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Abstract. The importance of cryptography and securing data has become increasingly important, 

and the safety of previous cryptographic methods are also being questioned. In the past few 

decades, with the rise of modern mathematical tools, notably group theory, cryptography has 

quickly advanced to more complex and safer levels. This paper will begin by recalling the 

definition and some terminology about groups. Then, it will summarize two of the most used 

cryptography systems with underlying group theory: the Diffie-Hellman Key Exchange Protocol, 

together with one of its variants, the Ko-Lee-Cheon-Han-Kang-Park Key Agreement, and the 

RSA Protocol. Also, it examines what the safety of a cryptography system means, and methods 

to increase the security of these protocols. When talking about the two protocols, extensive group 

theory is used, both as a means of operation and as a method to prove the protocol’s validity. 

Finally, it mentions the possible directions of improvement in this field and whether these 

cryptographic methods are still reliable, even with the widespread use of quantum computers in 

the future. 
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1.  Introduction 

In the past few decades, cryptography (the study of securing information such that only the person 

intended can use it) has developed so much that many branches of math, such as statistics and number 

theory, have been extensively involved with this subject. This paper focuses on the use of group theory 

in two cryptographic protocols.  

Cryptography means trying to communicate data safely, so from it must arise an idea: a “protocol”. 

A protocol is an algorithm (a sequence of steps) that a computer or human can follow to transmit a 

message securely [1]. When talking about cryptography, there must be eavesdroppers and attackers who 

are trying to intercept the transmitted data, and to decipher it. This paper assumes that the “enemy” or 

eavesdropper will know everything used in the system and the details of the system itself. The 

eavesdropper will also, due to the theoretical notion about data interception, know everything that is 

communicated between two parties. More specifically, the IND-CCA2 specification will be considered, 

which determines whether a guess on the decryption result of a piece of cipher text, with the access of 

a decrypting machine that can decrypt any cipher text apart from the original, is significantly more often 

to succeed than a pure guess by chance. These are the worst-case estimates and are usually not a good 

representation of what happens in normal life; nevertheless, from a theoretical perspective, these 

requirements are still useful to compare the potential between different encryption algorithms [2]. 
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A basic introduction of group theory will also be mentioned in this paper. Group theory is a branch 

of mathematics, mainly concerning a mathematical concept called groups. Group theory forms part of 

the basis of abstract algebra, and it will be introduced in part 2. They can take many forms, and some of 

them are very useful for encryption.  

This paper will mainly talk about two encryption algorithms, the Diffie-Hellman protocol and the 

RSA system. The Diffie-Hellman protocol was introduced in 1976 by Whitfield Diffie and Martin 

Hellman and uses any suitable underlying group to generate a secret key between two parties. Many 

articles study the safety of a specific underlying group and proposes possible groups for this system to 

work well. For example, braid groups have been proposed to work securely for this system [3]. The 

group of points on some elliptic curves also are secure [4]. A variant of the Diffie-Hellman protocol, the 

Ko-Lee-Cheon-Han-Kang-Park Key Agreement Protocol is used on nonabelian (noncommutative) 

groups [5]. The RSA system was proposed by Ron Rivest, Adi Shamir and Leonard Adleman, and is one 

of the most popular examples of public key encryption algorithms, allowing anyone to send an encrypted 

message to a specific person, while only (s)he can decrypt these messages [6]. Group theory is used in 

RSA to prove Lagrange’s theorem, which in turn can prove Fermat’s little theorem. Fermat’s little 

Theorem proves that RSA is valid, that after decryption the result is the same as the original text.  

Soon, quantum computing will strongly affect the strength of almost all encryption algorithm, as they 

can give quick solutions to problems such as the factoring problem (quickly factoring a very large 

number into its primes) and the discrete logarithm problem (DLP). These two problems are the key to 

breaking many encryption algorithms: the main difficulty in attacking the Diffie-Hellman protocol is the 

DLP while the main difficulty for RSA is the factoring problem [7]. However, mathematicians are also 

proposing many possible methods to overcome quantum computing, notably WalnutDSA, a method of 

digital authentication (making sure a message is not changed when it is being communicated) which has 

been proven to be secure under quantum computing attacks [8].  

