝑟2
  

Second-order central differences were used at the boundaries. Substituting the discretized spatial 

derivatives into the time-discretized equations yields: 

(
−𝛼𝛥𝑡

2𝛥𝑟2
+

𝛼𝛥𝑡

4𝑟𝛥𝑟
−

𝑣𝑟𝛥𝑡

4𝛥𝑟
)𝑇𝑖−1

𝑛+1 + (1 +
𝛼𝛥𝑡

𝛥𝑟2
)𝑇𝑖

𝑛+1 − (
𝛼𝛥𝑡

2𝛥𝑟2
+

𝛼𝛥𝑡

4𝑟𝛥𝑟
−

𝑣𝑟𝛥𝑡

4𝛥𝑟
)𝑇𝑖+1

𝑛+1 =
0.5𝛥𝑡𝑞𝑛+1̇

𝜌𝑐𝑝
+

(
𝛼𝛥𝑡

2𝛥𝑟2
−

𝛼𝛥𝑡

4𝑟𝛥𝑟
+

𝑣𝑟𝛥𝑡

4𝛥𝑟
)𝑇𝑖−1

𝑛 + (1 −
𝛼𝛥𝑡

𝛥𝑟2
)𝑇𝑖

𝑛 + (
𝛼𝛥𝑡

2𝛥𝑟2
+

𝛼𝛥𝑡

4𝑟𝛥𝑟
−

𝑣𝑟𝛥𝑡

4𝛥𝑟
)𝑇𝑖+1

𝑛 +
0.5𝛥𝑡𝑞�̇�

𝜌𝑐𝑝
  

and 

(
−𝛼𝛥𝑡

2𝛥𝑟2
+

𝛼𝛥𝑡

2𝑟𝛥𝑟
−

𝑣𝑟𝛥𝑡

4𝛥𝑟
)𝑇𝑖−1

𝑛+1 + (1 +
𝛼𝛥𝑡

𝛥𝑟2
)𝑇𝑖

𝑛+1 − (
𝛼𝛥𝑡

2𝛥𝑟2
+

𝛼𝛥𝑡

2𝑟𝛥𝑟
−

𝑣𝑟𝛥𝑡

4𝛥𝑟
)𝑇𝑖+1

𝑛+1 =
0.5𝛥𝑡𝑞𝑛+1̇

𝜌𝑐𝑝
+

(
𝛼𝛥𝑡

2𝛥𝑟2
−

𝛼𝛥𝑡

2𝑟𝛥𝑟
+

𝑣𝑟𝛥𝑡

4𝛥𝑟
)𝑇𝑖−1

𝑛 + (1 −
𝛼𝛥𝑡

𝛥𝑟2
)𝑇𝑖

𝑛 + (
𝛼𝛥𝑡

2𝛥𝑟2
+

𝛼𝛥𝑡

2𝑟𝛥𝑟
−

𝑣𝑟𝛥𝑡

4𝛥𝑟
)𝑇𝑖+1

𝑛 +
0.5𝛥𝑡𝑞�̇�

𝜌𝑐𝑝
   

Numerical calculations were performed on this result, and it was found that this differencing method 
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has high efficiency and low error in both cylindrical and spherical coordinate systems, as compared to 

the exact solutions. 

In addition to the heat conduction equation, the finite difference method is also often used to solve 

wave equations. Si and Chen used central difference to solve the one-dimensional wave equation [7]: 

 
𝜕2𝑢

𝜕𝑡2
= 𝑎2 𝜕2𝑢

𝜕𝑥2
+ 𝑓(𝑥, 𝑡)  

Let Δ𝑥 = ℎ, Δ𝑡 =  τ and use the central difference to transform the above equation into: 

 𝑢𝑗
𝑘+1 = 𝑠2(𝑢𝑗−1

𝑘 + 𝑢𝑗+1
𝑘 ) + 2(1 − 𝑠2)𝑢𝑗

𝑘 − 𝑢𝑗
𝑘−1 + 𝜏𝑓(𝑥𝑗, 𝑡𝑘)  

where 𝑠 =
𝑎τ

ℎ
 and the authors then conducted numerical simulations to study the vibration of a spring 

with a length of 1𝑚, fixed at one end, and oscillating with a period of 𝑇 = 1𝑠 under external force at 

the other end. The vibration equation at that point is given by: 

 𝑢(1, 𝑡) = 𝑠𝑖𝑛(2𝜋𝑡)   

The propagation speed of the vibration is 𝑎 = 1𝑚/𝑠. We take τ =  0.05𝑠, ℎ = 0.05𝑚. The equation 

obtained is: 

 𝑢𝑗
𝑘+1 = 𝑢𝑗−1

𝑘 +𝑢𝑗+1
𝑘 − 𝑢𝑗

𝑘−1   

with initial conditions 𝑢𝑗
0 = 0, 𝑢𝑗

1 = 0. Finally, it was found that this method can easily and quickly 

calculate the numerical solution of the wave equation and is applicable to different initial and boundary 

conditions. 

