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Abstract. In mathematics, the logarithm, log𝑎 𝑏, where a∈ (0,1) ∪ (1, ∞) and b>0, is always 

defined as the real number x, such that 𝑎𝑥=b. Moreover, in the field of number theory, a similar 

concept called the discrete logarithm can be defined as follows: For a given positive integer 

m(m≥ 2),  let a∈ 𝑁+  𝑤𝑖𝑡ℎ (𝑎, 𝑚) = 1 , and r is the primitive root of m, x=𝑖𝑛𝑑𝑟𝑎  if 𝑟𝑥 ≡
𝑎 (𝑚𝑜𝑑 𝑚) . Here, x is the discrete logarithm. The Discrete Logarithm Problem, which is a 

famous problem in number theory, is formulized as: For a positive integer b and a prime number 

p, and a is the primitive root of p, the goal is to find the exact value of i, such that 𝑎𝑖 ≡
𝑏 (𝑚𝑜𝑑 𝑝), in other words, it is targeted at finding the exact value of 𝑖𝑛𝑑𝑎𝑏. The goal of this 

research is to give several solutions to the Discrete Logarithm Problem, so firstly, some 

background concept like order and primitive root will be introduced with the proof of some 

foundational theories of these two concepts, then this essay will give two methods that can solve 

the Discrete Logarithm Problem called Shanks' Babystep-Giantstep Algorithm and Pohlig-

Hellman Discrete Logarithm Algorithm. 

Keywords: Discrete Logarithm, The Discrete Logarithm Problem, Order, Primitive Root. 

1.  Introduction 

In cryptographic circles, the discrete logarithm remains a topic of intrigue. Although the discrete 

logarithm can be computed in specific scenarios, finding efficient solutions for general cases remains a 

formidable challenge. Notably, some algorithms tackle this problem and hold paramount significance in 

public-key cryptography, exemplified by systems like Elgamal [1]. This research endeavors to illuminate 

the intricacies of the Shanks' Babystep-Giantstep Algorithm and the Pohlig-Hellman Discrete Logarithm 

Algorithm. Both stand as robust solutions to the Discrete Logarithm Problem. To lay a foundation, it's 

imperative first to delve into fundamental concepts such as order and primitive root. By understanding 

these, one can better appreciate their applications to the focal problem. The crux of this study revolves 

around the operational mechanics of these two algorithms, exploring their methodologies in solving the 

Discrete Logarithm Problem, and discerning their connections to foundational tenets of elementary 

number theory. 
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2.  Foundational Theories of Orders and Primitive Roots 

2.1.  Order 

Definition 1: Let 𝑚 ∈ 𝑁+, 𝑎𝑛𝑑 𝑎 ∈ 𝑁+ 𝑤𝑖𝑡ℎ (𝑎, 𝑚) = 1, the order (or the multiplicative order) of a 

modulo m is the smallest positive integer r satisfying 𝑎𝑟 ≡ 1 (𝑚𝑜𝑑 𝑚) [2]. 

The order of a modulo m is always written as 𝛿𝑚(𝑎) or 𝑜𝑟𝑑𝑚(𝑎) [3]. Also, order always exists due 

to the Euler’s Theorem: Let 𝑚 ∈ 𝑁+, 𝑎𝑛𝑑 𝑎 ∈ 𝑁+ 𝑤𝑖𝑡ℎ (𝑎, 𝑚) = 1 , then 𝑎𝜑(𝑚) ≡ 1 (𝑚𝑜𝑑 𝑚) [4]. 

Euler’s Theorem is too basic so the proof is skipped here. The Euler’s Theorem says that for 𝑚 ∈
𝑁+, 𝑎𝑛𝑑 𝑎 ∈ 𝑁+ 𝑤𝑖𝑡ℎ (𝑎, 𝑚) = 1, the set {r∈ 𝑁+| 𝑎𝑟 ≡ 1(𝑚𝑜𝑑 𝑚)} is not empty so this set must have 

the smallest element, which is the (multiplicative) order, due to the Well-Ordering Principle. 