2.  An introduction to group theory 

To understand the following two algorithms, a basic knowledge of group theory is needed. First, we will 

cover the definition of a group, followed by some commonly used notation, and finally we will mention 

some terminology which will be helpful for later understanding. 

2.1.  Definition of a group 

A group 𝐺 comprises of a set of elements 𝑆 and an operation ∗ that is valid on any two members of 𝑆 

such that the conditions ∀𝑎, 𝑏 ∈ 𝐺, 𝑎 ∗ 𝑏 ∈ 𝐺  (closure), ∀𝑎, 𝑏, 𝑐 ∈ 𝐺, (𝑎 ∗ 𝑏) ∗ 𝑐 = 𝑎 ∗ (𝑏 ∗ 𝑐) 

(associativity), ∃𝑒 ∈ 𝐺 s.t. ∀𝑎 ∈ 𝐺, 𝑎 ∗ 𝑒 = 𝑒 ∗ 𝑎 = 𝑎 (the existence of a group identity) and ∀𝑎 ∈ 𝐺, 
∃𝑏 ∈ 𝐺 s.t. 𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎 = 𝑒  where 𝑒  is the identity element (the existence of inverses for every 

element) are satisfied, and 𝐺 is written as 𝐺 = ⟨𝑆,∗⟩. (An operation ∗ is a function that takes two inputs 

and return its result; an operation on 𝑎 and 𝑏 is written 𝑎 ∗ 𝑏 or 𝑎𝑏 when the context is clear.) 

2.2.  Group notation and terminology used in this paper 

The identity element will always be referred to as 𝑒 in this paper. The inverse of 𝑎 in a group is written 

as 𝑎−1, and 𝑎 ∗ 𝑎 ∗ … ∗ 𝑎 (𝑛 𝑎’s being operated together for 𝑛 ≥ 0) is written as 𝑎𝑛; this can be called a 

power. The order of a group 𝐺 = ⟨𝑆,∗⟩ is the number of elements in 𝑆, written |𝐺|. The order of an 

element 𝑎 in a group is the minimum 𝑛 ≥ 1 such that 𝑎𝑛 = 𝑒, denoted ord(𝑎) = 𝑛. When there are two 

groups 𝐺 = ⟨𝑆,∗⟩ and 𝐻 = ⟨𝑇,∗⟩ and 𝑇 ⊆ 𝑆, 𝐻 is called a subgroup of 𝐺, which can be written as 𝐻 ≤
𝐺. An abelian group (commutative group) is a group for which ∀𝑎, 𝑏 ∈ 𝐺, 𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎. A cyclic group 

is a group for which ∃𝑔 ∈ 𝐺 s.t. ∀𝑎 ∈ 𝐺, 𝑔𝑛 = 𝑎 (𝑛 ∈ ℤ), where 𝑔 is called the generator of the group 

(it can generate all the elements in the group by operating by itself). The conjugate of an element 𝑎 by 

another element 𝑏 in 𝐺 is 𝑏−1 ∗ 𝑎 ∗ 𝑏. Finally, when all elements in a subgroup are operated by another 

element, the set formed is called a coset (the coset may not be a group, as it may not contain the identity). 

When the subgroup 𝐻 = {ℎ1, ℎ2, … , ℎ𝑛}, the left coset 𝑎𝐻 = {𝑎ℎ1, 𝑎ℎ2, … , 𝑎ℎ𝑛} while the right coset 
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𝑎𝐻 = {ℎ1𝑎, ℎ2𝑎, … , ℎ𝑛𝑎}. For abelian groups, the left cosets and right cosets are identical, so can be 

simply referred to as the coset.  

3.  The Diffie-Hellman key exchange protocol 

The Diffie-Hellman Key Agreement Protocol is a method of secretly conceiving a key over a public 

channel, published in 1976 by Whitfield Diffie and Martin Hellman. It is one of the most widely used 

encryption algorithms and forms a basis for many other schemes. This set of schemes is not designed to 

communicate information by themselves, but rather to establish a key that can then be used in further 

communication. A key cannot be directly communicated between two parties due to the theoretical idea 

of data interception in every communication: if the interceptor acquires both the cipher text and the key, 

the message can be easily decrypted. As a result, methods need to be invented for a key to be indirectly 

determined by two parties, without any information that could easily cause the key to be leaked. 

