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Abstract: Since the definition of matrices in 1855, matrix multiplication has played a crucial 

role in a wide range of fields. Over the years, numerous researchers have dedicated their efforts 

to improving the time complexity of this fundamental operation. This paper aims to delve into 

the historical development of matrix multiplication algorithms and methodologies employed to 

achieve these significant advancements in time complexity. By employing various approaches, 

researchers have been able to improve the time complexity of matrix multiplication, leading to 

a significant reduction from O (n3) to O (n237188). Across nearly two centuries, this progress is 

contributed by a lot of extraordinary scientists and researchers. This paper explores the practical 

implications of these improvements across various domains, such as computer science, physics, 

economics, and more. The development of more efficient matrix multiplication algorithms has 

enabled researchers and practitioners to tackle complex problems and explore new frontiers. In 

the future, with the rapid growth of machine learning techniques, matrix multiplication will 

continue to evolve and improve.  
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1.  Introduction 

Matrix multiplication is an essential operation in various areas of science and engineering, from physics 

and statistics to computer graphics and machine learning. The concept of matrices and matrix 

multiplication was first introduced by Arthur Cayley in 1855, laying the foundation for subsequent 

research in this area. Over the years, researchers have developed increasingly efficient algorithms for 

matrix multiplication, reducing the time complexity from O (n3) to the current best-known complexity 

of O (n237188). 

The development of matrix multiplication algorithms has a rich history, starting in the 1960s with 

the first fast matrix multiplication algorithms, for instance, Strassen's algorithm with a time complexity 

of O (n2.81) or better. In the following decades, many researchers worked to improve the efficiency of 

matrix multiplication, leading to notable algorithms such as the Coppersmith-Winograd algorithm with 

a complexity of O (n2376) and Storjohann's algorithm with a complexity of O (n2.373). Throughout the 

1990s and 2000s, researchers continued to explore different techniques, including hierarchical and 

recursive methods, as well as those that utilize multiple processors. More recently, François Le Gall 

discovered an algorithm with a complexity of O (n2.372) in 2014 [1], which was the previous best-known 

complexity for matrix multiplication until Duan, Wu, and Zhou's recent algorithm with a complexity of 

O (n2.37188) in 2022 [2]. 
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This paper aims to review the historical development of matrix multiplication algorithms, discussing 

the methods used to achieve significant improvements in time complexity. We will explore the practical 

implications of these results for various fields and identify potential future directions for research. By 

understanding the evolution of matrix multiplication algorithms, we can better appreciate the impact 

that these algorithms have had on scientific and engineering applications, and how they continue to 

shape the future of these fields. 

2.  Matrix multiplication 

To define a matrix, it could be described as a rectangular array of numbers arranged in rows and columns. 

The number of columns in the first matrix must equal the number of rows in the second matrix in order 

to multiply the two matrices. This is a fundamental operation in linear algebra. A new matrix is created 

by multiplying two other matrices. The final matrix shares exactly the same number of rows and columns 

with the first and second matrices. The elements of the two input matrices are the sum of the products 

of their respective components of the resultant matrix are calculated. For example, two matrices, A and 

B, with A having m rows and n columns and B having n rows and p columns, are present. To multiply 

A and B, we get a resulting matrix C. The sum of the products of the corresponding components of the 

i-th row of A and the j-th column of B, for each element in the resultant matrix C, where i represents the 

rows in matrix A from row 1 to row m and j represents the columns in matrix B from column 1 to column 

p. The resulting matrix C has n rows same as matrix A and p columns same as matrix B. For each 

element in the resulting matrix C, it can be computed as the sum of all products of corresponding row 

in matrix A and corresponding column in matrix B. 