Proposition 1: Let 𝑚 ∈ 𝑁+, 𝑎𝑛𝑑 𝑎 ∈ 𝑁+ 𝑤𝑖𝑡ℎ (𝑎, 𝑚) = 1, 𝑘 ∈ 𝑁+, then 𝑎𝑘 ≡ 1 (𝑚𝑜𝑑 𝑚) if and 

only if 𝛿𝑚(𝑎) | 𝑘 [5]. 

Proof: If 𝑎𝑘 ≡ 1(𝑚𝑜𝑑 𝑚), let, then 𝑎𝑟 ≡ 1 (𝑚𝑜𝑑 𝑚). 

By Division Algorithm, there exists q, t∈ 𝑁+ with 0≤ 𝑡<r-1 such that k=qr+t. 

This means t=k-qr. 

Also, notice that 𝑎𝑞𝑟 ≡ 1 (𝑚𝑜𝑑𝑚). 

Thus, 𝑎𝑡 = 𝑎𝑘−𝑞𝑟 ≡ 𝑎𝑘−𝑞𝑟𝑎𝑞𝑟 = 𝑎𝑘 ≡ 1(𝑚𝑜𝑑𝑚). 

But r is the smallest positive integer satisfying 𝑎𝑟 ≡ 1 (𝑚𝑜𝑑 𝑚) and t<r, so it means t=0 

So k=qr, which means r|k. 

Therefore, 𝛿𝑚(a)|k. 

On the other hand, if 𝛿𝑚(𝑎) | 𝑘, so r |k, thus there exists 𝑙 ∈ 𝑁+,  such that k= lr. 

Since 𝑎𝑟 ≡ 1 (𝑚𝑜𝑑 𝑚), thus, 𝑎𝑘 = 𝑎𝑙𝑟 = (𝑎𝑟)𝑙 ≡ 1 (𝑚𝑜𝑑 𝑚). 

Hence, 𝑎𝑘 ≡ 1 (𝑚𝑜𝑑 𝑚) if and only if 𝛿𝑚(𝑎) | 𝑘. 

By Proposition1 and Euler’s Theorem, a result can be got easily: 

Corollary 1: Let 𝑚 ∈ 𝑁+, 𝑎𝑛𝑑 𝑎 ∈ 𝑁+ 𝑤𝑖𝑡ℎ (𝑎, 𝑚) = 1, then 𝛿𝑚(𝑎) | 𝜑(𝑚). 

Proof: By Euler’s Theorem, 𝑎𝜑(𝑚) ≡ 1 (𝑚𝑜𝑑 𝑚). 

By Proposition1 and let k= 𝜑(𝑚), 𝛿𝑚(𝑎) | 𝜑(𝑚). 

So the Corollary1 holds. 

Next, another important result about (multiplicative) order will be introduced. 

Proposition 2: Let 𝑚 ∈ 𝑁+, 𝑎𝑛𝑑 𝑎 ∈ 𝑁+ 𝑤𝑖𝑡ℎ (𝑎, 𝑚) = 1, then a, 𝑎2, … , 𝑎𝑟 are distinct modulo m, 

where r= 𝛿𝑚(a) [6]. 

Proof: Suppose ∃1 ≤ 𝑖 < 𝑗 ≤ 𝑟, 𝑠. 𝑡. 𝑎𝑖 ≡ 𝑎𝑗(𝑚𝑜𝑑 𝑚), 𝑡ℎ𝑒𝑛 𝑎𝑖(𝑎𝑗−𝑖 − 1) ≡ 0(𝑚𝑜𝑑 𝑚). 

This means m | 𝑎𝑖(𝑎𝑗−𝑖 − 1). 

Since (a, m) =1, so (𝑎𝑖, m) =1. 

Thus, m | 𝑎𝑗−𝑖 − 1, which means 𝑎𝑗−𝑖 ≡ 1(𝑚𝑜𝑑 𝑚). 

