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Abstract. The investigation of nonsingular bilinear forms originates from the classification of 
division algebras over the real number field. Building upon this foundation, researchers have 
delved into the study of nonsingular bilinear forms over real number fields, leading to significant 
results such as Hopf’s theorem. However, the interest in understanding nonsingular bilinear 
forms extends beyond real number fields, prompting a desire to explore other fields as well. 
When it comes to algebraically closed fields, the theorem becomes well-understood, with 
essence captured by the Hopf-Smith theorem. Inspired by these established studies, we are 
motivated to further the comprehension of nonsingular bilinear forms over arbitrary fields. Given 
a field 𝕜𝕜, we study in this article numerical constraints on 𝑟𝑟, 𝑠𝑠,𝑛𝑛 for the existence of nonsingular 
bilinear maps 𝜙𝜙:𝕜𝕜𝑟𝑟 × 𝕜𝕜𝑠𝑠 → 𝕜𝕜𝑛𝑛 for not only algebraically closed fields and the real number field 
but also the rational number field and finite fields. We reach the final conclusion mainly through 
algebro-geometric techniques and the use of determinantal varieties. We reprove a result of 
Hopf–Smith which states that the minimal possible value of 𝑛𝑛  is 𝑟𝑟 + 𝑠𝑠 − 1  when 𝕜𝕜  is an 
algebraically closed field. When 𝕜𝕜 is the real number field, we prove that under a combinatorial 
condition, the minimal possible value of 𝑛𝑛 is still 𝑟𝑟 + 𝑠𝑠 − 1. We also show that when 𝕜𝕜 is the 
rational number field or a finite field, the minimal possible value of 𝑛𝑛 is max{𝑟𝑟, 𝑠𝑠}. 

Keywords: nonsingular bilinear forms, Hopf–Smith theorem, determinantal varieties, field 
extensions. 

1.  Introduction 
Let 𝕜𝕜 be a field. Let 𝑈𝑈,𝑉𝑉,𝑊𝑊 be nonzero 𝕜𝕜-vector spaces. We will be interested in the existence of 
bilinear maps satisfying certain nonsingular conditions. Following the notation of [1], we define 

Definition 1.1.  A bilinear map 𝜙𝜙:𝑈𝑈 × 𝑉𝑉 → 𝑊𝑊 is called nonsingular, if 

 𝜙𝜙(𝑢𝑢, 𝑣𝑣) = 0 implies 𝑢𝑢 = 0 or 𝑣𝑣 = 0. (1) 

Given a nonsingular bilinear map 𝜙𝜙:𝑈𝑈 × 𝑉𝑉 → 𝑊𝑊, it turns out that the dimension of 𝑊𝑊 is related to 
that of 𝑈𝑈 and 𝑉𝑉. For example, the non-singulariy of 𝜙𝜙 implies easily that 

Lemma 1.2.  max{dim𝑈𝑈, dim𝑉𝑉} ≤ dim𝑊𝑊. 
This motivates us to define the following invariant 𝑟𝑟#𝕜𝕜𝑠𝑠. 
Definition 1.3.  Let 𝑟𝑟, 𝑠𝑠,𝑛𝑛 be positive integers. We say the condition ℋ𝕜𝕜(𝑟𝑟, 𝑠𝑠,𝑛𝑛) holds, if there exist 

𝕜𝕜-vector spaces 𝑈𝑈,𝑉𝑉,𝑊𝑊 of dimension 𝑟𝑟, 𝑠𝑠,𝑛𝑛, respectively and there exists a nonsingular bilinear map 
𝜙𝜙:𝑈𝑈 × 𝑉𝑉 → 𝑊𝑊. Define 𝑟𝑟#𝕜𝕜𝑠𝑠 to be the minimal integer such that ℋ𝕜𝕜(𝑟𝑟, 𝑠𝑠, 𝑟𝑟#𝕜𝕜𝑠𝑠) holds. In other words, 

 𝑟𝑟#𝕜𝕜𝑠𝑠 : = min{𝑛𝑛 ∈ ℕ:ℋ𝕜𝕜(𝑟𝑟, 𝑠𝑠,𝑛𝑛) holds}. (2) 
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We have evident bounds for 𝑟𝑟#𝕜𝕜𝑠𝑠. 
Proposition 1.4.  max{𝑟𝑟, 𝑠𝑠} ≤ 𝑟𝑟#𝕜𝕜𝑠𝑠 ≤ 𝑟𝑟 + 𝑠𝑠 − 1. 
Let 𝑛𝑛 = 𝑟𝑟#𝕜𝕜𝑠𝑠. By the definition of 𝑟𝑟#𝕜𝕜𝑠𝑠, there exists a nonsingular bilinear map 𝜙𝜙:𝕜𝕜𝑟𝑟 × 𝕜𝕜𝑠𝑠 → 𝕜𝕜𝑛𝑛. 

Fix 𝑢𝑢 ≠ 0 ∈ 𝕜𝕜𝑟𝑟 and then we get a linear map 𝜙𝜙𝑢𝑢:𝕜𝕜𝑠𝑠 → 𝕜𝕜𝑛𝑛 given by 𝑣𝑣 ↦ 𝜙𝜙(𝑢𝑢, 𝑣𝑣). The non-singularity 
of 𝜙𝜙 implies that 𝜙𝜙𝑢𝑢 is injective. Therefore, 𝑛𝑛 ≥ 𝑠𝑠. Similarly, 𝑛𝑛 ≥ 𝑟𝑟. Hence, we can derive that 𝑟𝑟#𝕜𝕜𝑠𝑠 
must be greater than or equal to max{𝑟𝑟, 𝑠𝑠}. For the upper bound of 𝑟𝑟#𝕜𝕜𝑠𝑠, it suffices to construct the 
following map 𝜓𝜓:𝕜𝕜𝑟𝑟 × 𝕜𝕜𝑠𝑠 → 𝕜𝕜𝑟𝑟+𝑠𝑠−1 . Let 𝑢𝑢 ∈ 𝕜𝕜𝑟𝑟  be (𝑥𝑥0, 𝑥𝑥1, … , 𝑥𝑥𝑟𝑟−1) , and 𝑣𝑣 ∈ 𝕜𝕜𝑠𝑠  be 
(𝑦𝑦0,𝑦𝑦1, . . . ,𝑦𝑦𝑠𝑠−1). We define 𝑤𝑤 = 𝜓𝜓(𝑢𝑢, 𝑣𝑣) ∈ 𝕜𝕜𝑟𝑟+𝑠𝑠−1 as follows. Writing 𝑤𝑤 = (𝑧𝑧0, 𝑧𝑧1, … , 𝑧𝑧𝑟𝑟+𝑠𝑠−2), 𝑧𝑧𝑘𝑘 is 
defined as ∑ 𝑥𝑥𝑖𝑖𝑖𝑖+𝑗𝑗=𝑘𝑘 𝑦𝑦𝑖𝑖. It is obvious that this map is bilinear. It remains to check that 𝜓𝜓 is nonsingular. 
Let (𝑢𝑢, 𝑣𝑣) ∈ 𝕜𝕜𝑟𝑟 × 𝕜𝕜𝑠𝑠  satisfy 𝑤𝑤 = 𝜓𝜓(𝑢𝑢, 𝑣𝑣) = 0 . We want to show that 𝑢𝑢 = 0  or 𝑣𝑣 = 0. Assume by 
contradiction that 𝑢𝑢, 𝑣𝑣 are both nonzero. Writing 𝑢𝑢 = (𝑥𝑥0, … , 𝑥𝑥𝑟𝑟−1) (resp. 𝑣𝑣 = (𝑦𝑦0,𝑦𝑦1, … ,𝑦𝑦𝑠𝑠−1)), we 
can take the minimal 𝑖𝑖 (resp. 𝑗𝑗) such that 𝑥𝑥𝑖𝑖 (resp. 𝑦𝑦𝑗𝑗) is not zero. Then 𝑧𝑧𝑖𝑖+𝑗𝑗 can be calculated as ∑𝑖𝑖+𝑗𝑗
𝑥𝑥𝑖𝑖 𝑦𝑦𝑗𝑗 = 𝑥𝑥0𝑦𝑦𝑖𝑖+𝑗𝑗 + 𝑥𝑥1𝑦𝑦𝑖𝑖+𝑗𝑗−1 + ⋯+ 𝑥𝑥𝑖𝑖𝑦𝑦𝑗𝑗 + ⋯+ 𝑥𝑥𝑖𝑖+𝑗𝑗𝑦𝑦0 = 𝑥𝑥𝑖𝑖𝑦𝑦𝑗𝑗, which, obviously, cannot equal 0. This 
contradicts our assumption of 𝑤𝑤 = 0. Therefore, 𝜓𝜓 is nonsingular.  

Note that the bounds in Proposition 1.4 do not depend on the base field 𝕜𝕜. However, the subscript 𝕜𝕜 
in the definition of 𝑟𝑟#𝕜𝕜𝑠𝑠 indicates that the precise value of this invariant is dependent of the base field 
𝕜𝕜, and it is indeed the case. In fact, the main purpose of this article is to try to understand this invariant 
with different base fields. Our main result is the following 

Theorem 1.5 (Main Theorem).  (i) If 𝕜𝕜 is an algebraically closed field, then 𝑟𝑟#𝕜𝕜𝑠𝑠 = 𝑟𝑟 + 𝑠𝑠 − 1. 
(ii) In the real number cases, if the combinatoric number �𝑟𝑟+𝑠𝑠−2𝑟𝑟−1 � is an odd number, then 𝑟𝑟#ℝ𝑠𝑠 =

𝑟𝑟 + 𝑠𝑠 − 1. 
(iii) If 𝕜𝕜 is the rational number field ℚ or a finite field 𝔽𝔽𝑞𝑞, then 𝑟𝑟#𝕜𝕜𝑠𝑠 = max{𝑟𝑟, 𝑠𝑠}. 
It turns out that in general, 𝑟𝑟#𝕜𝕜𝑠𝑠 is quite hard to calculate. For example, determining the precise 

value of 11#ℝ14 is still a well-known open problem in this domain according to Theorem 12.21 in [1]. 
This justifies our desire to ask for an additional condition in Theorem 1.5 (ii). Also note that in Lemma 
5.8, we give some equivalent conditions for �𝑟𝑟+𝑠𝑠−2𝑟𝑟−1 � being an odd number. 

Let us briefly describe here the history of this research domain and technicalities we use to prove the 
main theorem. The first statement is a direct consequence of the following theorem of Hopf and Smith 
stated and proved in [2, 3]. 

Theorem 1.6 (Hopf-Smith [2, 3]).  Let 𝕜𝕜 be an algebraically closed field. Let 𝑈𝑈,𝑉𝑉,𝑊𝑊 be nonzero 
finitely dimentional 𝕜𝕜-vector spaces. Let  

𝜙𝜙:𝑈𝑈 × 𝑉𝑉 → 𝑊𝑊 

be a nonsingular bilinear map. Then dim𝑊𝑊 ≥ dim𝑈𝑈 + dim𝑉𝑉 − 1. 
Our statement here follows the notation as in Chapter 12 in [1]. An interesting application of this 

theorem is the Clifford’s theorem in algebraic curves theory that relates the degree and the rank of a 
divisor on an algebraic curve (see Chapter III section 1 in [4] for detail). The classical proof of this 
theorem consists of using algebraic topology theory on projective spaces. We will not talk about this 
classical proof here. Instead, we give an algebro-geometric proof of the theorem of Hopf-Smith which, 
we believe, is more universal. Indeed, the proof of the second statement of Theorem 1.5 also uses this 
cycle of ideas, which will be discussed in Section 6. Return to the proof of the theorem of Hopf-Smith. 
We will use the construction of Grassmannian manifolds and determinantal varieties, whose basic theory 
will be recalled in Sections 2 and 3. The inequality in the theorem of Hopf-Smith then comes from the 
following fundamental theorem in algebraic geometry whose proof can be found in [5]. 

 
Theorem 1.7.  Let 𝕜𝕜 be an algebraically closed field. Let 𝑋𝑋,𝑌𝑌 ⊂ ℙ𝑛𝑛 be projective varieties over 𝕜𝕜 

such that dim𝑋𝑋 + dim𝑌𝑌 ≥ 𝑛𝑛, then 𝑋𝑋 ∩ 𝑌𝑌 ≠ ∅. 
Remark.  When 𝑛𝑛 = 2, Theorem 1.7 is a special case of the Bézout’s theorem: if 𝑋𝑋, 𝑌𝑌 are curves 

that do not have common components, then the number of 𝑋𝑋 ∩ 𝑌𝑌 = deg𝑋𝑋deg𝑌𝑌 > 0, counted with 
multiplicities. 
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Note that if 𝕜𝕜 is not an algebraically closed field, then Theorem 7 becomes obviously wrong. For 
example, take 𝕜𝕜 = ℝ and 𝐶𝐶 and 𝐶𝐶′ be real projective plane curves defined by 𝑥𝑥0 = 0 and 𝑥𝑥02 − 𝑥𝑥12 −
𝑥𝑥22 = 0, respectively, then 𝐶𝐶 and 𝐶𝐶′ have no intersections. This explains the reason why we need the 
condition that 𝕜𝕜 is algebraically closed in Theorem 1.5 (i). 

The proof of Theorem 1.5 (ii) is subtler. We shall give two proofs of quite different nature to this 
fact. The first proof relies on the following theorem due to Hopf. 

Theorem 1.8 (Hopf [2]).  If there is a nonsingular bilinear map 𝜙𝜙:ℝ𝑟𝑟 × ℝ𝑠𝑠 → ℝ𝑛𝑛. Then whenever 
𝑛𝑛 − 𝑠𝑠 < 𝑘𝑘 < 𝑟𝑟, �𝑛𝑛𝑘𝑘� is even. 

Again the proof of this theorem uses homology group theory of real projective spaces and we refer 
those interested readers to Theorem 12.2 in [1] for the proof. Using this theorem and some elementary 
observations in combinatorial numbers that we will develop in Section 5, we finish the first proof the 
Theorem 1.5 (ii). 

The second proof of Theorem 1.5 (ii) is more direct and does not utilize the combinatorics. Instead, 
it relies on the construction of Grassmannian manifolds and determinantal varieties we recall in Sections 
2 and 3, and on the fact that under the condition stated in Theorem 1.5 (ii), the degree of the 
determinantal variety in the projective space is odd [6]. We write down the detail in Section 6 and 
terminate the second proof. 

The proof of Theorem 1.5 (iii) is quite easy and algebraic. It is a direct consequence of the fact that 
the field 𝕜𝕜 in question admits fields extensions of any degree. We give in Section 7 the proof of Theorem 
1.5 (iii). 

The organization of the article is as follows. In Section 2, we recall basic knowledge about 
Grassmannian manifolds and calculate their dimension. In Section 3, we present the determinantal 
varieties for later uses. In particular, we calculate the dimension of determinantal varieties. In Section 4, 
we prove Theorem 1.5 (i) using the algebro-geometric tools developed so far. In Section 5, we collect 
some elementary combinatorial observations and use them to give a first proof of Theorem 1.5 (ii) with 
the help of Hopf’s theorem (Theorem 1.8). In Section 6, we present a result of the degree of the 
determinantal varieties and use algebro-geometric arguments to give another proof of Theorem 1.5 (ii). 
In Section 7, we recall some basic knowledge about the degree of field extensions and discuss its relation 
with the invariant 𝑟𝑟#𝕜𝕜𝑠𝑠. We also use this discussion to prove Theorem 1.5 (iii). 

2.  Grassmannian manifolds 
In this section, we present basic knowledge on Grassmannian manifolds. The main references of this 
part are [7, 8]. We give a local description of these manifolds and determine their dimensions. 