Zhang used Taylor expansion to derive a three-point central difference scheme for the two-

dimensional wave equation [8]: 

 
𝜕2𝑢

𝜕𝑡2
= 𝑎 (

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
)  

by substituting the expansions of each term into the equation: 

 𝑢𝑗,𝑘
𝑛+1 ≈ 2𝑢𝑗,𝑘

𝑛 − 𝑢𝑗,𝑘
𝑛−1 +

𝑎𝜏2

ℎ
2 ⋅ (𝑢𝑗+1,𝑘

𝑛 + 𝑢𝑗,𝑘+1
𝑛 − 4𝑢𝑗,𝑘

𝑛 + 𝑢𝑗−1,𝑘
𝑛 + 𝑢𝑗,𝑘−1

𝑛 )  

To derive a five-point central difference scheme, the author introduced the following approximation 

for the second-order derivative: 

 (
𝜕2𝑢

𝜕𝑥2
)
𝑗,𝑘

𝑛

= 𝑐1𝑢𝑗−2,𝑘
𝑛 + 𝑐2𝑢𝑗−1,𝑘

𝑛 + 𝑐3𝑢𝑗,𝑘
𝑛 + 𝑐4𝑢𝑗+1,𝑘

𝑛 + 𝑐5𝑢𝑗+2,𝑘
𝑛 + 𝑜(𝛥𝑥6)  

and solved for the coefficients, which are found to be 𝑐1 = −
1

12Δ𝑥2, 𝑐2 =
4

3Δ𝑥2, 𝑐3 = −
5

2Δ𝑥2, 𝑐4 =
4

3Δ𝑥2, 

𝑐5 = −
1

12Δ𝑥2, respectively. By substituting these coefficients into the above equation, a fourth-order, 

five-point central difference scheme for the second-order derivative 
∂2𝑢

∂𝑥2  is obtained. Then, by 

incorporating this scheme into the second-order approximation for 
𝜕2𝑢

𝜕𝑡2, the author derived the five-point 

difference scheme for the wave equation: 

𝑢𝑗,𝑘
𝑛+1 =

𝑎𝜏2

12ℎ
2 (−𝑢𝑗−2,𝑘

𝑛 + 16𝑢𝑗−1,𝑘
𝑛 − 60𝑢𝑗,𝑘

𝑛 + 16𝑢𝑗+1,𝑘
𝑛 − 𝑢𝑗+2,𝑘

𝑛 − 𝑢𝑗,𝑘−2
𝑛 + 16𝑢𝑗,𝑘−1

𝑛 + 16𝑢𝑗,𝑘+1
𝑛 −

𝑢𝑗,𝑘+2
𝑛 ) − 2𝑢𝑗,𝑘

𝑛 − 𝑢𝑗,𝑘
𝑛−1   

Comparing the five-point and three-point central difference schemes, the author found that the former 

improves the accuracy of the approximate solution from second order with respect to the spatial variable 

to fourth order, while maintaining the same accuracy with respect to the time variable. 

Sun and Wang used finite difference method to study the deflection equation of a charged thin film 
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in an electronic capacitor under fixed boundary conditions [9]: 

 𝜀2 𝜕2𝑢

𝜕𝑡2
+

𝜕𝑢

𝜕𝑡
− 𝛥𝑢 = −𝜆

1

𝑢2
  

where 𝑢 represents the deflection of the thin film, ε2 is the ratio of inertial damping force, and λ > 0 is 

a control parameter. When λ is smaller than the critical voltage 𝜆∗, the thin film can reach a steady state 

in finite time, which means there exists a stable solution. Therefore, obtaining the steady state solution 

of the equation is crucial for determining 𝜆∗ . First, the bounded region is divided into an 𝑀 × 𝑁 

rectangular grid, and the equation is transformed into: 