Hence, r | j-i, so j-i ≥ 𝑟. 

But 1 ≤ 𝑖 < 𝑗 ≤ 𝑟, which says j-i<r, it is a contradiction. 

Hence, a, 𝑎2, … , 𝑎𝑟 are distinct modulo m. 

Proposition 2: Let 𝑚 ∈ 𝑁+, 𝑎𝑛𝑑 𝑎 ∈ 𝑁+ 𝑤𝑖𝑡ℎ (𝑎, 𝑚) = 1, let 𝛿𝑚(a) = r, then 𝛿𝑚(𝑎𝑛) =
𝑟

(𝑟,𝑛)   
 (𝑛 ∈

𝑁+) [7]. 

Proof: Let 𝛿𝑚(𝑎𝑛)= 𝑙, then 𝑎𝑛𝑙 ≡ 1(𝑚𝑜𝑑 𝑚). 

By Proposition1, r | 𝑙n, so ∃ 𝑞 ∈ 𝑁+, 𝑠. 𝑡. 𝑛𝑙 = 𝑟𝑞 

Thus, 
𝑙𝑛

(𝑟,𝑛)   
 = 

𝑟

(𝑟,𝑛)   
𝑞. 

So 
𝑟

(𝑟,𝑛)   
 |  

𝑙𝑛

(𝑟,𝑛)   
. 

Notice that (
𝑟

(𝑟,𝑛)   
, 

𝑛

(𝑟,𝑛)   
) = 1. 

Hence, 
𝑟

(𝑟,𝑛)   
 |  

𝑙

(𝑟,𝑛)   
., so 

𝑟

(𝑟,𝑛)   
| 𝑙. 

On the other hand, notice that (𝑎𝑛)
𝑟

(𝑟,𝑛) = (𝑎𝑟)
𝑛

(𝑟,𝑛) ≡ 1(𝑚𝑜𝑑 𝑚). 
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By Proposition1, 𝑙|  
𝑟

(𝑟,𝑛)
. 

Therefore, 𝑙 =
𝑟

(𝑟,𝑛)   
. 

Hence, 𝛿𝑚(𝑎𝑛)=
𝑟

(𝑟,𝑛)   
. 

2.2.  Primitive root 

Definition 2: Let m ∈ 𝑁+(𝑚 ≥ 2).  The primitive root mod m is an integer g, such that 𝛿𝑚 (g) 

=𝜑(𝑚) 𝑎𝑛𝑑 (𝑔, 𝑚) = 1 [8]. 

By Definition 2 and Proposition2, it is easy to get the following corollary. 

Corollary 2: Let m∈ 𝑁+(𝑚 ≥ 2), a be an primitive root of m, then the list a,𝑎2, … , 𝑎𝜑(𝑚) picks up 

every element of 𝑍𝑚
∗ . 

What is worth saying is that the corollary2 is also another version of the definition of primitive root 

[7]. 

The most important result about primitive root is the Primitive Root Theorem. 

Theorem 1(Primitive Root Theorem): Let p be a prime number, then 𝑍𝑝
∗  has a primitive root. 

Proof: [Lemma]: Let p be a prime number and a, b ∈ 𝑍𝑝
∗   , denote 𝛿𝑝(𝑎) = 𝑘, 𝑎𝑛𝑑 𝛿𝑝(𝑏) =

𝑙. 𝐼𝑓 (𝑘, 𝑙) = 1 , 𝑡ℎ𝑒𝑛 𝛿𝑝(𝑎𝑏) = 𝑘𝑙. 

[Proof of Lemma]: Let 𝛿𝑝(𝑎𝑏) = 𝑟. 

Since (𝑎𝑏)𝑘𝑙 = 𝑎𝑘𝑙𝑏𝑘𝑙 = (𝑎𝑘)𝑙(𝑏𝑙)𝑘 ≡ 1 (𝑚𝑜𝑑 𝑝). 