3.1.  The protocol 

The Diffie-Hellman protocol applies to two people wishing to communicate a secret key, so let one be 

called Alice and the other Bob.  

First, Alice and Bob agree on a cyclic group 𝐺 and one of its generators 𝑔. This information can be 

made public. Then, Alice chooses any integer 𝑎 from 2 to |𝐺| − 1, and Bob does the same, getting 𝑏. 

Alice calculates 𝑔𝑎 and gives the result to Bob, while Bob calculates 𝑔𝑏 and gives the result to Alice. 

Alice then raises Bob’s result to its 𝑎th power, getting (𝑔𝑎)𝑏 = 𝑔𝑎𝑏, and Bob raises Alice’s result to its 

𝑏th power, getting (𝑔𝑏)𝑎 = 𝑔𝑏𝑎 = 𝑔𝑎𝑏. Thus, they get the same result [9]. 

In this process, the information that is communicated include 𝐺 , 𝑔 , 𝑔𝑎  and 𝑔𝑏 . The key of the 

protocol is for an interceptor not to be able to calculate 𝑥 given 𝑔𝑥, and this is the main difficulty of 

breaking the Diffie-Hellman protocol, called the Discrete Logarithm Problem (DLP). If the naive 

approach is taken, by finding 𝑔, 𝑔2, etc. and comparing each of them to 𝑔𝑥, then the time taken would 

be computationally infeasible ( |𝐺|  can get as large as, or even larger than 10200 , which is near 

impossible for normal computers to calculate within a reasonable amount of time).  

However, the difficulty of the DLP varies with the group used. For instance, if the additive group of 

integers modulo 𝑛 is used (𝑎 ∗ 𝑏 ≝ 𝑎 + 𝑏 mod 𝑛), then the DLP in this case is essentially finding a 

suitable 𝑥  such that 𝑔 × 𝑥 ≡ 𝑘 mod 𝑛 , given 𝑔 , 𝑘  and 𝑛 . This problem is identical to finding 𝑔−1𝑘 

modulo 𝑛, which can be easily done in a feasible amount of time using methods such as the Extended 

Euclidian algorithm. As a result, we can see that the additive group modulo 𝑛 is not a suitable group that 

can be used for the Diffie-Hellman problem. 

As can be seen, the difficulty of the DLP depends both on the size of the group and on the nature of 

the group. Many groups have been suggested for which it is difficult to solve the DLP in, and a few will 

be mentioned in part 3.4. 

3.2.  Calculating a power in logarithmic time 

Even though the DLP is very difficult to solve, this does not mean calculating 𝑔𝑥  will be nearly as 

difficult. One method is to operate 𝑔  by itself for 𝑥  time, but it is possible to calculate 𝑔𝑥  in log
2

𝑥 

instead of 𝑥 iterations.  

One method is to use the binary representation of 𝑥. 𝑥’s binary representation has ⌊log
2

𝑥⌋ digits. As 

we can calculate 𝑔2 = 𝑔 ∗ 𝑔, 𝑔4 = 𝑔2 ∗ 𝑔2, etc. we can calculate all 𝑔2𝑘
, for 2𝑘 ≤ 𝑥, taking ⌊log

2
𝑥⌋ 

operations. Then, we choose the powers of 𝑔 whose digits are 1 in the binary representation of 𝑥, and 

operate them together. This can be alternatively written as 𝑔𝑥 = 𝑟0𝑔20
∗ 𝑟1𝑔21

∗ … ∗ 𝑟⌊log2𝑥⌋𝑔
2⌊log2𝑥⌋

 

when calculating large powers of an integer, where 𝑟𝑛 stands for the (𝑛 + 1)th digit from the right in the 

binary representation of 𝑥. Calculating large powers of elements in other groups have a similar process, 

relies on the same principal and takes the same amount of (negligible) computation time. 
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3.3.  Variants of the system: using nonabelian platform groups 

The Diffie-Hellman protocol can be used on many abelian groups. For nonabelian (and thus noncyclic) 

groups, though, a variant of the protocol can be used. The Ko-Lee-Cheon-Han-Kang-Park Key 

Agreement Protocol is proposed by Ko et al. and uses the conjugates of 𝑔 instead of powers of 𝑔 for 

key exchanging. 