Definition 2.1.  The Grassmannian manifold 𝐺𝐺𝑟𝑟(𝑘𝑘,𝑛𝑛) is defined as {𝑘𝑘-dimensional subspaces in 
𝕜𝕜𝑛𝑛}. 

Projective spaces are special cases of Grassmannian manifolds. By definition, projective manifolds 
parametrize 1-dimentional subspaces in a given vector space. Hence, ℙ𝑛𝑛−1 = 𝐺𝐺𝑟𝑟(1,𝑛𝑛). 

2.1.  A canonical affine cover of the Grassmannian manifolds 
As in the case of projective spaces, we can give a canonical affine cover of the Grassmannian manifolds. 
To do this, let us first give another description of elements in the Grassmannian manifolds. Let 𝐺𝐺𝑟𝑟(𝑘𝑘,𝑛𝑛) 
be the Grassmannian manifold. We show that every element in 𝐺𝐺𝑟𝑟(𝑘𝑘,𝑛𝑛) can be uniquely expressed by 
an equivalence class of 𝑘𝑘 × 𝑛𝑛 matrices, which plays the same role in the Grassmanian manifolds as the 
homogeneous coordinates in the projective spaces. 

Definition 2.2.  Let 𝑊𝑊,𝑊𝑊′ ∈ 𝑀𝑀𝑘𝑘×𝑛𝑛(𝕜𝕜) by two 𝑘𝑘 × 𝑛𝑛 matrices of rank 𝑘𝑘. We say that 𝑊𝑊 and 𝑊𝑊′ are 
equivalent if there exists a 𝑘𝑘 × 𝑘𝑘 invertible matrix 𝐴𝐴 such that 𝑊𝑊′ = 𝑊𝑊𝐴𝐴. For 𝑊𝑊 a 𝑘𝑘 × 𝑛𝑛 matrix of rank 
𝑘𝑘, denote [𝑊𝑊] the equivalence class of 𝑊𝑊. 

Lemma 2.3.  𝐺𝐺𝑟𝑟(𝑘𝑘,𝑛𝑛) = {[𝑊𝑊]:𝑊𝑊 is a 𝑘𝑘 × 𝑛𝑛 matrix of rank 𝑘𝑘}. 
Proof   Every element in 𝐺𝐺𝑟𝑟(𝑘𝑘,𝑛𝑛) is a 𝑘𝑘-dimensional subspace in 𝕜𝕜𝑛𝑛, which can be determined by 𝑘𝑘 

linearly independent vectors, denoted by (𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑘𝑘). Every vector in 𝕜𝕜𝑛𝑛 can be written as a column 
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vector of 𝑛𝑛 tuples, so by doing so for each of the 𝑤𝑤𝑖𝑖, we can get a 𝑘𝑘 × 𝑛𝑛 matrix for each element in the 
Grassmannian manifold 

�
𝑤𝑤11 … 𝑤𝑤𝑘𝑘1
… … …
𝑤𝑤1𝑛𝑛 … 𝑤𝑤𝑘𝑘𝑛𝑛

�. 

This matrix is of rank 𝑘𝑘 since the 𝑘𝑘 vectors 𝑤𝑤1, … ,𝑤𝑤𝑘𝑘 are linearly independent. Now let us determine 
when two matrices give the same point in the Grassmannian manifold. Let 𝑊𝑊 : = (𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑘𝑘) and 
𝑊𝑊′ : = (𝑤𝑤1′,𝑤𝑤2′, … ,𝑤𝑤𝑘𝑘′). Assume that 𝑊𝑊 and 𝑊𝑊′ determine the same subspace. Then every vector from 
𝑊𝑊′ can be expressed by a linear combination of the vectors from 𝑊𝑊, say 

�
𝑤𝑤1′ = 𝑎𝑎11𝑤𝑤1 + 𝑎𝑎21𝑤𝑤2 + ⋯+ 𝑎𝑎𝑘𝑘1𝑤𝑤𝑘𝑘

… …  …
𝑤𝑤𝑘𝑘′ = 𝑎𝑎1𝑘𝑘𝑤𝑤1 + 𝑎𝑎2𝑘𝑘𝑤𝑤2 + ⋯+ 𝑎𝑎𝑘𝑘𝑘𝑘𝑤𝑤𝑘𝑘

. 

Let 𝐴𝐴 be the matrix 

�
𝑎𝑎11 … 𝑎𝑎1𝑘𝑘
… … …
𝑎𝑎𝑘𝑘1 … 𝑎𝑎𝑘𝑘𝑘𝑘

�, 

So that we can get 𝑊𝑊′ = 𝑊𝑊𝐴𝐴 . Therefore, every element in the Grassmannian manifold can be 
uniquely determined by the equivalence class of 𝑘𝑘 × 𝑛𝑛 matrices of rank 𝑘𝑘.  

Definition 2.4.  Let 𝐼𝐼 = {𝑖𝑖1, … , 𝑖𝑖𝑘𝑘} ⊂ {1,2, … ,𝑛𝑛} be a subset of 𝑘𝑘 elements. Let 𝑈𝑈𝐼𝐼 be defined as 

��
𝑤𝑤11 … 𝑤𝑤𝑘𝑘1
… … …
𝑤𝑤1𝑛𝑛 … 𝑤𝑤𝑘𝑘𝑛𝑛

� ∈ 𝐺𝐺𝑟𝑟(𝑘𝑘,𝑛𝑛): det�
𝑥𝑥1𝑖𝑖1 … 𝑤𝑤𝑘𝑘𝑖𝑖1
… … …
𝑥𝑥1𝑖𝑖𝑘𝑘 … 𝑥𝑥𝑘𝑘𝑖𝑖𝑘𝑘

� ≠ 0�. 

Lemma 2.5.  𝐺𝐺𝑟𝑟(𝑘𝑘,𝑛𝑛) = ⋃
𝐼𝐼⊂{1,2,…,𝑛𝑛},|𝐼𝐼|=𝑘𝑘

𝑈𝑈𝐼𝐼. 

Proof Since the 𝑘𝑘 vectors representing a point in 𝐺𝐺𝑟𝑟(𝑘𝑘,𝑛𝑛) are linearly independent, some chosen 
𝑘𝑘 × 𝑘𝑘 submatrix of the 𝑘𝑘 × 𝑛𝑛 matrix formed by these vectors should be of full rank, which meets the 
requirement of keeping the determinant nonzero, and thus is in 𝑈𝑈𝐼𝐼 for some 𝐼𝐼. Therefore, the whole set 
of 𝐺𝐺𝑟𝑟(𝑘𝑘,𝑛𝑛) can be covered by the union set of all 𝑈𝑈𝐼𝐼. ▫ 

Finally, let us show that each 𝑈𝑈𝐼𝐼 can be identified as an affine space of dimension 𝑘𝑘(𝑛𝑛 − 𝑘𝑘) via a 
natural map 𝜙𝜙𝐼𝐼:𝑈𝑈𝐼𝐼 → 𝔸𝔸𝑘𝑘(𝑛𝑛−𝑘𝑘). Admitting this, we have 

Corollary 2.6.  The dimension of the Grassmannian manifold 𝐺𝐺𝑟𝑟(𝑘𝑘,𝑛𝑛) is 𝑘𝑘(𝑛𝑛 − 𝑘𝑘). 
The construction of 𝜙𝜙𝐼𝐼:𝑈𝑈𝐼𝐼 → 𝔸𝔸𝑘𝑘(𝑛𝑛−𝑘𝑘) as follows. Let 𝐼𝐼 = {𝑖𝑖1, … , 𝑖𝑖𝑘𝑘}. Let 𝑥𝑥 ∈ 𝑈𝑈𝐼𝐼 be a point. Then 𝑥𝑥 

is represented by a 𝑘𝑘 × 𝑛𝑛 matrix 𝑊𝑊 whose submatrix formed by the 𝑖𝑖1, … , 𝑖𝑖𝑘𝑘-th rows is invertible. But 
we can realize 𝑊𝑊 by a matrix whose 𝑖𝑖1, … , 𝑖𝑖𝑘𝑘-th rows form the identity matrix by doing 𝑊𝑊𝑊𝑊𝐼𝐼

−1, where 
𝑊𝑊𝐼𝐼 is the submatrix formed by 𝑖𝑖1, … , 𝑖𝑖𝑘𝑘-th rows of 𝑊𝑊. The matrix 𝑊𝑊𝑊𝑊𝐼𝐼

−1 represents 𝑥𝑥 as well since 𝑊𝑊 
and 𝑊𝑊𝑊𝑊𝐼𝐼

−1 are equivalent in the sense of Definition 2.2. Apart from the 𝑖𝑖1, … , 𝑖𝑖𝑘𝑘-th rows which form 
the identity matrix, the other entries of 𝑊𝑊𝑊𝑊𝐼𝐼

−1 are indetermined. There are 𝑘𝑘(𝑛𝑛 − 𝑘𝑘) such indetermined 
numbers. The map 𝜙𝜙𝐼𝐼:𝑈𝑈𝐼𝐼 → 𝔸𝔸𝑘𝑘(𝑛𝑛−𝑘𝑘) is defined by sending 𝑊𝑊 to the 𝑘𝑘(𝑛𝑛 − 𝑘𝑘) indetermined numbers 
in 𝑊𝑊𝑊𝑊𝐼𝐼

−1. 
Lemma 2.7.  For each 𝐼𝐼, the map 𝜙𝜙𝐼𝐼:𝑈𝑈𝐼𝐼 → 𝔸𝔸𝑘𝑘(𝑛𝑛−𝑘𝑘) is well-defined and bijective. 
Proof   To prove its well-definedness, let 𝑊𝑊 and 𝑊𝑊′ represent the same points in 𝑈𝑈𝐼𝐼. Then there is a 

𝑘𝑘 × 𝑘𝑘 invertible matrix 𝐴𝐴 such that 𝑊𝑊′ = 𝑊𝑊𝐴𝐴. In particular, we have 𝑊𝑊𝐼𝐼′ = 𝑊𝑊𝐼𝐼𝐴𝐴. Hence, 𝑊𝑊′𝑊𝑊𝐼𝐼′−1 =
𝑊𝑊𝐴𝐴(𝑊𝑊𝐼𝐼𝐴𝐴)−1 = 𝑊𝑊𝐴𝐴𝐴𝐴−1𝑊𝑊𝐼𝐼

−1 = 𝑊𝑊𝑊𝑊𝐼𝐼
−1, proving that the images of 𝑊𝑊 and 𝑊𝑊′ through 𝜙𝜙𝐼𝐼 operation are 

always equal. 
To prove the injectivity, let 𝑊𝑊 and 𝑊𝑊′ satisfy 𝜙𝜙𝐼𝐼(𝑊𝑊) = 𝜙𝜙𝐼𝐼(𝑊𝑊′). Since the 𝐼𝐼-th rows of 𝑊𝑊𝑊𝑊𝐼𝐼

−1 and 
𝑊𝑊′𝑊𝑊𝐼𝐼′−1 are both the identity matrix, 𝜙𝜙𝐼𝐼(𝑊𝑊) = 𝜙𝜙𝐼𝐼(𝑊𝑊′) implies that 𝑊𝑊𝑊𝑊𝐼𝐼

−1 = 𝑊𝑊′𝑊𝑊𝐼𝐼′−1. Hence, 𝑊𝑊′ =
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𝑊𝑊(𝑊𝑊𝐼𝐼
−1𝑊𝑊𝐼𝐼′) = 𝑊𝑊𝐴𝐴, where 𝐴𝐴 = 𝑊𝑊𝐼𝐼

−1𝑊𝑊𝐼𝐼′ is a 𝑘𝑘 × 𝑘𝑘 invertible matrix, which means that [𝑊𝑊′] = [𝑊𝑊]. 
This proves its injectivity. 

To prove the surjectivity, we construct a 𝑘𝑘 × 𝑛𝑛 matrix to represent an element in 𝔸𝔸𝑘𝑘(𝑛𝑛−𝑘𝑘). In this 
matrix, the 𝑖𝑖1, . . . , 𝑖𝑖𝑘𝑘-th rows form the identity matrix, while the rest 𝑛𝑛 − 𝑘𝑘 rows are filled by the given 
element in 𝔸𝔸𝑘𝑘(𝑛𝑛−𝑘𝑘) . Since any element in 𝔸𝔸𝑘𝑘(𝑛𝑛−𝑘𝑘)  can be represented by this sort of matrix, the 
surjectivity of this map proves to be true. ▫ 

2.2.  Tangent spaces of the Grassmannian manifolds 
In this section, we exhibit an explicit expression of the tangent space of the Grassmannian manifold at 
a given point. This description gives us another way to calculate the dimension of 𝐺𝐺𝑟𝑟(𝑘𝑘,𝑛𝑛) by the 
following 

Theorem 2.8.  Let 𝑋𝑋 be an irreducible algebraic variety and let 𝑥𝑥 ∈ 𝑋𝑋 be a regular point. Then 
dim𝑋𝑋 = dim𝑇𝑇𝑋𝑋,𝑥𝑥. 

We refer the reader to §6 in  for a proof of this result. 
Now let us give an explicit description of the tangent space of 𝐺𝐺𝑟𝑟(𝑘𝑘,𝑛𝑛) at the point 𝑥𝑥 ∈ 𝐺𝐺𝑟𝑟(𝑘𝑘,𝑛𝑛). 

Let 𝑉𝑉 = 𝑘𝑘𝑛𝑛 be the 𝑛𝑛-dimensional vector space. The point 𝑥𝑥 corresponds to a 𝑘𝑘-dimensional subspace 
𝑊𝑊 ⊂ 𝑉𝑉. To describe a tangent vector 𝑣𝑣 of 𝐺𝐺𝑟𝑟(𝑘𝑘,𝑛𝑛) at 𝑥𝑥, let 𝛾𝛾 be a path in 𝐺𝐺𝑟𝑟(𝑘𝑘,𝑛𝑛) passing through the 
point 𝑥𝑥 whose tangent vector is exactly 𝑣𝑣 ∈ 𝑇𝑇𝐺𝐺𝑟𝑟(𝑘𝑘,𝑛𝑛),𝑥𝑥. This path gives us a family of 𝑘𝑘-dimensional 
subspaces {𝑊𝑊𝑡𝑡} such that 𝑊𝑊0 = 𝑊𝑊. We claim that we can get a canonical linear map 𝑔𝑔𝑣𝑣:𝑊𝑊 → 𝑉𝑉/𝑊𝑊 by 
this family of 𝑘𝑘-dimensional subspaces. To do this, let 𝑤𝑤 ∈ 𝑊𝑊 = 𝑊𝑊0. Let {𝑤𝑤𝑡𝑡} be a smooth family of 
vectors such that 𝑤𝑤𝑡𝑡 ∈ 𝑊𝑊𝑡𝑡 for any 𝑡𝑡. This family of vectors gives us a path in 𝕜𝕜𝑛𝑛 passing through the 
𝑤𝑤 ∈ 𝕜𝕜𝑛𝑛, thus induces a tangent vector 𝑢𝑢 ∈ 𝕜𝕜𝑛𝑛 at the point 𝑤𝑤. This vector 𝑢𝑢 ∈ 𝑉𝑉 depends not only on 
𝑤𝑤 ∈ 𝑊𝑊 but also on the choice of families {𝑤𝑤𝑡𝑡}. Now let 𝑢𝑢′ ∈ 𝕜𝕜𝑛𝑛 be another vector constructed as above 
but with another family of vectors {𝑤𝑤𝑡𝑡′} with 𝑤𝑤𝑡𝑡′ ∈ 𝑊𝑊𝑡𝑡. Then 𝑢𝑢′ − 𝑢𝑢 = d

d𝑡𝑡
|𝑡𝑡=0(𝑤𝑤𝑡𝑡′ − 𝑤𝑤𝑡𝑡) ∈ 𝑊𝑊, since 

𝑤𝑤𝑡𝑡′ − 𝑤𝑤𝑡𝑡 ∈ 𝑊𝑊𝑡𝑡  for each 𝑡𝑡  and lim
𝑡𝑡→0

𝑤𝑤𝑡𝑡 = lim
𝑡𝑡→0

𝑤𝑤𝑡𝑡′ . Hence, modulo 𝑊𝑊 , the vector 𝑢𝑢 ∈ 𝑉𝑉  is uniquely 
determined by 𝑤𝑤 . Thus, we have conducted a linear map 𝑔𝑔𝑣𝑣:𝑊𝑊 → 𝑉𝑉/𝑊𝑊  by sending 𝑤𝑤 ∈ 𝑊𝑊  onto 
$\Bar{u}\in V/W$. This linear map 𝑔𝑔𝑣𝑣 depends on the tangent vector 𝑣𝑣 ∈ 𝑇𝑇𝐺𝐺𝑟𝑟(𝑘𝑘,𝑛𝑛),𝑥𝑥 and thus we acquire 
a map 

𝑔𝑔:𝑇𝑇𝐺𝐺𝑟𝑟(𝑘𝑘,𝑛𝑛),𝑥𝑥 → Hom(𝑊𝑊,𝑉𝑉/𝑊𝑊) 

𝑣𝑣 ↦ 𝑔𝑔𝑣𝑣. 