By Proposition 1, 𝑟|𝑘𝑙. 
The following is to prove 𝑘|𝑟 𝑎𝑛𝑑 𝑙|𝑟. 

Because (𝑎𝑟)𝑘 = 𝑎𝑟𝑘 = (𝑎𝑘)𝑟 ≡ 1(𝑚𝑜𝑑𝑝), 𝑎𝑛𝑑 (𝑏𝑟)𝑙 = 𝑏𝑟𝑙 = (𝑏𝑙)𝑟 ≡ 1 (𝑚𝑜𝑑𝑝). 

Also, notice that  (𝑎𝑟)𝑙 ≡ (𝑎𝑟)𝑙  (𝑏𝑟)𝑙 = (𝑎𝑏𝑟)𝑙 ≡ 1 (𝑚𝑜𝑑 𝑝). 

Thus, 𝑘|𝑟𝑙, combined with (𝑘, 𝑙) = 1, 𝑠𝑜 𝑘|𝑟. 

Similarly, 𝑙|𝑟. 

Since (𝑘, 𝑙) = 1, 𝑡ℎ𝑖𝑠 𝑙𝑒𝑎𝑑𝑠 𝑡𝑜 𝑘𝑙 | 𝑟. 

Hence, 𝑘𝑙 = 𝑟. 

Therefore, 𝛿𝑝(𝑎𝑏) = 𝑘𝑙. 

[Back to Primitive Root Theorem]: For any a in 𝑍𝑝
∗ , then (a, p) =1. 

By Fermart’s Little Theorem, 𝑎𝑝−1 ≡ 1 (𝑚𝑜𝑑 𝑝). 

By Proposition 1, 𝛿𝑝(𝑎)|𝑝 − 1. 

If 𝛿𝑝(𝑎) = 𝑝 − 1 = 𝜑(𝑝), then a is the primitive root of p, the Primitive Root Theorem holds. 

If 𝛿𝑝(𝑎) < 𝑝 − 1, let 𝛿𝑝(𝑎) = 𝑘 , the main idea of the following part is to find some b in 𝑍𝑝
∗ , such 

that the order of b modulo p is greater than the order of a. 

By Proposition 2 (or Corollary 2), the list a, 𝑎2, … , 𝑎𝑘  can pick up all the roots of the polynomial 

f(x)=𝑥𝑘 − 1 𝑖𝑛 𝑍𝑝
∗ , since k < p-1, so there exists c in 𝑍𝑝

∗  and c is not in the list above. 

Let 𝛿𝑝(𝑐) = 𝑙, 𝑖𝑓 𝑙 | 𝑘 , 𝑡ℎ𝑒𝑛 𝑐𝑘 ≡ 1(𝑚𝑜𝑑 𝑝) , thus 

𝑙 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑑𝑖𝑣𝑖𝑑𝑒 𝑘 𝑠𝑖𝑛𝑐𝑒 𝑐 𝑖𝑠 𝑛𝑜𝑡 𝑡ℎ𝑒 𝑟𝑜𝑜𝑡 𝑜𝑓 𝑓 

Consider the prime factorization of 𝑘 𝑎𝑛𝑑 𝑙,   there must be an unique prime number q who appears 

more often in 𝑙 than it appears in k, in other words, 𝑣𝑞(𝑙) > 𝑣𝑞(𝑘), here 𝑣𝑞(𝑥) represents the power 

of q in the prime factorization of the positive integer 𝑥. 
Let k=𝑞𝑑𝑘1 and 𝑙 = 𝑞𝑒𝑙1, 𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝑑 < 𝑒 and both 𝑘1 𝑎𝑛𝑑 𝑙1 does not contain the prime factor 

q. 

Pick b = 𝑎𝑞𝑑
𝑐𝑙1, By Proposition 2, it tells that 𝛿𝑝 (𝑎𝑞𝑑

) =
𝑘

(𝑘,𝑞𝑑)
=

𝑘

𝑞𝑑=𝑘1 and 𝛿𝑝(𝑐𝑙1) =
𝑙

(𝑙,𝑙1
) =

𝑙

𝑙1
= 𝑞𝑒. 