 (𝑢�̃�)𝑖

𝑗+
1

2 − (𝑢𝑥�̃�)𝑖

𝑗+
1

2 = −(
𝜆

𝑢2̃
)
𝑖

𝑗+
1

2
  

By Taylor expanding at (𝑖Δ𝑥, 𝑗Δ𝑡) and simplifying, the difference format is obtained: 

 [1 −
𝛥𝑡

2

2𝜆

(𝑢𝑖
�̃�
)

3] 𝛿𝑡𝑢𝑖

𝑗+
1

2

̃
− 𝛿𝑥

2𝑢𝑖

𝑗+
1

2

̃
= −

𝜆

(𝑢𝑖
�̃�
)

2 + 𝑂(𝛥𝑥2 + 𝛥𝑡2)  

It is proved that this format converges to second order in time and space in the discrete 𝑙2 space, and 

is unconditionally stable in the energy norm. Finally, numerical simulations are conducted and compared 

with the numerically exact solution, which verifies the effectiveness of this difference format. 

Qiao et al. discretized the Schrödinger equation using the five-point finite difference formula in the 

finite difference method [10]: 

 −
ℏ

2

2𝑚

d
2

d𝑥2
𝜓(𝑥) + 𝑉(𝑥)𝜓(𝑥) = 𝐸𝜓(𝑥)  

The discretized equation is obtained as follows: 

 −
ℏ

2

2𝑚

1

12h
2 (−𝜓𝑖−2 + 16𝜓𝑖−1 − 30𝜓𝑖 + 16𝜓𝑖+1 − 𝜓𝑖+2) = 𝐸𝜓(𝑥)  

Then, the kinetic energy and potential energy terms in this expression were transformed into matrix 

form: 

(

 
 
 
 
 

−30𝑎 + 𝑉(𝑥1) 16𝑎 −𝑎

16𝑎 −30𝑎 + 𝑉(𝑥2) 16𝑎 −𝑎

−𝑎 16𝑎 −30𝑎 + 𝑉(𝑥3) 16𝑎 −𝑎

⋱
− 16𝑎 −30𝑎 + 𝑉(𝑥𝑛−2) 16𝑎 −𝑎

−𝑎 16𝑎 −30𝑎 + 𝑉(𝑥𝑛−1) 16𝑎

−𝑎 16𝑎 −30𝑎 + 𝑉(𝑥𝑛))

 
 
 
 
 

    

where 𝑎 = −
ℏ2

24𝑚ℎ2 and subsequently, the numerical solution of the equation was obtained by setting 

non-dimensional parameters and solving for the eigenvalues of the matrix. The eigenvalues calculated 

by the five-point difference method were found to be in good agreement with the analytical solutions 

obtained using wave mechanics. 

3.  Methodology 

Consider the time-independent Schrödinger equation in two-dimensional Cartesian coordinates: 

 −
ℏ

2

2𝑚
(

𝜕2

𝜕𝑥2
+

𝜕2 

𝜕𝑦2 
)  𝜓 +  𝑉(𝑥, 𝑦) 𝜓 =  𝐸 𝜓 (1) 

Transforming equation (1) into polar coordinates, we have: 

 −
ℏ

2

2𝑚
(

1

𝑟

𝜕

𝜕𝑟
+

𝜕2

𝜕𝑟2
+

1

𝑟2

𝜕2

𝜕𝜃2
)  𝜓 +  𝑉(𝑟, 𝜃) 𝜓 =  𝐸𝜓  (2) 
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For the two-dimensional isotropic problem, we have 
𝜕2𝜓

𝜕𝜃2
= 0, 𝑉(𝑟, 𝜃) = 𝑉(𝑟). Therefore, equation 

(2) can be simplified as: 

 −
ℏ

2

2𝑚
(

1

𝑟

𝜕

𝜕𝑟
+

𝜕2

𝜕𝑟2
)  𝜓 +  𝑉(𝑟) 𝜓 =  𝐸𝜓  (3) 

where 0 < 𝑟 < 𝑅 and discretizing the continuous equation, we choose a series of equidistant discrete 

points 𝑟1,⋯ , 𝑟𝑛−1 , 𝑟𝑛, with the expression for each point given by 𝑟𝑗 = (𝑗 −
1

2
) ℎ, where ℎ is the spatial 

step size. The corresponding wave function values at each point are ψ(𝑟1),ψ(𝑟2),⋯ ,ψ(𝑟𝑛−1), ψ(𝑟𝑛), 

which for convenience, we denote as ψ1,⋯ , ψ𝑛−1, ψ𝑛. 

