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Abstract. Mathematicians began to study a series of properties about numbers a long time ago, 
and a new field of mathematics, the number theory, was born from this. Some special properties 
of numbers in the number theory make mathematicians use the knowledge of group theory to 
make some ingenious answers when considering some problems. In the analytic number theory, 
equations related to numbers have always been a concern of mathematicians. The most famous 
Fermat's last theorem also brought long-term troubles to countless mathematicians and was 
finally proved by the British mathematician Wiles. Many famous theorems also prove that some 
problems in the number theory can be solved by thinking in relation to other algebraic 
knowledge. This paper focuses on the factoring primes and constructs prime ideals of
lying above a prim from irreducible factors of . The paper also shows that these 
are all prime ideals lying above . Based on these theorems and definitions, as a simple 
application of the theory, this paper first considers which primes can be written as sums of two 
squares, then the second part of this paper gives the answer: is a sum of two squares if and 
only if . 
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1.  Introduction 
For algebraic number theory [1], the overall understanding process starts with defining some basic 
algebraic number theory annotations, such as algebraic numbers and integers [2], number fields, rings 
of integers, norm and discriminant, fractional ideals, and class groups and lattices. As one of the most 
essential parts of algebraic number theory, factorising prime numbers into prime ideals of a ring of 
integers and applying it in the case of simple number fields (such as quadratic fields) is very important 
intermediate knowledge. Only after mastering the basic definition and such a decomposition relationship 
can the following Minkowski’s first theorem be introduced to try to compute class numbers and class 
groups of simple number fields. This paper can be divided into two parts, describing the process of 
decomposition of prime ideals and the corresponding applications, respectively. To be more specific, it 
discusses what kind of prime numbers can be written in the form of a sum of two integer squares, which 
is a very classical part of algebraic number theory. 
The most important part of the first part is that if we give a number field, give the corresponding ring of 
integers and have a minimal polynomial, then we can perform in the given number field for some given 
prime numbers. break down. The second part gives more inspiration when we consider an algebraic 
decomposition problem, in addition to analyzing the properties of the number itself, we can also use the 
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properties of groups, rings, and fields on the basis of group theory. Considering the problem, this actually 
inspires us to think about the problem from many aspects when facing Fermat's last theorem. 

2.  Factoring primes 

2.1.  Some basic definitions 
Several concepts of algebraic number theory have a pivotal role [3]: numbers, polynomials, and 
equations. So this paper gives definitions of some of the core terms before discussing the central issues. 
First of all, for numbers that people have a lot of contact with, the more special numbers in algebraic 
number theory are algebraic numbers and transcendental numbers [4]. Based on this background, the 
following are some definitions. 

Definition 2.1. A complex number is called algebraic if there is a non-zero polynomials
with . If is not algebraic, it is called transcendental. 

Definition 2.2. The number field generated by an algebraic number is the smallest subfield of
that contains . We denote this field by . 
A subfield is an algebraic number field (or a number field) if for an algebraic 

number . 
Definition 2.3. A complex number is an algebraic integer if there is a monic polynomial

with . 
Definition 2.4. Let be a number field. The ring consisting of all algebraic integers in
is called the ring of integers of , where the set of algebraic integers is a subring of . 

2.2.  Prime ideals 
Lemma 2.5. Let be a number field and a non-zero prime ideal [5]. Then is a non-

zero prime ideal of , so , for a prime . 
Proof. If , , then , , then is an ideal of . If we 

have such that , since is a prime ideal, then or . Since , we 
can get or , thus is a prime ideal of . Let , . We konw that

, and . Hence, . As a non-zero prime ideal of , it must have the 
form for a prime . 

Definition 2.6. Let be a prime. The prime ideals appearing in the prime ideal factorization

of are said to be lying above [6]. 

Lemma 2.7. Let be a prime, a prime ideal of . Then lies above if and only if

. 

Proof. If lies above , it appears in the prime ideal factorisation of . Thus, 

. Then, . Since is a prime ideal by Lemma 2.5, with

is a prime, then it can get , thus . 

If , then , thus , by the properties of ideals of : "To contain is to 

divide", thus . Therefore, if is the prime ideal factorisation of , we must 

have for some . 
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Theorem 2.8. Let be a number field and assume that , for some . Let be 

prime and a monic polynomial, such that is irreducible over and divides

where is the minimal polynomial. Then the ideal is a prime ideal of . Moreover,

lies above and . 