Now, notice that (𝑘1, 𝑞𝑒) = 1. 
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By Lemma, 𝛿𝑝(𝑏) = 𝛿𝑝 (𝑎𝑞𝑑
𝑐𝑙1) = 𝛿𝑝 (𝑎𝑞𝑑

) 𝛿𝑝(𝑐𝑙1) = 𝑘1𝑞𝑒 > 𝑞𝑑𝑘1 = 𝑘 = 𝛿𝑝(𝑎). 

Thus, an element b in 𝑍𝑝
∗  with greater order than a is found. 

Following this way, new elements in 𝑍𝑝
∗  with strictly increasing order can be found until find an 

element with the order p-1 and that element is just the primitive root. 

In general, 𝑍𝑝
∗  has a primitive root. 

The Primitive Root Theorem tells that every prime number has its own primitive root but there are 

still many problems about primitive root cannot be solved by this theorem although it has already been 

an amazing result. Also, the Primitive Root Theorem can describe why the assumption of Discrete 

Logarithm Problem always holds and this point will be discussed in the following session of this essay. 

The following is to introduce several results of primitive roots without proof since it does not have a 

close relation to the main topic of this research. 

Theorem 2: Let m∈ 𝑁+(𝑚 ≥ 2). If 𝑍𝑚
∗  has primitive roots, then the number of primitive roots in 

𝑍𝑚
∗   is 𝜑(𝜑(𝑚)) [8]. 

In particular, if m = p is a prime number, then 𝜑(𝜑(𝑚)) =  𝜑(𝑝 − 1), so it can tell that for any prime 

number p, the total number of primitive roots of p is 𝜑(𝑝 − 1). 

Theorem 3: Let m ∈ 𝑁+(𝑚 ≥ 2) . Then 𝑍𝑚
∗   has primitive roots if and only if m ∈

{2,4, 𝑝𝑘,2𝑝𝑘| 𝑝 𝑖𝑠 𝑎𝑛 𝑜𝑑𝑑 𝑝𝑟𝑖𝑚𝑒 𝑎𝑛𝑑 𝑘 ∈ 𝑁+} [9]. 

This result tells the structure of m that has primitive roots of m. 

3.  Definition and Properties of Discrete Logarithms 

3.1.  Discrete Logarithms and its properties 

Definition 3: For a given positive integer m (m≥ 2), let a∈ 𝑁+  𝑤𝑖𝑡ℎ (𝑎, 𝑚) = 1, and r is the primitive 

root of m, x=𝑖𝑛𝑑𝑟𝑎 if 𝑟𝑥 ≡ 𝑎 (𝑚𝑜𝑑 𝑚). 

The discrete logarithms have the following 5 properties: 

Proposition 3: Let p be a prime number, and a is the primitive root of p, then: 𝑥 ≡
𝑦 (𝑚𝑜𝑑 𝑝)  𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑖𝑛𝑑𝑎𝑥 ≡ 𝑖𝑛𝑑𝑎𝑦  (𝑚𝑜𝑑 𝑝 − 1); 

𝑖𝑛𝑑𝑎𝑎𝑘 ≡ 𝑘 (𝑚𝑜𝑑 𝑝 − 1); 
𝑖𝑛𝑑𝑎𝑎 = 1; 

𝑖𝑛𝑑𝑎𝑥𝑦 ≡ 𝑖𝑛𝑑𝑎𝑥 + 𝑖𝑛𝑑𝑎𝑦 ( 𝑚𝑜𝑑 𝑝 − 1); 

𝑖𝑛𝑑𝑎𝑥𝑘 ≡ 𝑘𝑖𝑛𝑑𝑎𝑥 (𝑚𝑜𝑑 𝑝 − 1). 
To prove these properties, an easy lemma should be used: 