By a local calculation, we can check that this 𝑔𝑔 is an isomorphism between vector spaces. Since the 
dimension of Hom(𝑊𝑊,𝑉𝑉/𝑊𝑊) is clearly 𝑘𝑘(𝑛𝑛 − 𝑘𝑘), we get 

Corollary 2.9.  The dimension of the Grassmannian manifold 𝐺𝐺𝑟𝑟(𝑘𝑘,𝑛𝑛) is 𝑘𝑘(𝑛𝑛 − 𝑘𝑘). 

3.  Determinantal varieties 
We present in this part basic knowledge of determinantal varieties with reference to Chapter II in [6]. 

Definition 3.1.  Let 𝑀𝑀𝑚𝑚×𝑛𝑛(𝕜𝕜) be the set of 𝑚𝑚 × 𝑛𝑛 matrices with entries in 𝕜𝕜. Then the generic 
determinantal variety 𝑀𝑀𝑟𝑟(𝑚𝑚,𝑛𝑛) is defined as {𝑚𝑚 × 𝑛𝑛 matrices of rank≤𝑟𝑟} ⊂ 𝑀𝑀𝑚𝑚×𝑛𝑛(𝕜𝕜), in which 𝑟𝑟 ≤
min{𝑚𝑚,𝑛𝑛}. 

Lemma 3.2.  𝑀𝑀𝑟𝑟(𝑚𝑚,𝑛𝑛) is a cone. 
Proof Let 𝜆𝜆 ∈ 𝕜𝕜  and 𝐴𝐴 = (𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑛𝑛) ∈ 𝑀𝑀𝑟𝑟(𝑚𝑚,𝑛𝑛)  with rank(𝐴𝐴) = 𝑝𝑝 ≤ 𝑟𝑟 , in which 

𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑝𝑝 are linearly independent. We can get that if 𝜆𝜆1𝑤𝑤1 + 𝜆𝜆2𝑤𝑤2 + ⋯+ 𝜆𝜆𝑝𝑝𝑤𝑤𝑝𝑝 = 0, then 𝜆𝜆1 =
𝜆𝜆2 = ⋯ = 𝜆𝜆𝑝𝑝 = 0. Hence, when 𝜆𝜆 ≠ 0, if 𝜆𝜆1𝜆𝜆𝑤𝑤1 + 𝜆𝜆2𝜆𝜆𝑤𝑤2 + ⋯+ 𝜆𝜆𝑝𝑝𝜆𝜆𝑤𝑤𝑝𝑝 = 0, 𝜆𝜆1 = 𝜆𝜆2 = ⋯ = 𝜆𝜆𝑝𝑝 =
0. Therefore, 𝜆𝜆𝑤𝑤1, 𝜆𝜆𝑤𝑤2, . . . , 𝜆𝜆𝑤𝑤𝑝𝑝 are linearly independent when 𝜆𝜆 ≠ 0. Since 𝜆𝜆𝐴𝐴 = (𝜆𝜆𝑤𝑤1, 𝜆𝜆𝑤𝑤2, … , 𝜆𝜆𝑤𝑤𝑛𝑛), 
rank(𝜆𝜆𝐴𝐴) = 𝑝𝑝 = rank(𝐴𝐴) ≤ 𝑟𝑟 . When 𝜆𝜆 = 0 , all the entries of 𝜆𝜆𝐴𝐴  are zero, so rank(𝐴𝐴) = 0 ≥ 𝑟𝑟 . 
Therefore, no matter whether 𝜆𝜆 is zero or not, the rank of 𝜆𝜆𝐴𝐴 is always less than or equal to 𝑟𝑟, which 
means that 𝜆𝜆𝐴𝐴 ∈ 𝑀𝑀𝑟𝑟(𝑚𝑚,𝑛𝑛). Therefore, 𝑀𝑀𝑟𝑟(𝑚𝑚,𝑛𝑛) is a cone. ▫ 
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The main goal of the rest of this section is to calculate the dimension of the generic determinantal 
variety 𝑀𝑀𝑟𝑟(𝑚𝑚,𝑛𝑛). We give two methods to calculate this dimension. Both methods need us to introduce, 
following[4, Chapter II], the variety 𝑀𝑀�𝑟𝑟(𝑚𝑚,𝑛𝑛). 

Definition 3.2.  𝑀𝑀�𝑟𝑟(𝑚𝑚,𝑛𝑛) is defined as {(𝐴𝐴,𝑊𝑊) ∈ 𝑀𝑀𝑚𝑚×𝑛𝑛(𝕜𝕜) × 𝐺𝐺𝑟𝑟(𝑟𝑟,𝑛𝑛): Im(𝐴𝐴) ⊂ 𝑊𝑊}. 
Our first method consists in studying the two projections from 𝑀𝑀�𝑟𝑟(𝑚𝑚,𝑛𝑛) . The second method 

consists in understanding the tangent space of the generic determinantal variety 𝑀𝑀𝑟𝑟(𝑚𝑚,𝑛𝑛) at a smooth 
point. 

3.1.  Study of the two projections from 𝑀𝑀�𝑟𝑟(𝑚𝑚,𝑛𝑛) 
Proposition 3.4.  Let 𝑝𝑝𝑟𝑟1:𝑀𝑀�𝑚𝑚×𝑛𝑛(𝕜𝕜) → 𝑀𝑀𝑚𝑚×𝑛𝑛(𝕜𝕜) be defined as (𝐴𝐴,𝑊𝑊) ↦ 𝐴𝐴. Then, 

(i) Im(𝑝𝑝𝑟𝑟1) = 𝑀𝑀𝑟𝑟(𝑚𝑚,𝑛𝑛); 
(ii) For 𝐴𝐴 of rank 𝑟𝑟, there is only one element in its preimage; 
(iii) {𝐴𝐴 ∈ 𝑀𝑀𝑟𝑟(𝑚𝑚,𝑛𝑛): 𝑟𝑟𝑎𝑎𝑛𝑛𝑘𝑘(𝐴𝐴) = 𝑟𝑟} ⊂ 𝑀𝑀𝑟𝑟(𝑚𝑚,𝑛𝑛) is a nonempty open subset. 
Proof   (i) If 𝐴𝐴 ∈ Im(𝑝𝑝𝑟𝑟1), then there exists 𝑊𝑊 ∈ 𝐺𝐺𝑟𝑟(𝑟𝑟,𝑛𝑛) such that Im(𝐴𝐴) ⊂ 𝑊𝑊 . As rank(𝐴𝐴) =

dimIm(𝐴𝐴) ≤ dim𝑊𝑊 = 𝑟𝑟, we can get that 𝐴𝐴 ∈ 𝑀𝑀𝑟𝑟(𝑚𝑚,𝑛𝑛). Conversely, if 𝐴𝐴 ∈ 𝑀𝑀𝑟𝑟(𝑚𝑚,𝑛𝑛), then 𝐼𝐼𝑚𝑚(𝐴𝐴) is 
of dimension ≤ 𝑟𝑟. Hence, there exists 𝑊𝑊 of dimension 𝑟𝑟 such that Im(𝐴𝐴) ⊂ 𝑊𝑊. Therefore, (𝐴𝐴,𝑊𝑊) ∈
𝑀𝑀�𝑟𝑟(𝑚𝑚,𝑛𝑛), and 𝐴𝐴 = 𝑝𝑝𝑟𝑟1(𝐴𝐴,𝑊𝑊) ∈ 𝑊𝑊. 

(ii) (𝐴𝐴,𝑊𝑊) ∈ 𝑀𝑀𝑚𝑚×𝑛𝑛(𝕜𝕜) × 𝐺𝐺𝑟𝑟(𝑟𝑟,𝑛𝑛) is the preimage of 𝐴𝐴 in 𝑀𝑀�𝑟𝑟(𝑚𝑚,𝑛𝑛) if and only if Im(𝐴𝐴) ⊂ 𝑊𝑊 . 
Since rank(𝐴𝐴) = 𝑟𝑟 = dim𝑊𝑊, we have 𝑊𝑊 = Im(𝐴𝐴), so the only preimage of 𝐴𝐴 is �𝐴𝐴, Im(𝐴𝐴)�. 

(iii) {𝐴𝐴 ∈ 𝑀𝑀𝑟𝑟(𝑚𝑚,𝑛𝑛): rank(𝐴𝐴) = 𝑟𝑟} is nonempty. Since rank(𝐴𝐴) ≤ 𝑟𝑟 − 1, any 𝑟𝑟 × 𝑟𝑟 submatrix of 𝐴𝐴 
has determinant 0. Hence, 

{𝐴𝐴 ∈ 𝑀𝑀𝑟𝑟(𝑚𝑚,𝑛𝑛): rank(𝐴𝐴) ≤ 𝑟𝑟 − 1} = ⋂
{𝑖𝑖1,…,𝑖𝑖𝑟𝑟}⊂{1,…,𝑚𝑚},
{𝑗𝑗1,…,𝑗𝑗𝑟𝑟}⊂{1,…,𝑛𝑛}

�𝐴𝐴 ∈ 𝑀𝑀𝑟𝑟(𝑚𝑚,𝑛𝑛): det𝐴𝐴𝑖𝑖1,…,𝑖𝑖𝑟𝑟,
𝑗𝑗1,…,𝑗𝑗𝑟𝑟

= 0�. 

Because det:𝑀𝑀𝑟𝑟×𝑟𝑟(𝕜𝕜) → 𝕜𝕜 is a polynomial function, �𝐴𝐴 ∈ 𝑀𝑀𝑟𝑟(𝑚𝑚,𝑛𝑛): det𝐴𝐴𝑖𝑖1,…,𝑖𝑖𝑟𝑟,
𝑗𝑗1,…,𝑗𝑗𝑟𝑟

= 0� is a closed 

subset. Therefore, as a finite intersection of closed subsets, {𝐴𝐴 ∈ 𝑀𝑀𝑟𝑟(𝑚𝑚,𝑛𝑛): rank(𝐴𝐴) ≤ 𝑟𝑟 − 1} is still a 
closed subset.  

Remark.  This proposition shows that dim𝑀𝑀𝑟𝑟(𝑚𝑚,𝑛𝑛) = dim𝑀𝑀�𝑟𝑟(𝑚𝑚,𝑛𝑛). 
Proposition 3.5.  Let 𝑝𝑝𝑟𝑟2:𝑀𝑀�𝑟𝑟(𝑚𝑚,𝑛𝑛) → 𝐺𝐺𝑟𝑟(𝑟𝑟,𝑛𝑛) be defined as (𝐴𝐴,𝑊𝑊) ↦ 𝑊𝑊. For any 𝑊𝑊0 ∈ 𝐺𝐺𝑟𝑟(𝑟𝑟,𝑛𝑛), 

dim𝑝𝑝𝑟𝑟2−1(𝑊𝑊0) = 𝑚𝑚𝑟𝑟. 
Proof   By the definition of 𝑝𝑝𝑟𝑟2 and 𝑊𝑊0, we can get 𝑝𝑝𝑟𝑟2−1(𝑊𝑊0) = {(𝐴𝐴,𝑊𝑊) ∈ 𝑀𝑀�𝑟𝑟(𝑚𝑚,𝑛𝑛): 𝑝𝑝𝑟𝑟2(𝐴𝐴,𝑊𝑊) =
𝑊𝑊0}, which is equal to {(𝐴𝐴,𝑊𝑊0) ∈ 𝑀𝑀�𝑟𝑟(𝑚𝑚,𝑛𝑛)}. By integrating the definition of 𝑀𝑀�𝑟𝑟(𝑚𝑚,𝑛𝑛), the expression 
is further transformed into {𝐴𝐴 ∈ 𝑀𝑀𝑚𝑚×𝑛𝑛(𝕜𝕜): Im(𝐴𝐴) ⊂ 𝑊𝑊0}, which refers to a set of linear maps denoted 
by {𝐴𝐴:𝕜𝕜𝑚𝑚 → 𝑊𝑊0}–that is, Hom(𝑘𝑘𝑚𝑚,𝑊𝑊0). Hence, dim𝑝𝑝𝑟𝑟2−1(𝑊𝑊0) = dimHom(𝑘𝑘𝑚𝑚,𝑊𝑊0) = 𝑚𝑚𝑟𝑟.  
 

Corollary 3.6.  dim𝑀𝑀�𝑟𝑟(𝑚𝑚,𝑛𝑛) = 𝑚𝑚𝑟𝑟 + 𝑛𝑛𝑟𝑟 − 𝑟𝑟2. 
Consider the map 𝑝𝑝𝑟𝑟2:𝑀𝑀�𝑟𝑟(𝑚𝑚,𝑛𝑛) → 𝐺𝐺𝑟𝑟(𝑟𝑟,𝑛𝑛) defined as in Proposition 3.5. The fibers of the map 𝑝𝑝𝑟𝑟2 

is of dimension 𝑚𝑚𝑟𝑟 according to Proposition 3.5. We also know that dim𝐺𝐺𝑟𝑟(𝑟𝑟,𝑛𝑛) = 𝑟𝑟(𝑛𝑛 − 𝑟𝑟). Hence, 
by Corollary 2.6 and Theorem 3.7 below, dim𝑀𝑀�𝑟𝑟(𝑚𝑚,𝑛𝑛) = dim𝑝𝑝𝑟𝑟2−1 + dim𝐺𝐺𝑟𝑟(𝑟𝑟,𝑛𝑛) = 𝑚𝑚𝑟𝑟 + 𝑟𝑟(𝑛𝑛 −
𝑟𝑟) = 𝑚𝑚𝑟𝑟 + 𝑛𝑛𝑟𝑟 − 𝑟𝑟2. ▫ 

Remark. This corollary, together with the remark under the Proposition 3.4, implies that the 
dimension of the generic determinantal variety 𝑀𝑀𝑟𝑟(𝑚𝑚,𝑛𝑛) is 𝑚𝑚𝑟𝑟 + 𝑛𝑛𝑟𝑟 − 𝑟𝑟2. 