We use forward difference method to approximate the first-order derivative and obtain the 

expression: 

 
𝜕𝜓𝑗

𝜕𝑟
=

𝜓𝑗+1−𝜓𝑗

ℎ
 (4) 

We use central difference method to approximate the second-order derivative and obtain the 

expression: 

 
𝜕2𝜓𝑗

𝜕𝑟2
=

𝜓𝑗−1−2𝜓𝑗+𝜓𝑗+1

ℎ
2  (5) 

where ℎ is the spatial step size. 

Substitute the obtained derivative expressions (4) and (5) into the discrete equation (3) and use 

(𝑗 −
1

2
) ℎ to represent rj. We can then rearrange the equation to obtain: 

 −
ℏ

2𝑚
(

1

(𝑗−
1

2
)ℎ

2
(−𝜓𝑗 + 𝜓𝑗+1) +

1

ℎ
2 (𝜓𝑗−1 − 2𝜓𝑗 + 𝜓𝑗+1)) + 𝑉 ((𝑗 −

1

2
) ⋅ ℎ)𝜓𝑗 = 𝐸𝜓𝑗  (6) 

Combining like terms in equation (6), we obtain: 

 −
ℏ

2𝑚
(

1

ℎ
2 𝜓𝑗−1 +

−2𝑗

(𝑗−
1

2
)ℎ

2
𝜓𝑗 +

𝑗+
1

2

(𝑗−
1

2
)ℎ

2
𝜓𝑗+1) + 𝑉 ((𝑗 −

1

2
) ⋅ ℎ)𝜓𝑗 = 𝐸𝜓𝑗 (7) 

The equation can be expressed in matrix form as 𝑇𝜓 + 𝑉𝜓 = 𝐻𝜓, where 𝑇 is the coefficient matrix 

of the kinetic energy term: 

𝑇 =
ℏ

2𝑚

(

 
 
 
 
 
 
 
 

2

(1−
1

2
)⋅ ℎ2

−
1+

1

2

(1−
1

2
)ℎ

2

−
1

ℎ
2

4

(2−
1

2
)⋅ ℎ2

−
2+

1

2

(2−
1

2
)ℎ

2

⋱

−
1

ℎ
2

2⋅(𝑛−1)

((𝑛−1)−
1

2
)⋅ ℎ2

−
(𝑛−1)+

1

2

((𝑛−1)−
1

2
)ℎ

2

−
1

ℎ
2

2⋅𝑛

(𝑛−
1

2
)⋅ ℎ2

)

 
 
 
 
 
 
 
 

 (8) 

𝑉 is the coefficient matrix of the potential energy term: 
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 𝑉 =

(

 
 
 
 
 

𝑉 (
1

2
⋅ ℎ)

𝑉 (
3

2
⋅ ℎ)

⋱

𝑉 ((𝑛 −
3

2
) ⋅ ℎ)

𝑉 ((𝑛 −
1

2
) ⋅  ℎ)

)

 
 
 
 
 

                    (9) 

ψ is the vector of wave function values at each point: ψ = (ψ
1

ψ
2

⋯ ψ
n−1

ψ
n)T. 

Let 𝑎 =
ℏ

2𝑚
 and based on 𝑇 + 𝑉 = 𝐻, we can obtain: 

H =

(

 
 
 
 
 
 
 
 

𝑎
2

(1−
1

2
)⋅ ℎ2 + 𝑉 (

1

2
⋅ ℎ) −𝑎

1+
1

2

(1−
1

2
)ℎ

2

−𝑎
1

ℎ2 𝑎
4

(2−
1

2
)⋅ ℎ2 + 𝑉 (

3

2
⋅ ℎ) −𝑎

2+
1

2

(1+
1

2
)ℎ

2

⋱

−𝑎
1

ℎ
2 𝑎

2⋅(𝑛−1)

((𝑛−1)−
1

2
)⋅ ℎ2

+ 𝑉 ((𝑛 −
3

2
) ⋅ ℎ) −𝑎

(𝑛−1)+
1

2

((𝑛−1)+
1

2
)ℎ

2

−𝑎
1

ℎ
2 𝑎

2⋅𝑛

(𝑛−
1

2
)⋅ ℎ2 + 𝑉 ((𝑛 −

1

2
) ⋅ ℎ)

)

 
 
 
 
 
 
 
 

  (10) 

With these transformations, the numerical solution of the Schrödinger equation is transformed into 

the problem of finding the eigenvalues and corresponding eigenvectors of the equation 𝐻ψ = 𝐸ψ.  

