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Abstract. Feistel structure was firstly proposed in 1973, and because its structure has a great 

avalanche effect and similar encryption and decryption, it was used in many encryption schemes, 

like DES, AES, CAST. According to the ambiguity of the intermediate state, Feistel structures 

are separately named as Feistel-1, Feistel-2 and Feistel-3.Even though some of efficient analysis 

were proposed to attack the Feistel structure such as differential cryptanalysis and linear attack, 

these attacks are only applicable to a given Feistel structure and cannot have a general analysis 

of all Feistel structures. To attack the general Feistel structure, splice and cut, key linearization, 

and meet-in-the-middle attack have been used to propose the general key recovery attack on 

various Feistel architectures. This paper summarizes these results and proposes the research 

direction of the MITM attack of the Feistel structure, especially for the generic key recovery on 

different round functions and combination with modern means, like the application of Simon 

algorithm, which can build 3-round distinguisher on the Feistel structure. 

Keywords: cryptography, block cipher, meet-in-the-middle attack, generic key recovery attack.  

1.  Introduction 

In 1973, while working on the architecture of Lucifer, Feistel suggested the now-famous Feistel structure 

[1]. Feistel structure is a block cipher structure, with n-bits input and n-bits output and usually n/2-

bits permutations in a single round, which is called "branch". After each round, the Feistel structure 

switches its left branch and right branch to make each branch permutable. Due to the reason that Feistel 

structure has the similar encryption and decryption, and it has a well performance on the avalanche 

effect, Famous ciphers use Feistel structure, such as DES, Camellia and CAST.  

Based on the clarity of the given encryption process, Feistel structure can be dived into 3 types, 

Feistel-1, Feistel-2 and Feistel-3, and because Feistel structure is widely used, a lot of ways to challenge 

its safety is produced. Differential analysis, linear analysis are commonly used in attacking the Feistel 

structure. However, these attacks depends on the specific permutations the Feistel structure has. Then, 

an approach known as generic key recovery is presented to crack the Feistel structure. The generic key 

recovery attack does not focus on the specific permutations the Feistel structure has, so some of the pre-

computations can be done before attacking the specific encryption schemes. In recent years, several 

generic key recovery attacks have been proposed to attacking different types of the Feistel structures 

mentioned above. This paper is going to summarize the development of the Feistel-1 and Feistel-2 

structures (especially when the length of key equals the length of the plaintext/ciphertext, denoted as 
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𝑘 = 𝑛). 

2.  The development of the generic key recovery attack on Feistel-1 

Feistel-1 structure refers to the Feistel structure where the F-functions are randomly keyed. 

 

Figure 1. Feistel-1 structure [3].  

2.1.  Notations 

𝛹𝑘:k-round Feistel structure 

𝐿𝑖 , 𝑅𝑖: the Feistel-1 structure's 4-cycle input 

𝑌𝑖: the output of the 2-round Feistel-1 structure 

𝑆𝑖, 𝑇𝑖: the output of the 4-round Feistel-1 structure 

𝑍𝑖:the output of the 5-round Feistel-1 structure 

𝑚:the total numbers of the known input o 

𝑖:the i-th input, 1 ≤ 𝑖 ≤ 𝑚 

2.2.  A 5-round distinguisher used on Feistel-1 structure  

In 2004, Patarin [2] proposed that based on the adaptive chosen plaintext attack (CPA-1), a 5-round 

distinguisher can be constructed when choosing 2𝑛/2’ plaintexts and with 𝑂(2𝑛/2)  computations, and 

based on the known plaintext attacks (KPA), another 5-round distinguishers can be constructed with 

choosing 23𝑛/4’ plaintexts and with 𝑂(23𝑛/4)  computations. Denote the 5-round Feistel structure as 

Ψ5. 

2.2.1.  The CPA-1 distinguisher on 𝛹5. Conclusion: Fix that the 𝐿𝑖 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, ∀𝑖, 1 ≤ 𝑖 ≤ 𝑚,then 

count the number 𝑁 of (𝑖, 𝑗) such that 𝑆𝑖 = 𝑆𝑗 and 𝐿𝑖 ⊕ 𝑇𝑖 = 𝐿𝑖 ⊕ 𝑇𝑗, the number of 𝑁 is about 

double for the 𝛹5 compared with the random permutation, which builds the distinguisher. 