Theorem 3.7.  Let 𝑓𝑓:𝑋𝑋 → 𝑌𝑌 be a morphism between algebraic varieties. Assume 
(i) dim𝑌𝑌 = 𝑛𝑛, and 
(ii) dim𝑓𝑓−1(𝑦𝑦) = 𝑚𝑚 for any 𝑦𝑦 ∈ 𝑌𝑌, 
then dim𝑋𝑋 = 𝑚𝑚 + 𝑛𝑛. 
We refer to [5] for a proof of this theorem. 
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Example.  Let 𝑓𝑓:𝔸𝔸3(𝕜𝕜) → 𝔸𝔸1(𝕜𝕜) be a morphism defined as (𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3) ↦ 𝑥𝑥1. For any 𝑡𝑡 ∈ 𝔸𝔸1(𝕜𝕜), 
𝑓𝑓−1(𝑡𝑡) = {(𝑡𝑡, 𝑥𝑥2, 𝑥𝑥3) ∈ 𝔸𝔸3(𝕜𝕜): 𝑥𝑥2, 𝑥𝑥3 ∈ 𝕜𝕜} ≃ 𝔸𝔸2(𝕜𝕜) . Therefore, dim𝔸𝔸1(𝕜𝕜) = 1 , dim𝑓𝑓−1(𝑡𝑡) = 2 . 
Hence, dim𝔸𝔸3(𝕜𝕜) = 3 = dim𝔸𝔸1(𝕜𝕜) + dim𝑓𝑓−1(𝑡𝑡). 

3.2.  Tangent space of 𝑴𝑴𝒓𝒓(𝒎𝒎,𝒏𝒏) at a smooth point 
Proposition 3.8.  Let (𝐴𝐴,𝑊𝑊) ∈ 𝑀𝑀�𝑟𝑟(𝑚𝑚,𝑛𝑛). Then the tangent space of 𝑀𝑀�𝑟𝑟(𝑚𝑚,𝑛𝑛) at (𝐴𝐴,𝑊𝑊) is  

𝑇𝑇𝑀𝑀�𝑟𝑟(𝑚𝑚,𝑛𝑛),(𝐴𝐴,𝑊𝑊) = {(𝐵𝐵,𝜙𝜙) ∈ Hom(ℂ𝑚𝑚,𝑉𝑉) × Hom(𝑊𝑊,𝑉𝑉/𝑊𝑊):𝐵𝐵 ≡ 𝜙𝜙 ∘ 𝐴𝐴( mod 𝑊𝑊)}. 

Proof   Let {(𝐴𝐴𝑡𝑡 ,𝑊𝑊𝑡𝑡)} be a smooth family of elements in 𝑀𝑀�𝑟𝑟(𝑚𝑚,𝑛𝑛). By the definition, Im(𝐴𝐴𝑡𝑡) ⊂ 𝑊𝑊𝑡𝑡. 
Let (𝐴𝐴0,𝑊𝑊0) = (𝐴𝐴,𝑊𝑊) . Let (𝐵𝐵,𝜙𝜙) ∈ Hom(ℂ𝑚𝑚,𝑉𝑉) × Hom(𝑊𝑊,𝑉𝑉/𝑊𝑊)  be the tangent vector of the 
family {(𝐴𝐴𝑡𝑡 ,𝑊𝑊𝑡𝑡)} at 𝑡𝑡 = 0. Then for any 𝑢𝑢 ∈ ℂ𝑚𝑚, 

 𝑑𝑑
𝑑𝑑𝑡𝑡

|𝑡𝑡=0 𝐴𝐴𝑡𝑡𝑢𝑢 = 𝐵𝐵𝑢𝑢. (3) 

For any 𝑤𝑤 ∈ 𝑊𝑊 , let {𝑤𝑤𝑡𝑡} be a family of vectors such that 𝑤𝑤𝑡𝑡 ∈ 𝑊𝑊𝑡𝑡 , 𝑤𝑤0 = 𝑤𝑤 . Then 𝑑𝑑
𝑑𝑑𝑡𝑡

|𝑡𝑡=0 𝑤𝑤𝑡𝑡 ≡
𝜙𝜙(𝑤𝑤)( mod 𝑊𝑊), combining with our description of the tangent space of 𝐺𝐺𝑟𝑟(𝑟𝑟,𝑛𝑛) at 𝑊𝑊. In particular, 
by (3), 𝜙𝜙(𝐴𝐴𝑢𝑢) ≡ 𝐵𝐵𝑢𝑢( mod 𝑊𝑊). But 𝑢𝑢 ∈ ℂ𝑚𝑚 in arbitrary, we get 𝐵𝐵 ≡ 𝜙𝜙 ∘ 𝐴𝐴( mod 𝑊𝑊), as desired. ▫ 

Proposition 3.9.  Let 𝐴𝐴 ∈ 𝑀𝑀𝑟𝑟(𝑚𝑚,𝑛𝑛)  be of rank 𝑟𝑟 . Then 𝑇𝑇𝑀𝑀𝑟𝑟(𝑚𝑚,𝑛𝑛),𝐴𝐴 = {𝐵𝐵 ∈
𝑀𝑀𝑚𝑚×𝑛𝑛(𝕜𝕜): there exists 𝜙𝜙 ∈ Hom(Im𝐴𝐴,𝑉𝑉/Im𝐴𝐴) such that 𝐵𝐵 ≡ 𝜙𝜙 ∘ 𝐴𝐴( mod Im𝐴𝐴)} 

Proof   Let 𝑝𝑝𝑟𝑟1:𝑀𝑀�𝑟𝑟(𝑚𝑚,𝑛𝑛) → 𝑀𝑀𝑟𝑟(𝑚𝑚,𝑛𝑛). The preimage of 𝐴𝐴 under 𝑝𝑝𝑟𝑟1 has only one element (𝐴𝐴, Im𝐴𝐴). 
Therefore, 𝑇𝑇𝑀𝑀𝑟𝑟(𝑚𝑚,𝑟𝑟),𝐴𝐴 = 𝑝𝑝𝑟𝑟𝐴𝐴∗𝑇𝑇𝑀𝑀�𝑟𝑟(𝑚𝑚,𝑛𝑛),(𝐴𝐴,Im𝐴𝐴). By the previous proposition, 𝑇𝑇𝑀𝑀𝑟𝑟(𝑚𝑚,𝑛𝑛),𝐴𝐴 refers to a set of 
𝐵𝐵 ∈ 𝑀𝑀𝑚𝑚×𝑛𝑛(𝕜𝕜) where there exists 𝜙𝜙 ∈ Hom(Im𝐴𝐴,𝑉𝑉/Im𝐴𝐴) such that 𝐵𝐵 ≡ 𝜙𝜙 ∘ 𝐴𝐴( mod Im𝐴𝐴).  

Corollary 3.10.  dim𝑀𝑀𝑟𝑟(𝑚𝑚,𝑛𝑛) = 𝑟𝑟(𝑛𝑛 − 𝑟𝑟) + 𝑚𝑚𝑟𝑟. 
Proof   Let 𝐵𝐵 ∈ 𝑇𝑇𝑀𝑀𝑅𝑅(𝑚𝑚,𝑛𝑛),𝐴𝐴 . Then there exists 𝜙𝜙 ∈ Hom(Im𝐴𝐴,𝑉𝑉/Im𝐴𝐴)  such that 𝐵𝐵 ≡ 𝜙𝜙 ∘

𝐴𝐴( mod Im𝐴𝐴). Therefore, there exists a linear map 𝜓𝜓 ∈ Hom(ℂ𝑚𝑚, Im𝐴𝐴) such that 𝐵𝐵 = 𝜙𝜙 ∘ 𝐴𝐴 + 𝜓𝜓. Then 
𝐵𝐵  uniquely determines 𝜙𝜙  and 𝜓𝜓, and vice versa. Hence, dim𝑇𝑇𝑀𝑀𝑟𝑟(𝑚𝑚,𝑛𝑛),𝐴𝐴 = dimHom(Im𝐴𝐴,𝑉𝑉/Im𝐴𝐴) +
dimHom(ℂ𝑚𝑚, Im𝐴𝐴) = 𝑟𝑟(𝑛𝑛 − 𝑟𝑟) + 𝑚𝑚𝑟𝑟, as desired.  

4.  Proof of the theorem of Hopf and Smith 
In this section, we give an algebro-geometric proof of the theorem of Hopf and Smith with the tools 
developed so far. 

Theorem 4.1 (Hopf-Smith [2, 3]).  Let 𝕜𝕜 be an algebraically closed field. Let 𝑈𝑈,𝑉𝑉,𝑊𝑊 be nonzero 
finitely dimensional 𝕜𝕜-vector spaces. Let  

𝜙𝜙:𝑈𝑈 × 𝑉𝑉 → 𝑊𝑊 

be a nonsingular bilinear map. Then dim𝑊𝑊 ≥ dim𝑈𝑈 + dim𝑉𝑉 − 1. 
Lemma 4.2.  Let 𝑉𝑉 be 𝕜𝕜-vector space. Let 𝐶𝐶 ⊂ 𝑉𝑉 be a cone of dim𝑛𝑛. Let ℙ(𝐶𝐶) be the set of 1-

dimensional subspaces of 𝑉𝑉 lying in 𝐶𝐶. Then, dimℙ(𝐶𝐶) = 𝑛𝑛 − 1. 
Proof   Let 

𝑓𝑓: 𝐶𝐶 − {0} → ℙ(𝐶𝐶)
𝑢𝑢 ↦ [𝑢𝑢].  

Let 𝑙𝑙 ∈ ℙ(𝐶𝐶) . Then 𝑓𝑓−1(𝑙𝑙) = {𝑣𝑣 ∈ 𝐶𝐶 − {0}: [𝑣𝑣] = 𝑙𝑙} = 𝑙𝑙 − 0 . Since dim(𝐶𝐶 − {0}) = dim𝐶𝐶 = 𝑛𝑛 , 
dim𝑓𝑓−1(𝑙𝑙) = dim(𝑙𝑙 − {0}) = dim𝑙𝑙 = 1, by Theorem 3.7, we get dimℙ(𝐶𝐶) = 𝑛𝑛 − 1. ▫ 

Let 𝜙𝜙:𝑈𝑈 × 𝑉𝑉 → 𝑊𝑊 be a bilinear map. One defines a linear map 

𝜓𝜓: 𝑈𝑈 → Hom(𝑉𝑉,𝑊𝑊)
𝑢𝑢 ↦ �𝑣𝑣 ↦ 𝜙𝜙(𝑢𝑢, 𝑣𝑣)�. 
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Proposition 4.3.  Let 𝜙𝜙:𝑈𝑈 × 𝑉𝑉 → 𝑊𝑊 be a nonsingular bilinear map as in Theorem 4.1. Let 𝜓𝜓 be the 
associated linear map defined as above. Let 𝑅𝑅 : = Im𝜓𝜓 ⊂ Hom(𝑉𝑉,𝑊𝑊). For 𝑟𝑟 ≤ 0 a nonnegative integer, 
let Hom𝑟𝑟(𝑉𝑉,𝑊𝑊) be the set of linear maps from 𝑉𝑉 to 𝑊𝑊 whose rank is less than or equal to 𝑟𝑟. Then 

(i) dim𝑅𝑅 = dim𝑈𝑈, and 
(ii) 𝑅𝑅 ∩ Homdim𝑉𝑉−1(𝑉𝑉,𝑊𝑊) = {0}. 
Proof   To prove (i), first we claim that 𝜓𝜓 is injective. In fact, when 𝜓𝜓(𝑢𝑢) = 0, for any nonzero 𝑣𝑣 ∈

𝑉𝑉 , 𝜙𝜙(𝑢𝑢, 𝑣𝑣) = 𝜓𝜓(𝑢𝑢)(𝑣𝑣) = 0 , which implies 𝑢𝑢 = 0  by the property of non-singularity. Hence, the 
dimension of 𝑅𝑅 = Imψ  is equal to the dimension of 𝑈𝑈 . Now let us prove (ii). Let 𝜓𝜓(𝑢𝑢) ∈ 𝑅𝑅 ∩
Homdim𝑉𝑉−1(𝑉𝑉,𝑊𝑊). We must show that 𝜓𝜓(𝑢𝑢) = 0. Assume by contradiction that 𝜓𝜓(𝑢𝑢) ≠ 0. We claim 
that 𝜓𝜓(𝑢𝑢):𝑉𝑉 → 𝑊𝑊 is injective. Indeed, if 𝜙𝜙(𝑢𝑢, 𝑣𝑣) = 0, 𝑣𝑣 must be zero in case that 𝑢𝑢 ≠ 0 due to its non-
singularity. Hence, rank 𝜓𝜓(𝑢𝑢) = dim𝑉𝑉, which contradicts to the fact that 𝜓𝜓(𝑢𝑢) ∈ Homdim𝑉𝑉−1(𝑉𝑉,𝑊𝑊).  

Proof of Theorem 4.1. Let us first calculate the dimensions of ℙHomdim𝑉𝑉−1(𝑉𝑉,𝑊𝑊)  and 
ℙHom(𝑉𝑉,𝑊𝑊). Let 𝑚𝑚 = dim𝑉𝑉, 𝑛𝑛 = dim𝑊𝑊. After a choice of bases of 𝑉𝑉 and 𝑊𝑊, respectively, we can 
get Hom𝑚𝑚−1(𝑉𝑉,𝑊𝑊) ≅ 𝑀𝑀𝑚𝑚−1(𝑚𝑚,𝑛𝑛). Since Hom𝑚𝑚−1(𝑉𝑉,𝑊𝑊) ⊂ Hom(𝑉𝑉,𝑊𝑊) is a cone, by Lemma 3.2, 
we have 

dimℙHomm−1(𝑉𝑉,𝑊𝑊) = dimHom𝑚𝑚−1(𝑉𝑉,𝑊𝑊) − 1      by Lemma 4.2
= dim𝑀𝑀𝑚𝑚−1(𝑚𝑚,𝑛𝑛) − 1
= 𝑚𝑚(𝑚𝑚 − 1) + 𝑛𝑛(𝑚𝑚 − 1) − (𝑚𝑚 − 1)2 − 1      by Corollary 3.6
= 𝑚𝑚𝑛𝑛 + 𝑚𝑚 − 𝑛𝑛 − 2
= dim𝑉𝑉dim𝑊𝑊 + dim𝑉𝑉 − dim𝑊𝑊 − 2

 

According to Lemma 4.2, the dimension of ℙHom(𝑉𝑉,𝑊𝑊) can be calculated as dimHom(𝑉𝑉,𝑊𝑊) − 1, 
which is dim𝑉𝑉dim𝑊𝑊 − 1. After deriving those required dimensions, let us use the notation mentioned 
in Proposition 4.3, which is to let 𝑅𝑅 : = Im𝜓𝜓 ⊂ Hom(𝑉𝑉,𝑊𝑊) . Regard ℙ𝑅𝑅 , ℝHomdim𝑉𝑉−1(𝑉𝑉,𝑊𝑊)  as 
subvarieties of ℙHom(𝑉𝑉,𝑊𝑊) , which satisfies an inequality such that dimℙHom(𝑉𝑉,𝑊𝑊) ≥
dimℙR+dimℙHomdim𝑉𝑉−1(𝑉𝑉,𝑊𝑊). Through a process of substitution and simplification, we can get the 
desired conclusion such that dim𝑊𝑊 ≥ dim𝑈𝑈 + dim𝑉𝑉 − 1.  

5.  Application of Hopf’s theorem 
In this section, we are going to use the Hopf’s theorem (Theorem 1.8) to prove Theorem 1.5 (ii). Most 
of the results in this section can also be found in Chapter 12 of [1] but Lemma 5.8 and the proof of 
Theorem 1.5 (ii) thereafter are to our knowledge new. Let us first recall the statement of the Hopf’s 
theorem. 

Theorem 5.1 (Hopf [2]).  If there is a nonsingular bilinear map 𝜙𝜙:ℝ𝑟𝑟 × ℝ𝑠𝑠 → ℝ𝑛𝑛. Then whenever 
𝑛𝑛 − 𝑠𝑠 < 𝑘𝑘 < 𝑟𝑟, �𝑛𝑛𝑘𝑘� is even. 

For a proof of this theorem, the readers are invited to see Theorem 12.2 in [1]. Motivated by this 
theorem, let us define some combinatorial invariants following [1]. 