4.  Numerical experiment 

For convenience, let a be a non-dimensional parameter of 1, and obtain the total energy matrix 𝐻: 

H =

(

 
 
 
 
 
 
 
 

2

(1−
1

2
)⋅ ℎ2 + 𝑉 (

1

2
⋅ ℎ) −

1+
1

2

(0+
1

2
)ℎ

2

−
1

ℎ
2

4

(2−
1

2
)⋅ ℎ2 + 𝑉 (

3

2
⋅ ℎ) −

2+
1

2

(1+
1

2
)ℎ

2

⋱

−
1

ℎ
2

2⋅(𝑛−1)

((𝑛−1)−
1

2
)⋅ ℎ2

+ 𝑉 ((𝑛 −
3

2
) ⋅ ℎ) −

(𝑛−1)+
1

2

((𝑛−1)+
1

2
)ℎ

2

−
1

ℎ
2

2⋅𝑛

(𝑛−
1

2
)⋅ ℎ2 + 𝑉 ((𝑛 −

1

2
) ⋅ ℎ)

)

 
 
 
 
 
 
 
 

  (11) 

Assuming a spatial step size of ℎ = 0.01  and a study area of 0.005 ≤ 𝑟 ≤ 0.995 , we divide this 

circular two-dimensional space into 99 equal parts, with a total of 𝑛 = 100 calculation positions. We set 

up three different potential energy equations representing three electric potential fields, which are: 

Uniform electric potential field equation: 

 𝑉1(𝑟) = {
5000, 0 < 𝑟 < 1

∞, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (12) 

Distance-positive linear electric potential field equation: 

 𝑉2(𝑟) = {
10000𝑟, 0 < 𝑟 < 1

∞, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (13) 

Distance-negative linear electric potential field equation: 

 𝑉3(𝑟) = {
−10000𝑟 +  10000, 0 < 𝑟 < 1

∞, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (14) 

The average potential values of these three electric potential fields are all 5000. Among them, the 

first one is a uniform electric potential field, where the electric potential is equal at every position. The 

second and third electric potential fields are both linear electric potential fields, but the difference is that 
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the electric potential of the second potential field is positively correlated with distance, while the electric 

potential of the third potential field is negatively correlated with distance. 

By substituting the equations of the above three electric potential fields into a central matrix, three 

different models are obtained accordingly. Then, the corresponding r values of each position are 

respectively substituted into the three models to obtain three 100 × 100 matrices. Using the eig method 

in numpy to calculate the matrix, 100 eigenvalues and corresponding eigenvectors are obtained. 

Select the first three eigenvalues and their corresponding eigenvectors. Plot the square of the modulus 

of each eigenvector and its corresponding 𝑟  value in a two-dimensional graph to obtain probability 

density images.  

  

Figure 1.  Several probability density functions 

with V1. 

Figure 2. Several probability density functions 

with V2. 

By comparing Figure 1 and Figure 2, it can be observed that the positively correlated electric 

potential field has a stretching effect on the probability density image. Under this electric potential field, 

the peak of the Schrödinger equation shifts towards the far end. By comparing the Figure 1 and Figure 

3, it can be observed that the negatively correlated electric potential field has a compressing effect on 

the probability density image. Under this electric potential field, the peak of the Schrödinger equation 

shifts towards the near end. 

 

Figure 3. Several probability density functions with V3.  

5.  Conclusion 

This article discusses numerical solutions for the two-dimensional time-independent Schrödinger 

equation with isotropic properties. The equation is discretized using forward and central difference 
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methods to represent first and second derivative terms, respectively. The kinetic energy and potential 

energy terms of the equation are then transformed into matrices, converting the problem of solving the 

Schrödinger equation into the problem of solving matrix eigenvalues and eigenvectors. This method has 

the advantages of being computationally simple, fast, and highly accurate under different conditions. 

The method used in this paper weakens the dependence on the physical dimension, so that this method 

can obtain the qualitative characteristics of the Schrödinger equation solution and greatly simplify the 

calculation process at the same time. However, in more complex practical problems, the potential field 

environment of particles, the measurement of particle-related motion parameters, the coordination of 

dimensions and the precise determination of energy levels are all important factors that affect the 

theoretical research of the Schrödinger equation and its practical application. There is a certain room for 

improvement in the above aspects, which need to be paid attention to in the further development of the 

Schrödinger equation definite solution problem. 
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