Proof: 

If 𝑆𝑖 = 𝑆𝑗 

𝐿𝑖 ⊕ 𝑇𝑖 = 𝐿𝑗 ⊕ 𝑇𝑗 ⇔ 𝐿𝑖 ⊕ 𝑍𝑖 = 𝐿𝑗 ⊕ 𝑍𝑗 ⇔ 𝑓1(𝑅1) ⊕ 𝑓3(𝑌𝑖) = 𝑓1(𝑅1) ⊕ 𝑓3(𝑌𝑗) 

⇔ 𝑓3 (𝑅1 ⊕ 𝑓2(𝐿𝑖 ⊕ 𝑓1(𝑅1))) = 𝑓3 (𝑅1 ⊕ 𝑓2 (𝐿𝑗 ⊕ 𝑓1(𝑅1))) 

It means that 𝑓2(𝐿𝑖 ⊕ 𝑓1(𝑅1)) = 𝑓2(𝐿𝑗 ⊕ 𝑓1(𝑅1)),  or if they are distinct, they have the distinct 

values, they would have the same images by 𝑓3. Thus, the count number 𝑁 is as twice much as when 

the plaintexts go through the 𝛹5 than the truly random permutations. 

2.2.2.  The KPA on the 𝛹5. Patarin [2] hypothesised that the CPA attack could become a KPA: instead 

of counting the number 𝑁 such that 𝑆𝑖 = 𝑆𝑗, 𝐿𝑖 ⊕ 𝑇𝑖 = 𝐿𝑗 ⊕ 𝑇𝑗, the number 𝑁 ′ will be incremented 

by one such that (𝑖, 𝑗), 𝑅𝑖 = 𝑅𝑗, 𝑆𝑖 = 𝑆𝑗 𝑎𝑛𝑑 𝐿𝑖 ⊕ 𝑇𝑖 = 𝐿𝑗 ⊕ 𝑇𝑗, and to make KPA efficient, the number 

of the chosen plaintexts should go up to 23𝑛/4 and with 𝑂(23𝑛/4) computations. With this finding, 

Patarin [2] could reduce attackers’ abilities but get the same result. 
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2.3.  Attacking the 3-round Feistel-1 structure with a general key recovery strategy 

Patarin [2] constructed a 5-round generic distinguisher. The distinguisher is too speculative for the 

generic key recovery attack. In 2013, Isobe and Shibutani [3] used All Subkeys Recovery (ASR) to 

attack 3-round Feistel-1 structure with broad key recovery. ASR attacks expand MITM attacks. ASR 

guesses subkeys instead of the master key using complex key scheduling methods. 

2.3.1.  The description of the all subkeys recovery attack. ASR is a two-way meet-in-the-middle attack. 

To be more specific, firstly, the attacker determines a 𝑡-bit matching state X, 𝑋 ∈ {0,1}𝑡, and through 

the forward direction, the set of the subkeys, denoted as 𝒦(1), and the function denoted as ℱ(1), so the 

matching state 𝑋 is derived from 𝑋 = ℱ(1)(𝑃, 𝒦(1)). Similarly, the state can also be computed from 

the back direction, denote the set of these subkeys as ℱ(2), and the matching state can be derived by 

𝑋 = ℱ(2)
−1 (𝐶, 𝒦(2)), C is the ciphertext. Finally, the remaining subkeys, which are not included in 

computing the match state, are gathered and denoted as 𝒦(3). Then it can be calculated that |𝒦(1)| +

|𝒦(2)| + |𝒦(3)| = 𝑟 ⋅ 𝑛/2, where 𝑟 is the number of rounds, and 𝑛 is the length of the keys. After the 

process, the attacker has 2𝑟⋅𝑛/2−𝑡 key candidates left. Then, the attacker can brute force all candidate 

keys, and the total computations, denoted as 𝐶𝑐𝑜𝑚𝑝 using 𝑁 plaintext/ciphertext pairs is estimated as: 

𝐶𝑐𝑜𝑚𝑝 = 𝑚𝑎𝑥 (2|𝒦(1)|, 2|𝒦(2)|) × 𝑁 + 2𝑟⋅𝑛/2−𝑁⋅𝑡     (1) 

The number of required plaintext/ciphertexts pairs is: 𝑚𝑎𝑥(𝑁, ⌈(𝑟 ⋅ 𝑛/2 − 𝑁 ⋅ 𝑡)/𝑛⌉) 

The required memory is about: 𝑚𝑖𝑛 (2|𝒦(1)|, 2|𝒦(2)|) ⋅ 𝑁, and it is easy to see that cost of the ASR is 

less than the brute force 2𝑛. 