Definition 5.2.  Let 𝑟𝑟, 𝑠𝑠,𝑛𝑛 be positive integers. We say that ℋ(𝑟𝑟, 𝑠𝑠,𝑛𝑛) holds if �𝑛𝑛𝑘𝑘� is even for any 
𝑛𝑛 − 𝑠𝑠 < 𝑘𝑘 < 𝑟𝑟. 

Definition 5.3.  Following the definition above, 𝑟𝑟 ∘ 𝑠𝑠 is defined as the minimum value of 𝑛𝑛 for 
ℋ(𝑟𝑟, 𝑠𝑠,𝑛𝑛) to hold. 

Remark .  Hopf’s theorem says that 𝑟𝑟 ∘ 𝑠𝑠 ≤ 𝑟𝑟#ℝ𝑠𝑠 for any positive integers 𝑟𝑟, 𝑠𝑠. 
Lemma 5.4.  Let 𝑚𝑚 ≤ 𝑛𝑛. If ℋ(𝑟𝑟, 𝑠𝑠,𝑚𝑚) holds, then ℋ(𝑟𝑟, 𝑠𝑠,𝑛𝑛) holds. 
Proof   It suffices to show that if ℋ(𝑟𝑟, 𝑠𝑠,𝑚𝑚) holds, then ℋ(𝑟𝑟, 𝑠𝑠,𝑛𝑛) holds. Since ℋ(𝑟𝑟, 𝑠𝑠,𝑚𝑚) holds, 

for any 𝑚𝑚 − 𝑟𝑟 < 𝑘𝑘 < 𝑠𝑠, we have �𝑚𝑚𝑘𝑘� even. Now let 𝑘𝑘 satisfy 𝑚𝑚 + 1 − 𝑟𝑟 < 𝑘𝑘 < 𝑠𝑠. Then both 𝑘𝑘 and 𝑘𝑘 −
1  is greater than 𝑚𝑚 − 𝑟𝑟  and less than 𝑠𝑠 . Hence, by assumption, �𝑚𝑚𝑘𝑘�  and � 𝑚𝑚

𝑘𝑘−1�  are even. Hence, 
�𝑚𝑚+1

𝑘𝑘 � = �𝑚𝑚𝑘𝑘� + � 𝑚𝑚
𝑘𝑘−1� is even. Hence, ℋ(𝑟𝑟, 𝑠𝑠,𝑚𝑚 + 1) holds. ▫ 

Proposition 5.5.  max{𝑟𝑟, 𝑠𝑠} ≤ 𝑟𝑟 ∘ 𝑠𝑠 ≤ 𝑟𝑟 + 𝑠𝑠 − 1. 
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Proof   Let 𝑛𝑛 = 𝑟𝑟 ∘ 𝑠𝑠. By definition of 𝑟𝑟 ∘ 𝑠𝑠, ℋ(𝑟𝑟, 𝑠𝑠,𝑛𝑛) holds and ℋ(𝑟𝑟, 𝑠𝑠,𝑛𝑛 − 1) does not hold. Let 
us first confirm the lower bound of 𝑟𝑟 ∘ 𝑠𝑠. Assume by contradiction that 𝑛𝑛 < max{𝑟𝑟, 𝑠𝑠}. In this case, the 
value of 𝑘𝑘 can be taken to be zero, which incapacitates the construction of ℋ(𝑟𝑟, 𝑠𝑠,𝑛𝑛) since �𝑛𝑛0� = 1. 
Hence, it is clear that 𝑛𝑛 ≥ max{𝑟𝑟, 𝑠𝑠}. For the upper bound, we again assume by contradiction that 𝑟𝑟 ∘
𝑠𝑠 ≤ 𝑟𝑟 + 𝑠𝑠 − 2. Since ℋ(𝑟𝑟, 𝑠𝑠,𝑚𝑚 + 1) holds, by Lemma 5.4, ℋ(𝑟𝑟, 𝑠𝑠, 𝑟𝑟 + 𝑠𝑠 − 2) holds. Therefore, after a 
combination of lower and upper bounds, we can get that max{𝑟𝑟, 𝑠𝑠} ≤ 𝑟𝑟 ∘ 𝑠𝑠 ≤ 𝑟𝑟 + 𝑠𝑠 − 1.  

Proposition 5.6.  If 𝑎𝑎 is even and 𝑏𝑏 is odd, then �𝑎𝑎𝑏𝑏� is even. 
Proof   Assume 𝑎𝑎 = 2𝑚𝑚 and 𝑏𝑏 = 2𝑛𝑛 + 1. If 2𝑛𝑛 + 1 > 2𝑚𝑚, then � 2𝑚𝑚

2𝑛𝑛+1� = 0, which is even. If 2𝑛𝑛 +
1 < 2𝑚𝑚 (𝑛𝑛 ≤ 𝑚𝑚 − 1), we can get the exponent of 2 in � 2𝑚𝑚

2𝑛𝑛+1� by combining the exponents of 2 in (2𝑚𝑚)!, 

(2𝑛𝑛 + 1)!, and (2𝑚𝑚 − 2𝑛𝑛 − 1)! together. (2𝑚𝑚)! can be divided by 2𝑚𝑚+�𝑚𝑚2 �+�
𝑚𝑚
4 �+⋯+1; (2𝑛𝑛 + 1)! can be 

divided by 2𝑛𝑛+�
𝑛𝑛
2�+�

𝑛𝑛
4�+⋯+1 ; (2𝑚𝑚 − 2𝑛𝑛 − 1)!  can be divided by 2(𝑚𝑚−𝑛𝑛−1)+�𝑚𝑚−𝑛𝑛−1

2 �+⋯+1 . Hence, the 
exponent of 2 in � 2𝑚𝑚

2𝑛𝑛+1� = (2𝑚𝑚)!
(2𝑛𝑛+1)!(2𝑚𝑚−2𝑛𝑛−1)!

 is equal to �𝑚𝑚 + �𝑚𝑚
2
� + �𝑚𝑚

4
� + ⋯+ 1� − �𝑛𝑛 + [𝑛𝑛

2
+ �𝑛𝑛

4
� +

⋯+ 1� − �(𝑚𝑚 − 𝑛𝑛 − 1) + �𝑚𝑚−𝑛𝑛−1
2

� + ⋯+ 1� > 0. This proves that � 2𝑚𝑚
2𝑛𝑛+1� can be divided by 2, and 

thus must be even.  
Proposition 5.7.  𝑟𝑟 ∘ 𝑠𝑠 is odd if and only if 
(i) 𝑟𝑟 and 𝑠𝑠 are both odd; 
(ii) 𝑟𝑟 ∘ 𝑠𝑠 = 𝑟𝑟 + 𝑠𝑠 − 1. 
Proof   If 𝑟𝑟 and 𝑠𝑠 are both odd, then 𝑟𝑟 + 𝑠𝑠 − 1 must also be odd, which means, obviously, that 𝑟𝑟 ∘ 𝑠𝑠 

is odd. To prove the uniqueness of this condition, let 𝑟𝑟 ∘ 𝑠𝑠 = 2𝑚𝑚 − 1, so that (1) ℋ(𝑟𝑟, 𝑠𝑠, 2𝑚𝑚) holds 
(which means that �2𝑚𝑚+1

𝑘𝑘 � is even for any 2𝑚𝑚 + 1 − 𝑠𝑠 < 𝑘𝑘 < 𝑟𝑟), while (2) ℋ(𝑟𝑟, 𝑠𝑠, 2𝑚𝑚) does not hold 
(which means that there exists 2𝑚𝑚 − 𝑠𝑠 < 𝑘𝑘 < 𝑟𝑟 that makes �2𝑚𝑚𝑘𝑘 � odd). Let 𝑘𝑘0 be the minimal of 𝑘𝑘 such 
that 2𝑚𝑚 − 𝑠𝑠 < 𝑘𝑘 < 𝑟𝑟  and �2𝑚𝑚𝑘𝑘 �  is odd. If 𝑘𝑘0 < 𝑟𝑟 − 1 , then 𝑘𝑘0 + 1 < 𝑟𝑟–that is, 2𝑚𝑚 − 𝑠𝑠 + 1 < 𝑘𝑘0 +
1 < 𝑟𝑟. By (i), �2𝑚𝑚+1

𝑘𝑘0+1
� is even. But �2𝑚𝑚+1

𝑘𝑘0+1
� = � 2𝑚𝑚

𝑘𝑘0+1
� + �2𝑚𝑚𝑘𝑘0 �, so � 2𝑚𝑚

𝑘𝑘0+1
� is odd. Hence, for any 𝑘𝑘0 <

𝑘𝑘 < 𝑟𝑟, � 2𝑚𝑚
𝑘𝑘0+1

� is odd. In particular, �2𝑚𝑚𝑟𝑟−1� is odd. Then, �2𝑚𝑚+1
𝑟𝑟−1 � = �2𝑚𝑚𝑟𝑟−1� + �2𝑚𝑚𝑟𝑟−2�. If 2𝑚𝑚 + 1 ≠ 𝑟𝑟 + 𝑠𝑠 −

1, then 2𝑚𝑚 + 1 < 𝑟𝑟 + 𝑠𝑠 − 1, which means that 2𝑚𝑚 + 1 − 𝑠𝑠 < 𝑟𝑟 − 1 < 𝑟𝑟. Since �2𝑚𝑚+1
𝑟𝑟−1 � is even by (i), 

�2𝑚𝑚𝑟𝑟−2� is odd. Through a series of induction, we can get that �2𝑚𝑚𝑘𝑘 � is odd for every 2𝑚𝑚 − 𝑠𝑠 < 𝑘𝑘 < 𝑟𝑟. One 
cannot have two consecutive combinatorial numbers that are odd since 2𝑚𝑚  is even, which is 
contradictory to what we have just calculated. Hence, 2𝑚𝑚 + 1 = 𝑟𝑟 + 𝑠𝑠 − 1, which proves (ii). To show 
(i), assume by contradiction that 𝑟𝑟, 𝑠𝑠  are even and 𝑟𝑟 ∘ 𝑠𝑠 ≤ 𝑟𝑟 + 𝑠𝑠 − 2 . It suffices to show that 
ℋ(𝑟𝑟, 𝑠𝑠, 𝑟𝑟 + 𝑠𝑠 − 2) holds–that is, for any 𝑟𝑟 − 2 < 𝑘𝑘 < 𝑟𝑟, we have �𝑟𝑟+𝑠𝑠−2𝑘𝑘 �, or �𝑟𝑟+𝑠𝑠−2𝑟𝑟−1 �, even. However, 
by proposition 5.6, if 𝑎𝑎 is even and 𝑏𝑏 is odd, then �𝑎𝑎𝑏𝑏� is even. Hence, �𝑟𝑟+𝑠𝑠−2𝑟𝑟−1 � is even, as desired.  

Lemma 5.8.  The following statements are equivalent: 
(i) �𝑟𝑟+𝑠𝑠−2𝑟𝑟−1 � is odd. 
(ii) 𝑟𝑟 ∘ 𝑠𝑠 = 𝑟𝑟 + 𝑠𝑠 − 1. 
(iii) In writing 𝑟𝑟 − 1 = 𝑎𝑎𝑛𝑛2𝑛𝑛 + 𝑎𝑎𝑛𝑛−12𝑛𝑛−1 + ⋯+ 𝑎𝑎0 , 𝑠𝑠 − 1 = 𝑏𝑏𝑚𝑚2𝑚𝑚 + 𝑏𝑏𝑚𝑚−12𝑚𝑚−1 + ⋯+ 𝑏𝑏0 , 

where 𝑎𝑎𝑖𝑖 ,𝑏𝑏𝑗𝑗 ∈ {0,1}, there does not exist 𝑖𝑖 such that 𝑎𝑎𝑖𝑖 = 𝑏𝑏𝑖𝑖 = 1. 
Proof   Let us first prove that (i) is equivalent to (ii). Assume that �𝑟𝑟+𝑠𝑠−2𝑟𝑟−1 � is odd, let us prove 𝑟𝑟 ∘ 𝑠𝑠 =

𝑟𝑟 + 𝑠𝑠 − 1. Suppose by contradiction that 𝑟𝑟 ∘ 𝑠𝑠 ≤ 𝑟𝑟 + 𝑠𝑠 − 2, so that �𝑟𝑟+𝑠𝑠−2𝑘𝑘 � is even for any 𝑛𝑛 − 𝑠𝑠 <
𝑘𝑘 < 𝑟𝑟. However, �𝑟𝑟+𝑠𝑠−2𝑟𝑟−1 � is odd, which is contradictory with the statement above, so 𝑟𝑟 ∘ 𝑠𝑠 ≥ 𝑟𝑟 + 𝑠𝑠 − 2. 
According to Proposition 5.5, 𝑟𝑟 ∘ 𝑠𝑠 ≤ 𝑟𝑟 + 𝑠𝑠 − 1, leading to the conclusion that 𝑟𝑟 ∘ 𝑠𝑠 = 𝑟𝑟 + 𝑠𝑠 − 1. Now 
let us prove the opposite direction. Since 𝑟𝑟 ∘ 𝑠𝑠 = 𝑟𝑟 + 𝑠𝑠 − 1 , there exists 𝑟𝑟 − 2 < 𝑘𝑘 < 𝑟𝑟  such that 
�𝑟𝑟+𝑠𝑠−2𝑘𝑘 � is odd. Obviously, 𝑘𝑘 can only be 𝑟𝑟 − 1, which indicates that �𝑟𝑟+𝑠𝑠−2𝑟𝑟−1 � is odd. The next step is to 
prove the equivalence between (i) and (iii). To prove that (i) implies (iii), let us determine the 
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requirements for �𝑟𝑟+𝑠𝑠−2𝑟𝑟−1 � = (𝑟𝑟+𝑠𝑠−2)!
(𝑟𝑟−1)!(𝑠𝑠−1)!

 to be odd. The power of 2  in (𝑟𝑟 + 𝑠𝑠 − 2)!  is ⌊𝑟𝑟+𝑠𝑠−2
2

⌋ +

⌊𝑟𝑟+𝑠𝑠−2
22

⌋ + ⋯; the power of 2 in (𝑟𝑟 − 1)! is ⌊𝑟𝑟−1
2
⌋ + ⌊𝑟𝑟−1

22
⌋ + ⋯; the power of 2 in (𝑠𝑠 − 1)! is ⌊𝑠𝑠−1

2
⌋ +

⌊𝑠𝑠−1
22
⌋ + ⋯. According to (iii), 𝑟𝑟 − 1 can be written as 𝑎𝑎𝑛𝑛2𝑛𝑛 + 𝑎𝑎𝑛𝑛−12𝑛𝑛−1 + ⋯+ 𝑎𝑎020 , so that ⌊𝑟𝑟−1

2𝑖𝑖
⌋ =

⌊𝑎𝑎𝑛𝑛2𝑛𝑛−𝑖𝑖 + 𝑎𝑎𝑛𝑛−12𝑛𝑛−𝑖𝑖−1 + ⋯+ 𝑎𝑎02−𝑖𝑖⌋ = 𝑎𝑎𝑛𝑛2𝑛𝑛−𝑖𝑖 + 𝑎𝑎𝑛𝑛−12𝑛𝑛−𝑖𝑖−1 + ⋯+ 𝑎𝑎𝑖𝑖 . By the same token, ⌊𝑠𝑠−1
2𝑖𝑖
⌋ =

𝑏𝑏𝑚𝑚2𝑚𝑚−𝑖𝑖 + 𝑏𝑏𝑚𝑚−12𝑚𝑚−𝑖𝑖−1 + ⋯+ 𝑏𝑏𝑖𝑖 . �𝑟𝑟+𝑠𝑠−2𝑟𝑟−1 � is odd when 2 cannot divide (𝑟𝑟+𝑠𝑠−2)!
(𝑟𝑟−1)!(𝑠𝑠−1)!