The Ko Protocol’s algorithm is described in the following way. Alice and Bob agree on a group 𝐺, 

one of its elements 𝑔 and two of its commuting subgroups 𝐴 and 𝐵, meaning that for any elements 𝑥 ∈
𝐴  and 𝑦 ∈ 𝐵 , 𝑥𝑦 = 𝑦𝑥 . Alice chooses any element 𝑎 ∈ 𝐺  and Bob chooses 𝑏 ∈ 𝐺 . Alice calculates 

𝑎−1𝑔𝑎 and Bob calculates 𝑏−1𝑔𝑏. (Note that in this protocol, 𝑎−1𝑔𝑎 ≠ 𝑔, as the group is nonabelian.) 

Alice then gives her result to Bob and Bob gives his to Alice. Alice calculates the conjugate of 𝑏−1𝑔𝑏 

by 𝑎 , which is 𝑎−1𝑏−1𝑔𝑏𝑎 , and Bob calculates the conjugate of 𝑎−1𝑔𝑎  by 𝑏 , getting 𝑏−1𝑎−1𝑔𝑎𝑏 . 

Because 𝐴 and 𝐵 are commutative, 𝑎−1𝑏−1𝑔𝑏𝑎 = 𝑏−1𝑎−1𝑔𝑎𝑏 (the inverse of a group element must be 

in the group by definition), and as a result they have the same key. 

This procedure is very similar to the original Diffie-Hellman, as nothing changes besides the power 

of 𝑔. It is easy to see that when the group used is nonabelian, conjugation serves as a good alternative 

to exponentiation. Finding an 𝑥 such that 𝑥−1𝑔𝑥 = 𝑘 where 𝑔 and 𝑘 are given is called the conjugacy 

search problem and is the equivalent of the DLP but in a nonabelian group. 

There are many other variants of the Diffie-Hellman protocol for nonabelian groups. One is the 

Anshel-Anshel-Goldfeld Key Agreement Protocol, which does not need two commuting subgroups, and 

another is the Stickel Key Agreement Protocol, which uses a two-sided exponentiation 𝑎𝑥𝑔𝑏𝑦 as its 

trapdoor function.  

3.4.  Platform groups that can be used 

In the previous discussion, the group 𝐺 was not specified. There are many groups that can be used as 𝐺, 

but to qualify as a possible group, solving the DLP on 𝐺  must be computationally difficult. These 

functions are known as a “trapdoor function”, or a “one-way function”, meaning that the function is easy 

to compute given an input but hard to find a valid input given an output.  

One candidate that can be used for 𝐺 is the multiplicative group modulo 𝑛, denoted ℤ𝑛. This is the 

original implementation that Diffie and Hellman used, and there is no algorithm yet which can solve the 

DLP on this group in a reasonable time. It has been proven that for certain primes (more specifically, 

when 𝜑(𝑛) can be factorized into relatively small prime numbers), breaking the Diffie-Hellman problem 

on ℤ𝑛 is as computationally difficult as solving the DLP on it [9].  

Another group that can be used is the set of points on an elliptic curve (usually over ℝ), with the 

operation of point addition. An elliptic curve is defined as the graph of an equation of the form 𝑦2 =
𝑥3 + 𝐴𝑥 + 𝐵, where 𝐴 and 𝐵 are constants. Point addition on elliptic curves is defined as follows: take 

two points on an elliptic curve 𝑃 and 𝑄, and connect them using a straight line. If the line intersects 

another point on the elliptic curve (if the line is tangent to a point, the line is defined as intersecting that 

point twice), then 𝑅 = 𝑃 ∗ 𝑄 , where 𝑅  is the other point of intersection. Otherwise, 𝑅 ≝ (∞, ∞) , 

implying that the line 𝑃𝑄 is vertical. Even though there is an infinity at 𝑦 = ∞ and another at 𝑦 = −∞, 

these two cases are treated the same when using this group; in other words, the “top infinity” and the 

“bottom infinity” is treated as the same point, which is in fact the identity of the group [4]. (Also, the 

inverse of an element in the group is its reflection across the x-axis, because they form a vertical line, 

which means that they operate to get 𝑒 = (∞, ∞).) When operating in this group, the operation ∗ is also 

sometimes written as +, hence 𝑅 = 𝑃 + 𝑄. In some cases, attacks can be made to simplify the DLP on 

an elliptic curve to that of ℤ𝑛, using pairings such as the Weil pairing and the Tate-Lichtenbaum pairing, 

and as a result somewhat decreasing its strength.  