Proof. We consider the residue class field . Recall that . 

A function is defined by setting .  If , then divides

, thus where . By Gauss Lemma, it is found that , such that

. Since is monic, then . However, implies that . Thus

where . Since , then , thus and

is well defined. It is clearly a ring homomorphism and subjective. Consider the ideal of
. By the First Isomorphism Theorem,  is an isomorphism, then  is 

a field with elements. Therefore, is a maximal ideal of and a prime ideal with
. 

We just need to show that . First, since , we have . 

Moreover, , as . Thus . Conversely, let . 

Then , so , for some . Then the polynomials and are congruent modulo
, so all coefficients of are divisible by . Hence, there is a polynomial , such that

. Plugging in , is obtained. Thus

. Since , we have . By Lemma 2.5, is a prime ideal of that 

contains , thus . By Lemma 2.7, it shows that lies above . 

2.3.  Factoring prime 
Theorem 2.9. Let be a number field and assume that for some . Let  be prime 

and be the factorization of [7] into irreducibles. That is, are 

monic polynomials, such that the are distinct and irreducible in , and . Then the 

prime ideals of lying above are precisely the ideals , for . The ideal

of factorises into prime ideals as  

Proof. It is known from Theorem 2.8 that all are prime ideals with , where

. From the factorization , it can get since all

are monic, . For arbitrary ideals of , Equation (1) is obtained: 

  (1) 

Applying this inductively to the , Equation (2) is obtained: 
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The last equality holds due to , as then divides all coefficients of , so

, for some . But then

. 

Thus, is obtained and hence with . Hence, the is indeed the 

only prime ideals of lying above . Moreover, Equation (3) is obtained: 

  (3) 

Compare this to to conclude that for all . 

3.  Primes as sums of two squares 
Lemma 3.1. Let be an odd prime, such that , with . Then . 
Proof. Since , , and , we found that squares are 

always congruent to or modulo . If is a sum of two squares, then , ,  mod . Then
is impossible and the only prime congruent to modulo is . 

The less trivial reverse direction will be proved, showing that every prime can be 
written as , with . This will be done by factoring the ideal in the ring of 

integers of . The factorisation depends on the roots of in . 
Lemma 3.2. Let be a prime. Then is a square modulo , i.e., there is  with

. 

Proof. Let be a generator of , then and write . By Fermat's Little Theorem, 

then . The polynomial has only two roots . Thus

. If , so can not generate all of , as then , so the powers

, for capture only  elements of . Hence, and thus,
is a square modulo . 
Theorem 3.3. Let be an odd prime. Then is a sum of two squares if and only if 

[8,9]. 
Proof. From Lemma 3.1, it is known that the "only if" part has been proved, so let us prove the "if" 

part. Let , then . Consider the factorisation of the ideal and note that

. By Lemma 3.2, there is , such that . Thus Equation (4) is obtained: 
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If , then . Since , so there is only one possible value: , but 
that is impossible because , thus , so these are two distinct roots. Hence,

is split in and , for two distinct prime ideals with . Since every ideal of

is principle. Hence, , for some . Since  and , then 
Equation (5) is obtained: 
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4.  Conclusion 
This paper describes the process of decomposition of prime ideals and the corresponding applications: 
i.e., it discusses what kind of prime numbers can be written in the form of a sum of two integer squares 
and we got the result that for odd prime , it is a sum of two squares if and only if ,this 
part is a very classical part of algebraic number theory, on the basis of which if Minkowski bound and 
class groups, etc. are introduced, the property of the unique factorization domain (UFD) can be used to 
solve some problems about the Diophantine equations [10]. For instance, it can be shown that there are 
no  with , which in the long run will be useful for the proof of Fermat's Last 
Theorem. 
In the proof of the theorem, we use the fact that every ideal in is principle, we did not present the 
proof of this result in the article due to space constraints. Also, Theorem 2.9 can be applied to many 
number fields, but not all of them, that is because the assumption , for some algebraic 
integer . But for many number fields, such an does not exist, we just found such for quadratic and 
cyclotomic fields. Therefore, the results given in this article actually have certain limitations. On the 
basis of this problem, we can gradually try to use the idea of decomposition to consider proof of the 
special case of the Fermat’s last theorem for regular primes. 
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