–that is, ⌊𝑟𝑟−1
2𝑖𝑖
⌋ +

⌊𝑠𝑠−1
2𝑖𝑖
⌋ = ⌊𝑟𝑟+𝑠𝑠−2

2𝑖𝑖
⌋, for the reason that ⌊𝑟𝑟−1

2𝑖𝑖
⌋ + ⌊𝑠𝑠−1

2𝑖𝑖
⌋ ≤ ⌊𝑟𝑟+𝑠𝑠−2

2𝑖𝑖
⌋ always establishes by the nature of rounding 

down. Then we can get 𝑎𝑎𝑖𝑖−12𝑖𝑖−1 + ⋯+ 𝑎𝑎0 + 𝑏𝑏𝑖𝑖−12𝑖𝑖−1 + ⋯+ 𝑏𝑏0 < 2𝑖𝑖 . It is obvious that 𝑎𝑎𝑖𝑖−1, 𝑏𝑏𝑖𝑖−1 
cannot both be 1 , which implies that 𝑎𝑎𝑖𝑖 ,𝑏𝑏𝑖𝑖  are not both 1 . For the opposite direction, assume by 
contradiction that �𝑟𝑟+𝑠𝑠−2𝑟𝑟−1 � is even, so that 2 can divide (𝑟𝑟+𝑠𝑠−2)!

(𝑟𝑟−1)!(𝑠𝑠−1)!
. Based on the expressions we have 

already derived above, there must exist such 𝑖𝑖  that ⌊𝑟𝑟−1
2𝑖𝑖
⌋ + ⌊𝑠𝑠−1

2𝑖𝑖
⌋ < ⌊𝑟𝑟+𝑠𝑠−2

2𝑖𝑖
⌋ . This implies that 

𝑎𝑎𝑖𝑖−12𝑖𝑖−1 + ⋯+ 𝑎𝑎0 + 𝑏𝑏𝑖𝑖−12𝑖𝑖−1 + ⋯+ 𝑏𝑏0 ≥ 2𝑖𝑖 , which means that there exists 𝑘𝑘 ∈ {0, … , 𝑖𝑖 − 1} such 
that 𝑎𝑎𝑘𝑘 = 𝑏𝑏𝑘𝑘 = 1.  

Proof of Theorem 1.5 (ii). Since �𝑟𝑟+𝑠𝑠−2𝑟𝑟−1 � is odd, by Lemma 5.8, we can get that 𝑟𝑟 ∘ 𝑠𝑠 = 𝑟𝑟 + 𝑠𝑠 − 1. 
According to Theorem 5.1, 𝑟𝑟#ℝ𝑠𝑠 ≥ 𝑟𝑟 ∘ 𝑠𝑠 = 𝑟𝑟 + 𝑠𝑠 − 1. According to Proposition 1.4, 𝑟𝑟#ℝ𝑠𝑠 ≤ 𝑟𝑟 + 𝑠𝑠 −
1. Therefore, 𝑟𝑟#ℝ𝑠𝑠 = 𝑟𝑟 + 𝑠𝑠 − 1.  

6.  Degrees of the determinantal varieties 
In this section, we discuss the degrees of the projective determinantal varieties in the projective space 
of all matrices of a given size. The main result is Theorem 6.3 which is proven in [6, Proposition 12(a)]. 
We will use this result to give another proof of Theorem 1.5 (ii). 

6.1.  Degree of a projective variety 
We start with some elementary observations about the degree of a projective variety. 

Definition 6.1.  Let 𝕜𝕜 be an algebraically closed field. Let 𝑋𝑋 ⊂ ℙ𝑁𝑁  be an irreducible projective 
variety of dimension 𝑛𝑛. Then the degree of 𝑋𝑋 in ℙ𝑁𝑁 is defined by the number of the intersection points 
of 𝐻𝐻 ∩ 𝑋𝑋 in which 𝐻𝐻 is a general (𝑁𝑁 − 𝑛𝑛)-dimensional linear subspace. 

Lemma 6.2.  Let 𝑋𝑋 ⊂ ℙ𝑁𝑁(ℝ) be a real projective variety of dimension 𝑛𝑛. If the degree of 𝑋𝑋 is odd, 
then for any linear subspace of dimension ≥ 𝑁𝑁 − 𝑛𝑛, 𝐻𝐻 ∩ 𝑋𝑋 ≠ 𝜙𝜙. 

Proof   Let 𝐻𝐻 ⊂ ℙ𝑁𝑁(ℝ) be a linear subspace of dimension ≥ 𝑁𝑁 − 𝑛𝑛. Let 𝐻𝐻′ ⊂ 𝐻𝐻 be a subspace of 
dimension 𝑁𝑁 − 𝑛𝑛. Since the degree of 𝑋𝑋 ⊂ ℙ𝑁𝑁 is odd, by definition, 𝑋𝑋(ℂ) ∩ 𝐻𝐻ℂ has an odd number of 
points, counted with multiplicity. Let 𝑥𝑥 ∈ 𝑋𝑋(ℂ) ∩ 𝐻𝐻ℂ be a complex point. Then the complex conjugate 
$\Bar{x}$ of 𝑥𝑥 is also in 𝑋𝑋(ℂ) ∩ 𝐻𝐻ℂ, counted with multiplicity. Hence, the set of non-real points in 
𝑋𝑋(ℂ) ∩ 𝐻𝐻ℂ is even. Hence, there is a real point in 𝑋𝑋(ℂ) ∩ 𝐻𝐻ℂ. In other words, 𝑋𝑋 ∩ 𝐻𝐻 ≠ 𝜙𝜙. ▫ 

The degrees of the projective determinantal varieties are calculated in Proposition 12 (a) in [6]. 
Theorem 6.3 (Harris–Tu [6])).  The degree of ℙ�𝑀𝑀𝑟𝑟(𝑚𝑚,𝑛𝑛)� ⊂ ℙ𝑀𝑀𝑚𝑚×𝑛𝑛(𝕜𝕜) is 

�
� 𝑛𝑛+𝛼𝛼
𝑚𝑚−1−𝛼𝛼�

� 𝑛𝑛−𝑟𝑟+𝛼𝛼
𝑚𝑚−𝑟𝑟−1−𝛼𝛼�

𝑚𝑚−𝑟𝑟−1

𝛼𝛼=0

. 

6.2.  Application to the calculation of 𝒓𝒓#ℝ𝒔𝒔 
In this part, we give another proof of Theorem 1.5 (ii) using the result of the previous part. 

Theorem 42.  If �𝑟𝑟+𝑠𝑠−2𝑟𝑟−1 � is odd, then 𝑟𝑟#ℝ𝑠𝑠 = 𝑟𝑟 + 𝑠𝑠 − 1. 
Proof   Since 𝑟𝑟#ℝ𝑠𝑠 ≤ 𝑟𝑟 + 𝑠𝑠 − 1 by Proposition 1.4, it suffices to show that 𝑟𝑟#ℝ𝑠𝑠 ≥ 𝑟𝑟 + 𝑠𝑠 − 1. Let 

𝜙𝜙:ℝ𝑟𝑟 × ℝ𝑠𝑠 → ℝ𝑛𝑛  be a nonsingular bilinear map. We must show that 𝑛𝑛 ≥ 𝑟𝑟 + 𝑠𝑠 − 1 . The map 𝜙𝜙 

Proceedings of the 2023 International Conference on Mathematical Physics and Computational Simulation
DOI: 10.54254/2753-8818/11/20230417

265



induces the linear map 𝜓𝜓:ℝ𝑟𝑟 → Hom(ℝ𝑠𝑠 ,ℝ𝑛𝑛). The non-singularity of 𝜙𝜙 implies the following (c.f. 
Proposition 4.3): 

(i) 𝜓𝜓 is injective; 
(ii) Im𝜓𝜓 ∩ Hom𝑠𝑠−1(ℝ𝑠𝑠 ,ℝ𝑛𝑛) = 0, 

where Hom𝑠𝑠−1(ℝ𝑠𝑠,ℝ𝑛𝑛) signifies the linear maps from ℝ𝑠𝑠 to ℝ𝑛𝑛 with rank ≤ 𝑠𝑠 − 1. By Theorem 6.3, 
the degree of ℙHom𝑠𝑠−1(ℝ𝑠𝑠 ,ℝ𝑛𝑛) in ℙHom(ℝ𝑠𝑠,ℝ𝑛𝑛) is � 𝑛𝑛

𝑠𝑠−1�. Assume by contradiction that 𝑛𝑛 < 𝑟𝑟 +
𝑠𝑠 − 1. We may assume 𝑛𝑛 = 𝑟𝑟 + 𝑠𝑠 − 2, since the existence of a nonsingular bilinear map ℝ𝑟𝑟 × ℝ𝑠𝑠 →
ℝ𝑛𝑛 with 𝑛𝑛 < 𝑟𝑟 + 𝑠𝑠 − 1 implies the existence of a nonsingular bilinear map ℝ𝑟𝑟 × ℝ𝑠𝑠 → ℝ𝑟𝑟+𝑠𝑠−2. The 
degree of ℙHom𝑠𝑠−1(ℝ𝑠𝑠,ℝ𝑟𝑟+𝑠𝑠−2) in ℙHom(ℝ𝑠𝑠 ,ℝ𝑟𝑟+𝑠𝑠−2) is �𝑟𝑟+𝑠𝑠−2𝑠𝑠−1 �, which is odd by assumption. By 
Corollary 3.6 and Lemma 4.2, the dimension of ℙHom𝑠𝑠−1(ℝ𝑠𝑠 ,ℝ𝑟𝑟+𝑠𝑠−2) is 𝑠𝑠(𝑠𝑠 − 1) + (𝑟𝑟 + 𝑠𝑠 − 2)(𝑠𝑠 −
1) − (𝑠𝑠 − 1)2 − 1 = (𝑠𝑠 + 𝑟𝑟 − 1)(𝑠𝑠 − 1) − 1, whereas the dimension of ℙHom(ℝ𝑠𝑠,ℝ𝑟𝑟+𝑠𝑠−2) is 𝑠𝑠(𝑟𝑟 +
𝑠𝑠 − 2) − 1. Since 𝜓𝜓:ℝ𝑟𝑟 → Hom(ℝ𝑠𝑠 ,ℝ𝑟𝑟+𝑠𝑠−2) is injective, the dimension of ℙIm𝜓𝜓 is 𝑟𝑟 − 1. Hence, 
dimℙIm𝜓𝜓 + dimℙHom𝑠𝑠−1(ℝ𝑠𝑠,ℝ𝑟𝑟+𝑠𝑠−2) = 𝑟𝑟 − 1 + (𝑠𝑠 + 𝑟𝑟 − 1)(𝑠𝑠 − 1) + 1 = 𝑠𝑠(𝑟𝑟 + 𝑠𝑠 − 2) − 1 =
dimℙHom(ℝ𝑠𝑠,ℝ𝑟𝑟+𝑠𝑠−2) . Therefore, by Lemma 6.2, ℙIm𝜓𝜓 ∩ ℙHom𝑠𝑠−1(ℝ𝑠𝑠,ℝ𝑟𝑟+𝑠𝑠−2) ≠ 𝜙𝜙 , which 
contradicts (ii). This proves that 𝑛𝑛 ≥ 𝑟𝑟 + 𝑠𝑠 − 1. Therefore, it can be finally concluded that 𝑟𝑟#ℝ𝑠𝑠 = 𝑟𝑟 +
𝑠𝑠 − 1, as desired. 

7.  Field extensions 
In this section, we recall some basic knowledge on field extension theory. The principal reference is [9]. 
We study the relation between degree of field extensions and the invariant 𝑟𝑟#𝕜𝕜𝑠𝑠  defined in the 
Introduction. Finally, we concentrate on the rational number field and finite fields and complete the 
proof of Theorem 1.5 (iii). 

7.1.  Degrees of field extensions 
Definition 7.1.  𝐿𝐿 is called a field extension of 𝕜𝕜 if 𝐿𝐿 is a field containing 𝕜𝕜 as a subfield. 

Remark.  If 𝐿𝐿 is a field extension of 𝕜𝕜, then 𝐿𝐿 has a canonical 𝕜𝕜-vector space structure. 
Definition 7.2.  The degree of the field extension 𝐿𝐿/𝕜𝕜 is defined as the dimension of 𝐿𝐿 as a 𝕜𝕜-vector 

space. It is denoted by [𝐿𝐿:𝕜𝕜]. 
Example.  The field ℚ�√2� : = {𝑎𝑎 + 𝑏𝑏√2: 𝑎𝑎, 𝑏𝑏 ∈ ℚ}, viewed as a ℚ-vector space, has a basis {1,√2}. 

The extension degree is thus �ℚ�√2�:ℚ� = 2. 
Definition 7.3.  Let 𝐿𝐿 be a field extension of 𝕜𝕜. An element 𝛼𝛼 ∈ 𝐿𝐿 is called an algebraic element 

over 𝕜𝕜 , if there exists a monic 𝕜𝕜 -coefficient polynomial 𝑓𝑓(𝑋𝑋) = 𝑋𝑋𝑛𝑛 + 𝑐𝑐𝑛𝑛−1𝑋𝑋𝑛𝑛−1 + ⋯+ 𝑐𝑐1𝑋𝑋 + 𝑐𝑐0 
where 𝑐𝑐𝑖𝑖 ∈ 𝕜𝕜 such that 𝑓𝑓(𝛼𝛼) = 0. 

Proposition 7.4.  The following statements are equivalent: 
(i) 𝑥𝑥 ∈ 𝐿𝐿 is algebraic over 𝕜𝕜. 
(ii) 𝕜𝕜[𝑥𝑥] is a finitely dimensional 𝕜𝕜-vector space. 
(iii) 𝕜𝕜[𝑥𝑥] is a field. 
Proof   Let us first prove that (i) implies (ii)–that is, if 𝑥𝑥 ∈ 𝐿𝐿 is algebraic over 𝕜𝕜, then 𝕜𝕜[𝑥𝑥] is a finitely 

dimensional 𝕜𝕜 -vector space. Since 𝑥𝑥 ∈ 𝐿𝐿  is algebraic over 𝕜𝕜 , there exists an expression 𝑥𝑥𝑛𝑛 +
𝑐𝑐𝑛𝑛−1𝑥𝑥𝑛𝑛−1 + ⋯+ 𝑐𝑐0 = 0 , where 𝑐𝑐𝑖𝑖 ∈ 𝕜𝕜 . Therefore, any expression 𝑎𝑎0 + 𝑎𝑎1𝑥𝑥 + ⋯+ 𝑎𝑎𝑔𝑔𝑥𝑥𝑔𝑔  can be 
expressed in terms of 1, 𝑥𝑥, … , 𝑥𝑥𝑛𝑛−1. Hence, 𝕜𝕜[𝑥𝑥] is generated by 1, 𝑥𝑥, … , 𝑥𝑥𝑛𝑛−1 over 𝕜𝕜, which proves that 
𝕜𝕜[𝑥𝑥] is a finitely dimensional 𝕜𝕜-vector space. Then let us prove that (ii) implies (iii)–that is, if 𝕜𝕜[𝑥𝑥] is a 
finitely dimensional 𝕜𝕜-vector space, then 𝕜𝕜[𝑥𝑥] is a field. It suffices to show that for 𝑥𝑥 ∈ 𝕜𝕜[𝑥𝑥] nonzero, 
𝑥𝑥  has an inverse in 𝕜𝕜[𝑥𝑥] . Since 𝕜𝕜[𝑥𝑥]  is finitely dimensional, 1, 𝑥𝑥, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛, …  become linearly 
dependent for 𝑛𝑛 ≥ dim𝕜𝕜[𝑥𝑥]. Hence, there exists 𝑛𝑛 such that 𝑥𝑥𝑛𝑛 = 𝑐𝑐𝑛𝑛−1𝑥𝑥𝑛𝑛−1 + ⋯+ 𝑐𝑐1𝑥𝑥 + 𝑐𝑐0  where 
𝑐𝑐𝑖𝑖 ∈ 𝕜𝕜. We may assume 𝑐𝑐0 ≠ 0. Then 1

𝑐𝑐0
𝑥𝑥𝑛𝑛−1 − 𝑐𝑐𝑛𝑛−1

𝑐𝑐0
𝑥𝑥𝑛𝑛−2 − ⋯− 𝑐𝑐1

𝑐𝑐0
 is the inverse of 𝑥𝑥, as desired. The 

final step is to prove that (iii) implies (i). If 𝑥𝑥 = 0, then 𝑥𝑥 is obviously an algebraic element. If 𝑥𝑥 ≠ 0, 
since 𝕜𝕜[𝑥𝑥] is a field, 𝑥𝑥 has an inverse in 𝕜𝕜[𝑥𝑥]. Suppose 𝑎𝑎0 + 𝑎𝑎1𝑥𝑥 + ⋯+ 𝑎𝑎𝑔𝑔𝑥𝑥𝑔𝑔 is the inverse of 𝑥𝑥–that 
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is, 𝑥𝑥�𝑎𝑎0 + 𝑎𝑎1𝑥𝑥 + ⋯+ 𝑎𝑎𝑔𝑔𝑥𝑥𝑔𝑔� = 1 . May assume 𝑎𝑎𝑔𝑔 ≠ 0 , then 𝑥𝑥𝑔𝑔+1 + 𝑎𝑎𝑔𝑔−1
𝑎𝑎𝑔𝑔

𝑥𝑥𝑔𝑔 + ⋯+ 𝑎𝑎0
𝑎𝑎𝑔𝑔
𝑥𝑥 − 1

𝑎𝑎𝑔𝑔
= 0 . 