To compare the efficiency of different algorithms, the concept of time complexity is introduced. The 

time complexity of an algorithm is a measure of the amount of time it will take to run as a function. In 

particular, the notation O is a method to represent time complexity called Big-O-Notation. For example, 

O (n) is used to describe the time complexity with respect to the input size n. The notation O (n) means 

that the time complexity grows no faster than a constant times n, as n gets very large. Also, the growth 

rate of O (n) will be linear in the graph. If an algorithm has a time complexity of O (n2), it means that 

the time it takes to run grows no faster than a constant times n squared, as n gets very large. The growth 

rate will be parabola in the graph.  

Then, we could use this method to calculate the time complexity of matrix multiplication. The naive 

approach, the simplest algorithm, is simple nested loops. In other words, we loop m, n, and q to get their 

products and add them together. The time complexity is O (n3) because the algorithm needs to compute 

each element of the resulting matrix by calculating the sum of n products, each of which requires n 

multiplications and n-1 additions. Consequently, for every component of the resultant matrix, there are 

n2 multiplications and n2- n additions. Since there are n2 elements in the resulting matrix, the total 

number of operations required is n to the cube operations. 

3.  Strassen’s algorithm and coppersmith-winograd algorithm 

The naive algorithm for two n×n matrix multiplication requires n3 scalar multiplications and n3 – 

n2 scalar additions. That’s a lot of calculations, especially when the size of matrix n grows to a great 

number. In the 1960s, Volker Strassen published a paper about a clever way of two 2*2 matrices 

multiplication [3]. He divided a matrix into four submatrices of equal size, and recursively compute the 

products of these submatrices. Here is the idea of Strassen’s algorithm. Let A and B be two matrices of 

size n x n, and C is the result of their products. Let A1, A2, A3, A4, B1, B2, B3, B4, and C1, C2, C3, 

C4 be their corresponding submatrices of size 
n

2
×

n

2
. 

 

(
A1 A2
A3 A4

) (
B1 B2
B3 B4

)  =  (
C1 C2
C3 C4

) 

𝑃1 =  𝐴1 × (𝐵2 −  𝐵4) 𝑃2 =  (𝐴1 +  𝐴2)  ×  𝐵4 𝑃3 =  (𝐴3 +  𝐴4)  ×  𝐵1 

𝑃4 =  𝐴4 × (𝐵3 −  𝐵1)  𝑃5 =  (𝐴1 +  𝐴4)  ×  (𝐵1 +  𝐵4) 

𝑃6 =  (𝐴2 −  𝐴4) ×  (𝐵3 +  𝐵4)  𝑃7 =  (𝐴1 –  𝐴3) ×  (𝐵1 +  𝐵2) 

𝐶1 =  𝑃5 +  𝑃4 −  𝑃2 +  𝑃6  𝐶2 =  𝑃1 +  𝑃2 

(1) 
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𝐶3 =  𝑃3 +  𝑃4  𝐶4 =  𝑃5 +  𝑃1 −  𝑃3 − 𝑃7 

Strassen's algorithm used only seven multiplications and 18 additions or subtractions to multiply two 

matrices.If Strassen’s algorithm and the naïve algorithm are applied to two m*m matrices, the total 

operation count for the naïve algorithm is m3 + m3 – m2. However, with Strassen’s algorithm, the 

total operation count is  

7 ×  (2 (
m

2
)3  −  (

m

2
)2)  +  18 (

m

2
)2  =  

7

4
𝑚3  +   

11

4
𝑚2.      (2) 

The ratio of operation counts for two different algorithms is  
7

4
m3 + 

11

4
m2

m3+ m3− m2 
 = 

7m3+11m2

8m3−4m2 .          (3) 

With the size of matrices m increasing, the ratio of the two algorithms increases more. In other words, 

Strassen’s algorithm will become more efficient, with a nearly 12.5% improvement over the naïve 

algorithm [4]. Strassen’s algorithm could be a great start to calculate the matrix multiplication, and he 

improved the time complexity to O (n2.81). Then, in 1981, based on the method of Strassen, the 