[Lemma]: Let p be an prime number and a is the primitive root of p. Let b, c be positive integers, 

then 𝑏 ≡ 𝑐 (𝑚𝑜𝑑 𝑝 − 1) 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑎𝑏 ≡ 𝑎𝑐  (𝑚𝑜𝑑 𝑝). 
[Proof of Lemma]: Since p is a prime number and a is primitive root of p, so 𝛿𝑝(𝑎) = 𝑝 − 1 

Also, By Fermat’s Little Theorem, 𝑎𝑝−1 ≡ 1 (𝑚𝑜𝑑 𝑝) (Also this holds since its order is p-1). 

If 𝑏 ≡ 𝑐 (𝑚𝑜𝑑 𝑝 − 1),   then there exists positive integers k, such that b-c =k(p-1) 

Thus, 𝑎𝑏−𝑐 ≡ 𝑎𝑘(𝑝−1) ≡ 1(𝑚𝑜𝑑 𝑝), so 𝑎𝑏 ≡ 𝑎𝑐(𝑚𝑜𝑑 𝑝). 

On the other hand, if  𝑎𝑏 ≡ 𝑎𝑐  (𝑚𝑜𝑑 𝑝), since (a, p) =1, so (p, 𝑎𝑐) = 1. 

Therefore, 𝑎𝑏−𝑐 ≡ 1(𝑚𝑜𝑑 𝑝). 

Since  𝛿𝑝(𝑎) = 𝑝 − 1,  By Proposition 1, p-1 | b-c. 

Hence, 𝑏 ≡ 𝑐 (𝑚𝑜𝑑 𝑝 − 1). 

In general, 𝑏 ≡ 𝑐 (𝑚𝑜𝑑 𝑝 − 1) 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑎𝑏 ≡ 𝑎𝑐  (𝑚𝑜𝑑 𝑝). 

This Lemma is proved. 

By using this lemma, it is not difficult to prove the above five properties and here only the property 

iv) will be proved. The rest of them can just be showed by the similar way of using lemma and the direct 

use of definition of the discrete logarithm. 

Proof of iv): Let 𝑙 = 𝑖𝑛𝑑𝑎𝑥𝑦,  𝑙1 = 𝑖𝑛𝑑𝑎𝑥, 𝑙2 = 𝑖𝑛𝑑𝑎𝑦. 

By definition, 𝑎𝑙 ≡ 𝑥𝑦 (𝑚𝑜𝑑 𝑝), 𝑎𝑙1 ≡ 𝑥 (𝑚𝑜𝑑 𝑝), 𝑎𝑙2 ≡  𝑦 (𝑚𝑜𝑑 𝑝) 
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Thus, 𝑎𝑙 ≡ 𝑥𝑦 ≡ 𝑎𝑙1𝑎𝑙2 = 𝑎𝑙1+𝑙2  (𝑚𝑜𝑑 𝑝). 

By the Lemma above, 𝑙1 + 𝑙2 ≡ 𝑙 (𝑚𝑜𝑑 𝑝 − 1). 

Hence, 𝑖𝑛𝑑𝑎𝑥𝑦 ≡ 𝑖𝑛𝑑𝑎𝑥 + 𝑖𝑛𝑑𝑎𝑦 ( 𝑚𝑜𝑑 𝑝 − 1). 

4.  Solution Methods for the Discrete Logarithm Problem 

4.1.  The Discrete Logarithm Problem 

The main idea of this session is to introduce the Discrete Logarithm Problem and its solutions including. 

The two main algorithms mentioned before. Firstly, the target is seeing what is Discrete Logarithm 

Problem. 

Definition 4: The Discrete Logarithm Problem can be formulized as follows:  

Given a positive integer b, and a large prime number p, let a be a primitive root of p, there exists an. 

unique index i (0 ≤ 𝑖 ≤ 𝑝 − 1), such that 𝑏 ≡ 𝑎𝑖  (𝑚𝑜𝑑 𝑝). The problem is targeted at finding the 

exact value of this i. 