Hence, 𝑥𝑥 is an algebraic element over 𝕜𝕜.  
Definition 7.5.  Let 𝑥𝑥 ∈ 𝐿𝐿 be an algebraic element over 𝕜𝕜. A minimal polynomial 𝜇𝜇𝑥𝑥,𝕜𝕜(𝑋𝑋) of 𝑥𝑥 over 

𝕜𝕜 is defined as a polynomial with 𝕜𝕜-coefficients satisfying: 
(i) 𝜇𝜇𝑥𝑥,𝕜𝕜(𝑥𝑥) = 0. 
(ii) If 𝑓𝑓(𝑋𝑋) ∈ 𝕜𝕜[𝑋𝑋] is nonzero such that 𝑓𝑓(𝑥𝑥) = 0, then deg𝜇𝜇𝑥𝑥,𝕜𝕜 ≤ deg𝑓𝑓. 
(iii) 𝜇𝜇𝑥𝑥,𝕜𝕜(𝑋𝑋) is monic. 
Lemma 7.6.  Let 𝑥𝑥 ∈ 𝐿𝐿 be an algebraic element over 𝕜𝕜. Let 𝑓𝑓(𝑋𝑋) ∈ 𝕜𝕜[𝑋𝑋] be monic polynomial such 

that 𝑓𝑓(𝑥𝑥) = 0. Then the following statements are equivalent: 
(i) 𝑓𝑓 is the minimal polynomial of 𝑥𝑥 over 𝕜𝕜. 
(ii) 𝑓𝑓 is an irreducible polynomial in 𝕜𝕜[𝑋𝑋]. 
Proof   Let us first prove that (i) implies (ii). Assume that 𝑓𝑓  is reducible. There exists monic 

polynomials 𝑔𝑔, ℎ ∈ 𝕜𝕜[𝑋𝑋]  with strictly smaller degrees than that of 𝑓𝑓  such that 𝑓𝑓 = 𝑔𝑔ℎ . Since 0 =
𝑓𝑓(𝑥𝑥) = 𝑔𝑔(𝑥𝑥)ℎ(𝑥𝑥), 𝑔𝑔(𝑥𝑥) = 0 or ℎ(𝑥𝑥) = 0, which is contradictory to the minimality of the degree of 𝑓𝑓. 
Then let us prove that (ii) implies (i). Let 𝜇𝜇𝛼𝛼,𝕜𝕜 be the minimal polynomial. By Euclidean division, 𝑓𝑓 =
𝑔𝑔𝜇𝜇𝛼𝛼,𝕜𝕜 + 𝑟𝑟 with deg𝑟𝑟 < deg𝜇𝜇𝛼𝛼,𝕜𝕜. Then, 0 = 𝑓𝑓(𝑥𝑥) = 𝑔𝑔(𝑥𝑥)𝜇𝜇𝛼𝛼,𝕜𝕜(𝑥𝑥) + 𝑟𝑟(𝑥𝑥) = 𝑟𝑟(𝑥𝑥), so that 𝑟𝑟 ≡ 0, which 
means that 𝑓𝑓 = 𝑔𝑔𝜇𝜇𝛼𝛼,𝕜𝕜. But 𝑓𝑓 is irreducible, implying that 𝑓𝑓 = 𝜇𝜇𝛼𝛼,𝕜𝕜, as desired.  

Proposition 7.7.  Let 𝑥𝑥 ∈ 𝐿𝐿 be an algebraic element over 𝕜𝕜. Let 𝜇𝜇𝑥𝑥,𝕜𝕜(𝑋𝑋) ∈ 𝕜𝕜[𝑋𝑋] be the minimal 
polynomial of 𝑥𝑥 over 𝕜𝕜. Then deg𝜇𝜇𝑥𝑥,𝕜𝕜 = [𝕜𝕜[𝑥𝑥]:𝕜𝕜] 

Proof   Let 𝜇𝜇𝑥𝑥,𝕜𝕜(𝑋𝑋) = 𝑋𝑋𝑛𝑛 + 𝑐𝑐𝑛𝑛−1𝑋𝑋𝑛𝑛−1 + ⋯+ 𝑐𝑐1𝑋𝑋 + 𝑐𝑐0. Since every 𝑥𝑥𝑘𝑘 can be expressed in terms 
of 1, 𝑥𝑥, … , 𝑥𝑥𝑛𝑛−1  since 𝜇𝜇𝑥𝑥,𝕜𝕜(𝑥𝑥) = 0 , every polynomial expression of 𝑥𝑥  can be expressed via 
1, 𝑥𝑥, … , 𝑥𝑥𝑛𝑛−1. This proves that {1, 𝑥𝑥, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛−1} spans 𝕜𝕜[𝑥𝑥]. Assume that 𝜆𝜆1, 𝜆𝜆2, … , 𝜆𝜆𝑛𝑛 are not all zero 
when 𝜆𝜆11 + 𝜆𝜆2𝑋𝑋 + ⋯+ 𝜆𝜆𝑛𝑛𝑥𝑥𝑛𝑛−1 = 0 . Then there is a nonzero polynomial of degree ≤ 𝑛𝑛 − 1 
annihilating 𝑥𝑥, which contradicts the minimality of 𝜇𝜇𝑥𝑥,𝕜𝕜. This proves that {1, 𝑥𝑥, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛−1} is linearly 
independent. Hence, it can be concluded that {1, 𝑥𝑥, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛−1} is a basis of 𝕜𝕜[𝑥𝑥] as a 𝕜𝕜-vector space, 
indicating that deg𝜇𝜇𝑥𝑥,𝕜𝕜 = [𝕜𝕜[𝑥𝑥]:𝕜𝕜].  

7.2.  Relation between the extension degree and 𝒓𝒓#𝕜𝕜𝒔𝒔 
Proposition 7.8.  Let 𝕜𝕜 be a field that admits a field extension of degree 𝑑𝑑. Then for any 𝑟𝑟 ≤ 𝑑𝑑, 𝑟𝑟#𝕜𝕜𝑑𝑑 =
𝑑𝑑. 

Proof   It suffices to construct a nonsingular bilinear form 𝜙𝜙:𝕜𝕜𝑟𝑟 × 𝕜𝕜𝑑𝑑 → 𝕜𝕜𝑑𝑑. Since 𝕜𝕜 admits a field 
extension of degree 𝑑𝑑, say 𝐿𝐿, then the multiplication of 𝐿𝐿 gives a symmetric 𝕜𝕜-bilinear map 

𝜓𝜓: 𝐿𝐿 × 𝐿𝐿 → 𝐿𝐿
(𝑥𝑥,𝑦𝑦) ↦ 𝑥𝑥𝑦𝑦. 

On the other hand, 𝐿𝐿 is a 𝕜𝕜-vector space of dimension 𝑑𝑑, so by a choice of basis, 𝐿𝐿 ≅ 𝕜𝕜𝑑𝑑 as 𝕜𝕜-vector 
spaces, which makes 𝜓𝜓𝐿𝐿  to be a 𝕜𝕜-bilinear map 𝜙𝜙𝐿𝐿:𝕜𝕜𝑑𝑑 × 𝕜𝕜𝑑𝑑 → 𝕜𝕜𝑑𝑑 . Since 𝑟𝑟 ≤ 𝑑𝑑 , we can choose a 
subspace of dimension 𝑟𝑟 in 𝕜𝕜𝑑𝑑 . The restriction of 𝜙𝜙𝐿𝐿  gives a 𝕜𝕜-bilinear map 𝜙𝜙:𝕜𝕜𝑟𝑟 × 𝕜𝕜𝑑𝑑 → 𝕜𝕜𝑑𝑑 . We 
claim that 𝜙𝜙 is nonsingular. Let 𝑢𝑢 ∈ 𝕜𝕜𝑟𝑟 , 𝑣𝑣 ∈ 𝕜𝕜𝑑𝑑 be nonzero elements. Regard 𝑢𝑢, 𝑣𝑣 as elements in 𝐿𝐿. By 
the definition of 𝜙𝜙𝐿𝐿  and 𝜙𝜙 , since 𝐿𝐿  is a field, 𝑢𝑢𝑣𝑣 = 0  implies either 𝑢𝑢 = 0  or 𝑣𝑣 = 0 . Hence, 
𝜙𝜙:𝕜𝕜𝑟𝑟 × 𝕜𝕜𝑑𝑑 → 𝕜𝕜𝑑𝑑 is nonsingular. ▫ 

Corollary 7.9.  Let 𝕜𝕜 be a field that admits field extensions of any degree. Then for any 𝑟𝑟, 𝑠𝑠 ∈ ℕ, 
𝑟𝑟#𝕜𝕜𝑠𝑠 = max{𝑟𝑟, 𝑠𝑠}. 

7.3.  Finite field theory 
In this section, we recall following [9] some basic facts about finite fields that will be useful in the next 
section to the proof of Theorem 1.5 (iii), namely Proposition 7.16 . It is a well-known elementary fact 
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that for any prime number 𝑝𝑝, the congruence system of integers modulo 𝑝𝑝 forms a field, which we 
denote by 𝔽𝔽𝑝𝑝. This is the starting point of the whole theory. 

Proposition 7.10.  If 𝐹𝐹 is a finite field, then the cardinal of 𝐹𝐹 is a power of a prime number. 
Proof   For any natural number 𝑛𝑛, we can regard 𝑛𝑛 as an element in 𝐹𝐹 defined to be the sum of 𝑛𝑛 

copies of 1’s. Consider the following subset {0,1,2, … ,𝑛𝑛, … } ⊂ 𝐹𝐹. Since 𝐹𝐹 is a finite field, this sequence 
terminates, say at 𝑛𝑛 − 1. Since 𝐹𝐹  is a field, every element in {0,1, … ,𝑛𝑛 − 1} is invertible in 𝐹𝐹 . In 
particular, the product of nonzero elements is nonzero. This implies that 𝑛𝑛 is a prime number, say 𝑝𝑝. 
Hence, {0,1,2, … ,𝑛𝑛 − 1} ≅ 𝔽𝔽𝑝𝑝 ⊂ 𝐹𝐹. In other words, 𝐹𝐹 is a field extension of 𝔽𝔽𝑝𝑝, so it can be viewed as 
a 𝔽𝔽𝑝𝑝-vector space. Since 𝐹𝐹 is a finite field, it is a finitely dimensional 𝔽𝔽𝑝𝑝-vector space. By a choice of a 
basis of 𝐹𝐹 as an 𝔽𝔽𝑝𝑝-vector space, 𝐹𝐹 ≅ 𝔽𝔽𝑝𝑝𝑛𝑛 as 𝔽𝔽𝑝𝑝-vector spaces. Hence, |𝐹𝐹| = �𝔽𝔽𝑝𝑝𝑛𝑛� = 𝑝𝑝𝑛𝑛, as desired.  

To construct other finite fields, we need the following fundamental result on algebraically closed 
fields. 

Theorem 7.11.  Let 𝕜𝕜 be a field. Then there exists a field extension 𝛺𝛺 of 𝕜𝕜 which is algebraically 
closed. Furthermore, if 𝐿𝐿 is a field extension over 𝕜𝕜 such that every element in 𝐿𝐿 is algebraic over 𝕜𝕜, 
then 𝐿𝐿 can be embedded into 𝛺𝛺. 

Proposition 7.12.  Let 𝑝𝑝 be a prime number and let n be a positive integer. Then there exists a unique 
field 𝐹𝐹 with 𝑝𝑝𝑛𝑛 elements, up to field isomorphism. 

Proof   First, let us show the existence of such a field by an explicit construction. By Theorem 7.11, 
there is an algebraically closed extension 𝛺𝛺𝑝𝑝 of 𝔽𝔽𝑝𝑝. We define a subset 𝔽𝔽𝑝𝑝𝑛𝑛 ⊂ 𝛺𝛺𝑝𝑝 as follows: 

𝔽𝔽𝑝𝑝𝑛𝑛 : = {𝑥𝑥 ∈ 𝛺𝛺𝑝𝑝: 𝑥𝑥𝑝𝑝𝑛𝑛 = 𝑥𝑥}. 

We are going to show that 𝔽𝔽𝑝𝑝𝑛𝑛 is a field with 𝑝𝑝𝑛𝑛 elements. To show that 𝔽𝔽𝑝𝑝𝑛𝑛 has 𝑝𝑝𝑛𝑛 elements, we 
prove that 𝑋𝑋𝑝𝑝𝑛𝑛 − 𝑋𝑋 = 0 has no multiple roots. Let 𝑓𝑓(𝑋𝑋) = 𝑋𝑋𝑝𝑝𝑛𝑛 − 𝑋𝑋, so that 𝑓𝑓′(𝑋𝑋) = 𝑝𝑝𝑛𝑛𝑋𝑋𝑝𝑝𝑛𝑛−1 − 1 =
−1. Suppose there exist multiple roots. It means that there exists some 𝑥𝑥 ∈ 𝛺𝛺𝑝𝑝 that satisfies 

�
𝑓𝑓(𝑥𝑥) = 0
𝑓𝑓′(𝑥𝑥) = 0, 

which is impossible since 𝑓𝑓(𝑥𝑥) = −1 ≠ 0. Hence, 𝑋𝑋𝑝𝑝𝑛𝑛 − 𝑋𝑋 = 0 has no multiple roots, implying that 
there are 𝑝𝑝𝑛𝑛 distinct roots. Therefore, there are 𝑝𝑝𝑛𝑛 elements in 𝔽𝔽𝑝𝑝𝑛𝑛. Now let us show that 𝔽𝔽𝑝𝑝𝑛𝑛 is a field. 
Assume 𝑥𝑥,𝑦𝑦 ∈ 𝔽𝔽𝑝𝑝𝑛𝑛 , so we can get that 𝑥𝑥𝑝𝑝𝑛𝑛 = 𝑥𝑥,𝑦𝑦𝑝𝑝𝑛𝑛 = 𝑦𝑦. Since 𝑥𝑥 + 𝑦𝑦 = 𝑥𝑥𝑝𝑝𝑛𝑛 + 𝑦𝑦𝑝𝑝𝑛𝑛 = (𝑥𝑥 + 𝑦𝑦)𝑝𝑝𝑛𝑛 ∈
𝔽𝔽𝑝𝑝𝑛𝑛, it meets the addition rule of a field. Assume 𝑥𝑥 ∈ 𝔽𝔽𝕡𝕡𝕟𝕟 ,𝑚𝑚 ∈ ℕ. Then 𝑚𝑚𝑥𝑥 can be expressed as 𝑥𝑥𝑝𝑝𝑛𝑛 +
𝑥𝑥𝑝𝑝𝑛𝑛 + ⋯+ 𝑥𝑥𝑝𝑝𝑛𝑛  with 𝑚𝑚  terms, which equals (𝑥𝑥 + 𝑥𝑥 + ⋯+ 𝑥𝑥)𝑝𝑝𝑛𝑛 = (𝑚𝑚𝑥𝑥)𝑝𝑝𝑛𝑛 . This proves that 𝑚𝑚𝑥𝑥 ∈
𝔽𝔽𝑝𝑝𝑛𝑛, so it also meets the multiplication rule of a field. Therefore, it can be concluded that 𝔽𝔽𝑝𝑝𝑛𝑛 is a field. 