Coppersmith-Winograd algorithm, developed by Coppersmith and Winograd, improved Strassen’s 

algorithm to use 7 multiplications and only 15 adds or subtracts. He used another combinational structure 

of matrices A, B, and C. [4] 

 

𝑃1 =  𝐴1 ×  𝐵1  𝑃2 =  𝐴2 ×  B3 

𝑃3 =  𝐴4 × (𝐵1 −  𝐵2 − 𝐵3 +  𝐵4)  𝑃4 =  (𝐴1 −  𝐴3)  ×  (−𝐵2 +  𝐵4) 

𝑃5 =  (𝐴3 +  𝐴4)  ×  (−𝐵1 +  𝐵2)  𝑃6 =  (𝐴1 +  𝐴2 −  𝐴3 −  𝐴4)  ×  𝐵4 

𝑃7 =  (𝐴1 −  𝐴3 −  𝐴4)  ×  (𝐵1 −  𝐵2 +  𝐵4) 

𝐶1 =  𝑃1 +  𝑃2  𝐶2 =  𝑃1 +  𝑃5 +  𝑃6 − 𝑃7 

𝐶3 =  𝑃1 −  𝑃3 +  𝑃4 −  𝑃7  𝐶4 =  𝑃1 +  𝑃4 + 𝑃5 −  𝑃7 

(4) 

Coppersmith-Winograd’s algorithm improves on Strassen’s algorithm by reducing the number of 

required recursive steps, which reduces the number of arithmetic operations needed. The Fast Fourier 

Transform (FFT) makes use of the fact that matrix multiplication can be represented as a convolutional 

operation for the purposes of this algorithm. Winograd's algorithm splits the matrices into smaller 

submatrices, computes their convolutions using the FFT, and then combines these convolutions to obtain 

the product of the original matrices. This algorithm reduces the number of multiplications needed further 

from Strassen's algorithm and improves the time complexity to O (n2.376).  

4.  William’s algorithm 

In 2012, Virginia Vassilevska Williams introduced a paper "Multiplying Matrices Faster than 

Coppersmith-Winograd" introducing her algorithm named Williams' algorithm [5]. She used a technique 

named randomization, which is always used for solving computational problems. William’s algorithm 

samples a small number of entries from the matrices and uses these samples to estimate the result of the 

full matrix multiplication. If William’s algorithm could choose the sampling distribution and the number 

of samples carefully, it is possible to achieve high accuracy with a smaller number of operations than 

the Coppersmith-Winograd algorithm [6]. Also, William’s approach involved two main theorems. The 

first theorem entails choosing a specific group partitioning for any tensor power (An) of a fundamental 

algorithm A and devising a way to generate formulas for lower bounds on the values of these groups. 

The second theorem is that they assume they know the values for An and could use an efficient method 

to output a nonlinear constraint program with O (n2) variables. The solution to this program provides a 

bound on ω. This approach allows for the analysis of any algorithm, including the algorithm with higher 

tensor powers through the use of a computer. The tensor of Matrix Multiplication corresponding to the 

multiplication of an m*n matrix by an n*p matrix is 

< 𝑚, 𝑛, 𝑝 > =  ∑ ∑ ∑ aik
n
k=1

p
j=1

m
i=1 ⊗ bkj ⊗ cij.       (5) 

William uses these methods for the 2nd, 4th, and 8th tensor powers of the Coppersmith-Winograd 

algorithm, and with each new tensor power, she gets better bounds [7, 8]. Then she could calculate the 

matrix multiplication in O (n2.3729), which is faster than the Coppersmith-Winograd algorithm. The 

most recent found algorithm for matrix multiplication will be the Duan-Wu-Zhou algorithm in 2022. 
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They used the similar method block structure to maximize the reuse of the intermediate results and 

minimize the number of multiplications required to compute the final output. They improved the time 

complexity of this problem to a new level, O (n2.376) [8]. 