The assumption of this problem holds because such a must exist by Theorem 1 (Primitive Root 

Theorem). Also the index i satisfying such property must be unique since by the congruence 𝑏 ≡
 𝑎𝑖  (𝑚𝑜𝑑 𝑝), it is clear that (b, p) = (a, p) =1, so the remainder of b divides p is not 0 so the remainder, 

called r, is in 𝑍𝑝
∗ . 

By Corollary 2, the list a, 𝑎2, … , 𝑎𝑝−1 picks up every element of 𝑍𝑝
∗ = {1,2, … , 𝑝 − 1}. This means 

that there must exists an unique i, such that 𝑟 ≡  𝑏 ≡  𝑎𝑖  (𝑚𝑜𝑑 𝑝). Also, from the argument above, it 

is clear that there exists a bijection between two sets 𝑍𝑝
∗ and the set {a, 𝑎2, … , 𝑎𝑝−1} under modulo p. 

Moreover, it is necessary that a should be the primitive root of p, otherwise, the set {a, 𝑎2, … , 𝑎𝑝−1} 

under modulo p has the competitive element so that it is impossible to encrypt it. 

Another problem is that why this problem should need a big prime number. This is because if just 

take a small prime number, it is very easy to encrypt it so the large prime ensures the difficulty of this 

problem. Then, this essay will discuss about two algorithms to solve this problem: Shanks' Babystep-

Giantstep Algorithm and Pohlig-Hellman Discrete Logarithm Algorithm. 

4.2.  Shanks' Babystep-Giantstep Algorithm 

Algorithm 1(Shanks' Babystep-Giantstep Algorithm): Consider the given congruence 𝑏 ≡  𝑎𝑥  (𝑚𝑜𝑑 𝑝),  

where p is a large prime number. Let N = p-1. The process of the algorithm is as follows: 

i) Calculate 𝑛 = [√𝑁]+1; 

ii) Construct the two sets A = {1, a, 𝑎2, … , 𝑎𝑛}  𝑎𝑛𝑑 𝐵 = {𝑏, 𝑏𝑎−𝑛, 𝑏𝑎−2𝑛, … , 𝑏𝑎−𝑛2
}; 

iii) A and B actually have the same element, so there exists i, j ∈ {0,1,2, … , 𝑛}, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑎𝑖 ≡
𝑏𝑎−𝑗𝑛 (𝑚𝑜𝑑 𝑝); 

iv) Let x = i + jn, then, x is the solution to the congruence 𝑏 ≡  𝑎𝑥  (𝑚𝑜𝑑 𝑝). 

v) It is very clear that this algorithm works and its run time is O (√𝑁), which greatly decreases the 

run time compared with calculating each value [10]. 

4.3.  Pohlig-Hellman Discrete Logarithm Algorithm 

To introduce the Pohlig-Hellman Discrete Logarithm Algorithm, firstly, the Chinese Remainder 

Theorem should be reviewed. 

Theorem 4 (Chinese Remainder Theorem): Let 𝑚1, 𝑚2, … , 𝑚𝑘 ∈ 𝑁+ (𝑘 ≥ 2, 𝑘 ∈ 𝑁+)  and they 

are pairwise coprime. (That is, ( 𝑚𝑖 , 𝑚𝑗) = 1  𝑓𝑜𝑟 𝑎𝑙𝑙 1 < 𝑖 ≤ 𝑗 ≤ 𝑘) . If 𝑎1, 𝑎2, … , 𝑎𝑘  ∈ 𝑍 , and 

consider the system of congruences: 

𝑥 ≡  𝑎1 (𝑚𝑜𝑑 𝑚1) 

𝑥 ≡  𝑎2 (𝑚𝑜𝑑 𝑚2) (1) 

… 

𝑥 ≡  𝑎𝑘  (𝑚𝑜𝑑 𝑚𝑘) 
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This system of congruences has an unique solution modulo 𝑚1 𝑚2 … 𝑚𝑘 . In other words, if 𝑥 =𝑥0 

is a particular solution of this system, then all the solutions are given by all the integers 

𝑥 𝑠𝑎𝑡𝑖𝑠𝑓𝑦𝑖𝑛𝑔 𝑥 ≡ 𝑥0 (𝑚𝑜𝑑 𝑚1 𝑚2 … 𝑚𝑘 ) [7]. 