2.3.2.  The ASR used in the Feistel-1 structure. On the premise that the ciphertext is of the same length 

as the keys, denoted as 𝑘 = 𝑛, the attacker can attack the 3-round Feistel-1 structure, the |𝒦(1)| =

|𝒦(2)| = 1 ⋅ 𝑛/2 bits, based on the equation computing the 𝐶𝑐𝑜𝑚𝑝, the number of the computations 

need 2𝑛/2+1(2𝑛/2 × 2 + 2𝑛/2) and about (2 × 2𝑛/2) blocks memory, which is absolutely less than the 

computations used in the brute force attack 2𝑛, which means that the ASR on the 3-round Feistel-1 

structure is efficient.  

2.4.  The improved ASR on the Feistel-1 structure 

Isobe [4] improved the ASR-based generic key recovery attack on the 4-round Feistel-1 structure a year 

later. Isobe et al [4] controlled the value of the plaintexts, the left input branch, 𝐿1 = 𝐶𝑂𝑁, and the 

𝐿2 = 𝑅1 ⊕ 𝐾1
′ , where 𝐾1

′ = 𝐹1(𝐾1 ⊕ 𝐶𝑂𝑁) and because 𝐾1
′ depends on the 𝐾1, so it can be regarded 

as a new n/2-bit subkey 𝐾1
′  is linearly inserted in the first round, and it is called the key linearization. 

The splice and cut [5] technique allows us to divide the 𝐾1
′   into ℱ(1) 𝑎𝑛𝑑 ℱ(2)  respectively. 

Therefore, to attack the 4-round Feistel-1 structure, guessing the 𝐾1 as 𝐾1
′  as the equivalence subkeys, 

and then |𝒦(1)| = |𝒦(2)| = 3𝑛/4 -bit, so 𝐶𝑐𝑜𝑚𝑝 = 23𝑛/4+2  computations and (3 × 23𝑛/4)  block 

memory is needed, in which the total complexity is much less than the brute force attacks (2𝑛), and this 

is the best result of the generic key recovery attack on the 4-round Feistel-1 structure. 

3.  The development of the generic key recovery attack on Feistel-2 

The Feistel-2 structure allows the subkeys XORed before the F-function. 
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Figure 2. Feistel-2 structure [3].  

It is easy to see that the Feistel-2 structure is not easier than the Feistel-1 structure, so the 

distinguisher proposed by Patarin [3] can be also used in the Feistel-2 structure. 

3.1.  Key recovery attack employing function reduction approach on a 5-round Feistel-2 structure 

3.1.1.  Function reduction. Denote that the 𝐿𝑟+1 and 𝑅𝑟+1  are the output of the r-round Feistel-2 

structure, and they are represented by the function ℱℒ,𝓇 , ℱℛ,𝓇  as 𝐿𝑟+1 = ℱℒ,𝓇(𝒦𝐿, 𝐿1|𝑅1)  and 

𝑅𝑟+1 = ℱ𝑅,𝓇(𝒦𝑅 , 𝐿1|𝑅1), and the 𝒦𝐿 , 𝒦𝑅 are sets of subkeys, so |𝒦𝐿| and |𝒦𝑅| can be computed as 

|𝒦𝐿| = 𝑛/2 × 𝑟, |𝒦𝑅| =  𝑛/2 × (𝑟 − 1), the Function Reduction Technique shows that when 𝐿1 is 

fixed, 𝒦𝐿 , 𝒦𝑅 contain at most (𝑛/2 ∙  𝑟)  and (𝑛/2 ∙  (𝑟 − 2)) subkey bits. 

3.1.2.  The use of the function reduction in the 5-round Feistel-2 structure. To implement the Function 

Reduction Method in a Feistel-2 framework with five rounds, Isobe 𝑒𝑡 𝑎𝑙.  [4] fixes the 𝐿1 =
𝐶𝑂𝑁{1}𝑎𝑛𝑑𝑅6 = 𝐶𝑂𝑁2 as the arbitrary (𝑛/2)-bit constants, and make the 𝑅4 as the matching state 

used in the MITM attack, and then compute the equivalence keys 𝐾2
′ = 𝐾2 ⊕ 𝐾1

′  and 𝐾1
′ =

𝐹(𝐾1 ⊕ 𝐶𝑂𝑁1). In the backward computation, the equivalence keys are 𝐾4
′ = 𝐾2 ⊕ 𝐾5

′  and 𝐾5
′ =

𝐹(𝐾5 ⊕ 𝐶𝑂𝑁2). In addition, 2𝑛/4 chosen plaintexts are used to make sure that 𝐿1 = 𝐶𝑂𝑁1 and 𝑅6 =

𝐶𝑂𝑁2 . By using the ASR attack, 𝐾2
′  and 𝐾4

′  can be estimated by the complexity 𝐶𝑐𝑜𝑚𝑝 =

𝑚𝑎𝑥(2𝑛/2, 2𝑛/2) × 2, and the same as 𝐾3 and 𝐾1
′′, where 𝐾1

′′ = 𝐾1
′ ⊕ 𝐾5. Finally after guessing the 𝐾1 

by 2𝑛/2 , all subkeys can be estimated, so the total complexity 2𝑛/2+2, which is less than the brute 

force attack 2𝑛, is efficient. 