Last but not least, to consider each algorithm, a very important point could not be ignored is the 

memory usage. Various algorithms use different number of operations to process matrices, which lead 

to different memory usages, such as Strassen's algorithm and Coppersmith-Winograd's algorithm. 

Strassen's algorithm needs to allocate memory to their submatrices. It requires the allocation of 7 

temporary matrices, each with size of 
n

2
×

n

2
. Coppersmith-Winograd's algorithm could reduce the 

number of multiplications required, but it requires even more memory than Strassen's algorithm. Since 

Coppersmith-Winograd's algorithm recursively divides the matrices into 15 submatrices and requires 

the memory to store them. Specifically, Coppersmith-Winograd's algorithm requires the allocation of 

122 temporary matrices, each with the size of 
n

3
×

n

3
. Sometimes, the better time complexity of an 

algorithm needs the sacrifice of more memory usage.  

5.  Matrix multiplication application and future development 

Matrix multiplication is a versatile technique can be applied across various fields including physics, 

engineering, computer science, and economics. Within the realm of computer science, matrices are 

commonly used, and matrix multiplication enables computers to perform significant precomputed 

computational tasks. Although creating a matrix that produces valuable computational outcomes can be 

challenging, the process of performing matrix multiplication itself is straightforward. One specific area 

where matrix multiplication is applied generally is the graphics. In this context, digital images can be 

represented as matrices, where the numerical values correspond to the colors of pixels. For example, 

matrix multiplication is employed in decoding digital videos, and researchers at MIT have successfully 

developed a chip that implements an advanced video-coding standard for ultra-high-definition 

televisions. They achieved this by identifying patterns in the matrices utilized. [9] Similarly, matrix 

multiplication plays an essential role in processing digital sound. By representing a digital audio signal 

as a sequence of numbers that capture the variations in air pressure over time, matrix multiplication 

facilitates techniques like filtering and compressing digital audio signals. The Fourier transform, used 

in such processes, also relies on matrix multiplication.  

As we can see, matrix multiplication is very important, not only in computer science, so improving 

the time complexity of matrix multiplication becomes an essential task. The development of matrix 

multiplication algorithms, including Strassen's, Coppersmith-Winograd’s, and Williams' algorithms 

mentioned in this paper, has greatly contributed to the matrix multiplication problem. These researchers 

have dedicated their efforts to improving the time complexity of these problems that led to significant 

advancements in the computer science field.  

In addition to the advancements in matrix multiplication algorithms, the future of this field looks 

promising with the development of artificial intelligence. With neural networks and artificial 

intelligence developing so quickly, there will be an increased need for efficient matrix multiplication 

algorithms. Scientists have previously utilized profound support learning (DRL) to find provably right 

and effective framework augmentation calculations [10]. By formalizing a rich space of framework 

increase calculations as low-rank disintegrations of a 3D tensor, the hunt interaction becomes 

manageable to mechanization. By enabling machines to recognize and generalize patterns in tensors, 

DRL provides a novel approach, allowing for the prediction of efficient decompositions. Also, an 

artificial intelligence company called DeepMind has already broken the 50-year mathematic record [11]. 

Thus, the future of matrix multiplication looks promising with the development of artificial intelligence 

and the potential for new and more efficient algorithms. 

6.  Conclusion 

Throughout this paper, we have examined the progress of time complexity in matrix multiplication 

algorithms. Starting with the naive approach, this paper explored significant milestones and breakthroughs that 
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have led to improved efficiency and reduced computational costs. From naïve approach with time 

complexity O (n3) to the most recent advancements O (n237188), researchers have continuously pushed 

the boundaries of efficiency in matrix multiplication. The development of matrix multiplication 

algorithms in history serves as a testament to the power of human innovation and the pursuit of 

knowledge. The advancements made in this field have led to improvements in various fields and 

applications, and we can only imagine what possibilities await us in the future. Once again, we express 

our gratitude to the researchers who have dedicated their time and effort to this field, and we look 

forward to the future advancements that will undoubtedly come. 
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