This theorem is a very basic result in number theory so the proof does not present in this essay but 

the proof can tell the algorithm to solve the system of congruences by using Chinese Remainder 

Theorem. 

The solutions can be given by the formula: 

𝑥 ≡ 𝑎1𝑀1𝑦1 + 𝑎2𝑀2𝑦2 + ⋯ + 𝑎𝑛𝑀𝑛𝑦𝑛 (mod 𝑚1 𝑚2 … 𝑚𝑘 ) (2) 

Where, 𝑀𝑖 =  
𝑀

𝑚𝑖
, 𝑀 =  𝑚1 𝑚2 … 𝑚𝑘 , 𝑦𝑖 = (𝑀𝑖)−1(𝑚𝑜𝑑 𝑚𝑖) , 𝑖 = 1,2, … , 𝑘. 

Now, it is the time to present the Pohlig-Hellman Discrete Logarithm Algorithm [11]:  

Algorithm 2(Pohlig-Hellman Discrete Logarithm Algorithm):  

Consider the prime factorization of p-1 = 𝑝1
𝑘1𝑝2

𝑘2 … 𝑝𝑚
𝑘𝑚; 

For each prime factor 𝑝𝑖 (1 ≤ 𝑖 ≤ 𝑚), let x = 𝑎0 + 𝑎1𝑝𝑖 + ⋯ + 𝑎𝑘𝑖−1
𝑝𝑖

𝑘𝑖−1  (𝑚𝑜𝑑 𝑝𝑖
𝑘𝑖); 

Let r =1, compute (𝑎𝑥)
𝑝−1

𝑝𝑖
𝑟

 ≡  𝑏
𝑝−1

𝑝𝑖
𝑟

 (𝑚𝑜𝑑 𝑝);  Substitute x, and expand it, notice that from the 

second term, all the values are since due to the Fermat’s Little Theorem, so it leads to 𝑎
𝑎0

𝑝−1

𝑝𝑖 ≡ 

𝑏
𝑝−1

𝑝𝑖
𝑟

 (𝑚𝑜𝑑 𝑝); By the former steps, 𝑎0 can be computed in the run-time of O (𝑝𝑖), then let 𝑟1 = 𝑟 + 1, 
and go back to the third step; Continue the operation above until all the 𝑎𝑖(1 ≤ 𝑖 ≤ 𝑚) are computed; 

For each i, a congruence can be got in the form of second step, then use the Chinese Remainder Theorem 

to solve x. The above two algorithms are the two main effective algorithms to solve the Discrete 

Logarithm Problem. 

5.  Conclusion 

This research targeted at solving the Discrete Logarithm Problem so to introduce the algorithm to solve 

this famous problem, first of all, several important concepts in the field of Elementary Number Theory 

are introduced, including the multiplicative order and the primitive root. In addition, several important 

theorems are given the rigorous proof like the Primitive Root Theorem, and then this essay turn to focus 

on the discrete logarithm, which is the base of the Discrete Logarithm Problem, and the most important 

properties of discrete logarithm are introduced. Finally, this research starts to give the solutions to the 

Discrete Logarithm Problem but before this, it discusses about why such this problem is designed in 

such way and how the previous concept and theories in number theory play an important role in this 

problem. Then, the two main algorithms are demonstrated including the Shanks' Babystep-Giantstep 

Algorithm and Pohlig-Hellman Discrete Logarithm Algorithm. This research gives the effective 

solutions to the Discrete Logarithm Problem and they can work much more efficiently than compute 

each value of power, which greatly reduce the run-time of solving this problem. 
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