 

Figure 3. The 5-round Feistel-2 structure attack [3].  

3.2.  The Feistel-2 6-round generic key recovery attack 

In 2016, Guo et al. built a 6-round key recovery attack and a Feistel-2 structure distinguisher. The 

attackers' rounds can be extended linearly as the key length increases. Guo's recovery attack combines 

differential analysis with generic key recovery to generate a precomputation table and make choices on 

its cost and size. Another advantage is that because Guo et al. uses the b − δ-set techniques, the 

number of the plaintexts can be reduced because each two of the plaintexts can become a pair as the 

input. 
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3.2.1.  5-round distinguisher on the Feistel-2 structure. Guo 𝑒𝑡 𝑎𝑙.  proposed that when the input 

difference is fixed as 0||𝑋, while the output difference is fixed as 𝑋′||0, thus the number of impossible 

internal state values of the three middle rounds for the plaintexts is restricted to 2𝑛/2, which means that 

the possible internal state can be tightened from 23𝑛/2 to 2𝑛/2, where the distinguisher is built. 

 

Figure 4. 5-round differential characteristic [6].  

3.2.2.  The 6-round key recovery attack. The 6-round key recovery assault extends the Feistel-2 

structure's 5-round distinguisher. Firstly, Guo𝑒𝑡 𝑎𝑙.constructed precomputation tables called 𝑇2, 𝑇4 , 

which aims at finding the input corresponding to the differential input and output 𝑋, 𝑋′., so do the 𝑇3. 

(To match the fixed internal state). After building the precomputation table, Guo 𝑒𝑡 𝑎𝑙. ergodic all the 

differential, and each of the difference, Guo 𝑒𝑡 𝑎𝑙. ergodics all the 𝑏 active bits of the 𝑏 − 𝛿set to 

compute all the corresponding 𝛥𝑣5. Then Guo 𝑒𝑡 𝑎𝑙. requires the oracle with the structure of 2𝑛/2+1 

plaintexts, and it can produce the 2𝑛 pairs that matches the left input difference. To match the right 

branch difference, it depends on the property, which means to regard the first round of the encryption 

as the random permutations, so there will be 2−𝑛/2  possibilities to match the right branch of the 

difference that the distinguisher needs, so 2𝑛/2 candidates pairs will be left, and for each of them, to 

match the precomputation table and find the appropriate candidate subkey for 𝐾0. After the process, 

Guo 𝑒𝑡 𝑎𝑙. construct the 𝑏 − 𝛿 set by modifying the active bits of 𝑣0. By the candidate subkeys 𝐾0, 

the author decrypts the candidate plaintexts and modify the left branch of the input, so that the value of 

the 𝑣1  remains unchanged. With the knowledge, 𝛥𝑣5  can be computed, and compared to the 

precomputation table 𝑇𝛿. If matches, then 𝐾0 is a correct subkey with high probability. Through this 

process, and the tradeoff of the data and time complexity, the ideal data complexity is 23𝑛/4 chosen 

plaintexts, while the time complexity is 23𝑛/4 encryptions, which are both less than the brute force 

attack. 

3.3.  The Feistel-2 7-round generic key recovery attack 

Based on Guo et al.’s distinguisher, Zhao et al. [7] suggested a 7-round generic key recovery attack by 

using the method called impossible-differential sieve technique, Zhao et al.  [7] found that with the 

same input proposed by Guo et al., after 7-round of the Feistel encryption, only 2𝑛/2−1  distinct values 

left. With this finding, Zhao et al.  [7] proposed the 7-round generic key recovery attack, and its 

complexity of data is 3 × 2𝑛−2  chosen plaintexts, while the complexity of time is 3 × 2𝑛−2 

encryptions. 

4.  Conclusion 

Developed from the basic key recovery attacks against the Feistel-1 and Feistel-2 structures, increasing 

rounds are being attacked, but one of the limitations is the connection between the distinguisher and the 
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real key recovery attack. Since the attacker does not know the internal state of the encryption, they can 

only collide with a lot of input pairs, which is wasteful. H. Kuwakado and M. Morii used post-quantum 

computation to identify the 3-round Feistel cypher from the random permutation [8]. Combining 

quantum and conventional distinguishers is another good idea. 
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