Next, let us prove the uniqueness. Let 𝐹𝐹  be a field with 𝑝𝑝𝑛𝑛  elements. We must show that 𝐹𝐹  is 
isomorphic to 𝔽𝔽𝑝𝑝𝑛𝑛. Let 𝐹𝐹 be a finite field with 𝑝𝑝𝑛𝑛. Similarly to Proposition 7.10, 𝐹𝐹 is an extension of 
𝔽𝔽𝑝𝑝. By the Proposition 7.11, 𝐹𝐹 can be embedded into 𝛺𝛺𝑝𝑝. TO show that 𝐹𝐹 ≅ 𝔽𝔽𝑝𝑝𝑛𝑛, it suffices to check 
that for any 𝑥𝑥 ∈ 𝐹𝐹, 𝑥𝑥𝑝𝑝𝑛𝑛 − 𝑥𝑥 = 0. If 𝑥𝑥 = 0, then 𝑥𝑥 clearly satisfies this equation. Now let us assume that 
𝑥𝑥 ≠ 0. Let us consider 𝐹𝐹× : = 𝐹𝐹 − {0} for which |𝐹𝐹×| = 𝑝𝑝𝑛𝑛 − 1. Since 𝑥𝑥 ∈ 𝐹𝐹× . The map 𝐹𝐹× → 𝐹𝐹× 
defined by 𝑦𝑦 ↦ 𝑥𝑥𝑦𝑦 is bijective. Hence, ∏ 𝑦𝑦𝑦𝑦∈𝐹𝐹× = ∏ 𝑥𝑥𝑦𝑦𝑦𝑦∈𝐹𝐹× = 𝑥𝑥𝑝𝑝𝑛𝑛−1 ∏ 𝑦𝑦𝑦𝑦∈𝐹𝐹× . But ∏ 𝑦𝑦𝑦𝑦∈𝐹𝐹× ≠ 0, so 
𝑥𝑥𝑝𝑝𝑛𝑛−1 = 1 in 𝐹𝐹. Hence, 𝑥𝑥𝑝𝑝𝑛𝑛 = 0 in 𝐹𝐹. ▫ 

Proposition 7.13.  𝔽𝔽𝑝𝑝𝑚𝑚 ⊂ 𝔽𝔽𝑝𝑝𝑛𝑛 if and only if 𝑚𝑚 divides 𝑛𝑛. 
Proof   Let us first prove that 𝔽𝔽𝑝𝑝𝑚𝑚 ⊂ 𝔽𝔽𝑝𝑝𝑛𝑛 if 𝑚𝑚 divides 𝑛𝑛. Let 𝑥𝑥 ∈ 𝔽𝔽𝑝𝑝𝑚𝑚, so that 𝑥𝑥𝑝𝑝𝑚𝑚 − 𝑥𝑥 = 0. Let us 

set 𝑛𝑛 = 𝑘𝑘𝑚𝑚, 𝑘𝑘 ∈ ℕ , so that 𝑥𝑥𝑝𝑝𝑛𝑛 = �𝑥𝑥𝑝𝑝𝑚𝑚�
𝑝𝑝𝑛𝑛−𝑚𝑚

= �𝑥𝑥𝑝𝑝𝑚𝑚�
𝑝𝑝(𝑘𝑘−1)𝑚𝑚

= 𝑥𝑥𝑝𝑝(𝑘𝑘−1)𝑚𝑚 = �𝑥𝑥𝑝𝑝𝑚𝑚�
𝑝𝑝(𝑘𝑘−2)𝑚𝑚

=
𝑥𝑥𝑝𝑝(𝑘𝑘−2)𝑚𝑚 = ⋯. Through induction, we can finally get that 𝑥𝑥𝑝𝑝𝑛𝑛 = 𝑥𝑥, which means that 𝑥𝑥𝑝𝑝𝑛𝑛 − 𝑥𝑥 = 0. 
Hence, 𝐹𝐹𝑝𝑝𝑛𝑛 ⊂ 𝐹𝐹𝑝𝑝𝑚𝑚. For the other direction, assume 𝔽𝔽𝑝𝑝𝑚𝑚 ∈ 𝔽𝔽𝑝𝑝𝑛𝑛. Then 𝔽𝔽𝑝𝑝𝑚𝑚-vector spaces, 𝔽𝔽𝑝𝑝𝑛𝑛 ≅ 𝔽𝔽𝑝𝑝𝑚𝑚

𝑘𝑘  
for some 𝑘𝑘 ∈ ℕ. Hence, 𝑝𝑝𝑛𝑛 = �𝔽𝔽𝑝𝑝𝑛𝑛� = �𝔽𝔽𝑝𝑝𝑚𝑚

𝑘𝑘 � = (𝑝𝑝𝑚𝑚)𝑘𝑘 = 𝑝𝑝𝑚𝑚𝑘𝑘, which proves that 𝑚𝑚|𝑛𝑛, as desired.  
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7.4.  Proof of theorem 5 (iii) 
In this section, we prove Theorem 1.5 (iii). The main idea is to utilize Corollary 7.9, and to show that 
the field of rational numbers and finite fields admit field extensions of any degree. To prove this 
statement for the field of rational numbers, we will need the following well-known Eisenstein’s criterion, 
whose proof can be found in [9]. 

Theorem 7.14 (Eisenstein’s Criterion [9]).  Let 𝑓𝑓(𝑋𝑋) ∈ ℤ[𝑋𝑋] be a monic polynomial with integral 
coefficients  

𝑓𝑓(𝑋𝑋) = 𝑋𝑋𝑛𝑛 + 𝑎𝑎𝑛𝑛−1𝑥𝑥𝑛𝑛−1 + ⋯+ 𝑎𝑎1𝑋𝑋 + 𝑎𝑎0, where 𝑎𝑎𝑖𝑖 ∈ ℤ. 

Assume there exists a prime number 𝑝𝑝 such that 
(i) 𝑝𝑝|𝑎𝑎𝑖𝑖 , 𝑖𝑖 = 0,1, … ,𝑛𝑛 − 1, 
(ii) 𝑝𝑝2 ∤ 𝑎𝑎0. 
Then 𝑓𝑓(𝑋𝑋) is irreducible in ℚ[𝑋𝑋]. 
Proposition 7.15.  The rational number field ℚ admits field extensions of any degree. 
Proof   According to Theorem 7.14, 𝑋𝑋𝑑𝑑 − 2 is an irreducible polynomial for any 𝑑𝑑. This single 

construction proves the existence of irreducible polynomials of any given degree in ℚ[𝑋𝑋]. In fact, let 
𝛼𝛼 ∈ ℂ be a root of 𝑋𝑋𝑑𝑑 − 2 is the minimal polynomial of 𝛼𝛼. Hence, by Proposition 7.4 and Proposition 
7.7 ℚ[𝛼𝛼] is a field whose extension degree over ℚ is 𝑑𝑑. Since 𝑑𝑑 is arbitrary, we conclude that ℚ admits 
field extensions of any degree. ▫ 

Proposition 7.16.  The finite field 𝔽𝔽𝑞𝑞 admits field extensions of any degree. 
By Proposition 7.13, since all natural numbers can be divided by 1, 𝔽𝔽𝑞𝑞𝑑𝑑 is a field extension of 𝔽𝔽𝑞𝑞 of 

degree 𝑑𝑑 for any 𝑑𝑑 ∈ ℕ. This directly proves that the finite field 𝔽𝔽𝑞𝑞  admits field extensions of any 
degree. ▫ 

Proof of Theorem 1.5 (iii). According to Propositions 7.15 and 7.16, both the rational number field 
and finite fields admit field extensions of any degree. In this case, it can be easily concluded that 𝑟𝑟#𝕜𝕜𝑠𝑠 =
max{𝑟𝑟, 𝑠𝑠} for any 𝑟𝑟, 𝑠𝑠 ∈ ℕ by Corollary 7.9.  

8.  Conclusion 
In this article, we have explored the existence of nonsingular bilinear maps between vector spaces over 
a field 𝕜𝕜. The main focus of the study was the invariant 𝑟𝑟#𝕜𝕜𝑠𝑠, which represents the minimal integer 
such that the condition ℋ𝕜𝕜(𝑟𝑟, 𝑠𝑠,𝑛𝑛)  holds. We have provided some bounds for this invariant and 
discussed its dependence on the base field 𝕜𝕜. 

The main result of this research is presented in Theorem 1.5, which gives the value of 𝑟𝑟#𝕜𝕜𝑠𝑠 for 
different types of fields 𝕜𝕜. We proved that if 𝕜𝕜 is an algebraically closed field, then 𝑟𝑟#𝕜𝕜𝑠𝑠 = 𝑟𝑟 + 𝑠𝑠 − 1. 
In the real number cases, we found that if the combinatorial number �𝑟𝑟+𝑠𝑠−2𝑟𝑟−1 � is odd, then 𝑟𝑟#ℝ𝑠𝑠 = 𝑟𝑟 +
𝑠𝑠 − 1. Finally, for the rational number field ℚ or a finite field 𝔽𝔽𝑞𝑞, we established that 𝑟𝑟#𝕜𝕜𝑠𝑠 = max{𝑟𝑟, 𝑠𝑠}. 

The proof of Theorem 1.5 (i) relied on algebraic geometry and used the fundamental theorem in 
algebraic geometry, Theorem 7, to derive the inequality dim𝑊𝑊 ≥ dim𝑈𝑈 + dim𝑉𝑉 − 1 for a nonsingular 
bilinear map 𝜙𝜙:𝑈𝑈 × 𝑉𝑉 → 𝑊𝑊 over an algebraically closed field 𝕜𝕜. This result has interesting applications 
in algebraic curves theory, as seen in the connection to Clifford’s theorem. 

The second proof of Theorem 1.5 (ii) made use of Hopf’s theorem (Theorem 1.8) and some 
combinatorial observations. The theorem showed that whenever 𝑛𝑛 − 𝑠𝑠 < 𝑘𝑘 < 𝑟𝑟, �𝑛𝑛𝑘𝑘� is even if there is 
a nonsingular bilinear map 𝜙𝜙:ℝ𝑟𝑟 × ℝ𝑠𝑠 → ℝ𝑛𝑛. This information was then used to derive 𝑟𝑟#ℝ𝑠𝑠 = 𝑟𝑟 +
𝑠𝑠 − 1 under certain conditions. 

Furthermore, we provided another proof for Theorem 1.5 (ii) without relying on combinatorics, but 
rather through the construction of Grassmannian manifolds and determinantal varieties. This approach 
allowed us to show that under certain conditions, the degree of the determinantal variety in the projective 
space is odd, leading to the same result 𝑟𝑟#ℝ𝑠𝑠 = 𝑟𝑟 + 𝑠𝑠 − 1. 
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In the case of ℚ or a finite field 𝔽𝔽𝑞𝑞, we showed that 𝑟𝑟#𝕜𝕜𝑠𝑠 = max{𝑟𝑟, 𝑠𝑠}, which was proven to be quite 
straightforward by considering the existence of field extensions of any degree. 

In conclusion, this article successfully explores the existence of nonsingular bilinear maps over 
different fields, and provides insights into the invariant 𝑟𝑟#𝕜𝕜𝑠𝑠. However, it is important to mention that 
the general calculation of 𝑟𝑟#𝕜𝕜𝑠𝑠 remains challenging, as evidenced by the open problem of determining 
the precise value of 11#ℝ14 in the domain. The research in this area may pave the way for further 
investigations and contribute to a deeper understanding of bilinear maps and their applications in various 
mathematical contexts. 

8.1.  Limitations of the study 
While this article provides valuable insights into the existence of nonsingular bilinear maps and the 
behavior of the invariant 𝑟𝑟#𝕜𝕜𝑠𝑠 for different fields, there are certain limitations to this study. 

1. Complexity of Calculating 𝑟𝑟#𝕜𝕜𝑠𝑠: The invariant 𝑟𝑟#𝕜𝕜𝑠𝑠 is known to be quite challenging to calculate 
in general. Despite providing bounds and specific values for certain cases, a comprehensive formula or 
method for finding 𝑟𝑟#𝕜𝕜𝑠𝑠 for all combinations of 𝑟𝑟 and 𝑠𝑠 remains an open problem. 

2. Additional Conditions: In Theorem 1.5 (ii), we introduced an additional condition that relies on 
the combinatorial number �𝑟𝑟+𝑠𝑠−2𝑟𝑟−1 � being odd. While this condition was useful in obtaining the result for 
real number fields, it may not always be easy to determine for other fields, and it would be beneficial to 
explore alternative conditions for this case. 

3. Generalization to Other Contexts: The study focused on nonsingular bilinear maps between vector 
spaces. However, bilinear maps have applications in diverse mathematical contexts, such as algebraic 
geometry, algebraic number theory, and representation theory. Generalizing the results of this study to 
other settings may open up new avenues for research. 

8.2.  Future trends 
The research on nonsingular bilinear maps and the invariant 𝑟𝑟#𝕜𝕜𝑠𝑠  holds great potential for future 
exploration in various directions. Here are some potential future trends that could be pursued: 

1. Generalizing to Multilinear Maps: The study could be extended to investigate the existence and 
properties of nonsingular multilinear maps involving more than two vector spaces. Understanding the 
behavior of nonsingular multilinear maps and related invariants could lead to intriguing results and 
applications in higher-dimensional settings. 

2. Connections with Representation Theory: Exploring the connections between nonsingular bilinear 
maps and representation theory could be a promising avenue. Investigating the role of nonsingular 
bilinear maps in the representation theory of Lie algebras and other algebraic structures may yield new 
insights. 

3. Algebraic Topology and Bilinear Maps: The application of algebraic topology techniques to study 
nonsingular bilinear maps could provide new perspectives and proofs for the results presented in this 
article. Bridging the gap between algebraic topology and bilinear maps might lead to interesting 
connections and applications. 

4. Computational Techniques: Developing computational methods to calculate 𝑟𝑟#𝕜𝕜𝑠𝑠 for different 
fields and dimensions could be beneficial. Utilizing computer algebra systems and computational 
algebraic geometry tools might help to explore specific cases and patterns in the values of the invariant. 

5. Applications in Physics and Engineering: Bilinear maps and related concepts have applications in 
physics and engineering. Exploring how the results of this study could be applied in these fields may 
lead to practical solutions and advancements. 

In conclusion, the study of nonsingular bilinear maps and the invariant 𝑟𝑟#𝕜𝕜𝑠𝑠 is an exciting and 
evolving area of research. By continuing to investigate these topics and exploring their connections to 
other mathematical and applied fields, researchers can contribute to a deeper understanding of bilinear 
maps and their significance in various contexts. 
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