Lastly, a more recently proposed group which claims to be difficult on the conjugacy search problem 

are 𝑛-braid groups (a non-abelian group). An 𝑛-braid group consists of 𝑛 strands of string, each of which 

connect to a point on the left-hand side and another on the right. However, the strings must go from left 

to right and never backwards, so knots are not allowed. Two braids with the same 𝑛 are operated by 
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“sticking” the 𝑛 right-hand ends of the first braid to the 𝑛 left-hand ends of the second, so clearly braid 

groups are nonabelian. The identity braid is the one which connects all left-hand points straight to their 

respective right-hand points, while the inverse of a braid is the graphical reflection of it horizontally. No 

algorithm which solves the conjugacy search problem for braid groups quickly enough (in polynomial 

time complexity) has yet been found [5].  

There are also quite many other viable platform groups, but the most important criteria for whether 

a group is useful is the difficulty of solving the DLP or the conjugacy search problem on it, and whether 

operating two elements and finding the inverse of any element is easy enough.  

4.  The RSA cryptosystem 

The Rivest-Shamir-Adleman (RSA) cryptosystem is a public key cryptosystem developed by Ron Rivest, 

Adi Shamir, and Leonard Adleman, who publicly described the system in 1977. RSA makes the 

encryption key public so that anyone can send encrypted messages to a specific user but keeps the 

decryption key private so that only the user himself/herself can decrypt any encrypted message.  

4.1.  The system 

Now, the RSA system's details and procedure will be described. First, Bob chooses two large primes 𝑝 

and 𝑞, both being around 200 digits. Then, 𝑁 is calculated by 𝑁 = 𝑝𝑞.  𝑝 and 𝑞 are kept private, but 𝑁 

is released to the public. 

Next, the numbers 𝑑 and 𝑒 are chosen such that 𝑑𝑒 ≡ 1 mod 𝜑(𝑁), where 𝜑(𝑁) is the Euler totient 

function (the number of positive integers from 2  to 𝑁 − 1  that are relatively prime to 𝑁 ).  𝑒 , the 

encryption key, becomes public and 𝑑, the decryption key, stays private. 𝑒 is relatively prime to 𝜑(𝑁) 

and is usually not a big number (216 + 1 = 65537 is commonly used), and it is guaranteed we can find 

a possible 𝑑 in these conditions: 𝑑 = 𝑒−1 mod 𝜑(𝑁). This is a special case of cyclic groups, ℤ𝑛, which 

we will talk about in the proof of the theorem. 

If Alice wants to send a message to Bob, she converts the string of letters to numbers (by using base 

26 or similar methods), the result being the integer 𝑀. Alice makes sure that 𝑀 < 𝑁; otherwise, the 

message can be sent in parts, making 𝑀  smaller for every part. Alice sends the number 𝑋 =
𝑀𝑒 mod 𝜑(𝑁) to Bob. 

To decrypt the message, Bob simply calculates 𝑋𝑑  mod 𝜑(𝑁), which will be equal to the 𝑀 Alice 

sent. Note that 𝑀  must be relatively prime to 𝑁  for the system to work; however, this is trivial in 

practical usage, as 𝑁 has only two prime factors, so it is extremely unlikely that 𝑁 shares a factor with 

𝑀 [10].  

As to why this system is secure: if the message is intercepted, the interceptor will know 𝑋  (the 

intercepted message), 𝑁 (the public information), and 𝑒 (which is also public). If (s)he wants to find 𝑀, 

his/her main goal is to find a 𝑑  such that 𝑑𝑒 ≡ 1 mod 𝜑(𝑁)  (after that it will be easy, as only 𝑀 =
𝑋𝑑  mod 𝜑(𝑁) needs to be calculated and every variable in the equation is known). However, this task 

is very difficult, as 𝜑(𝑁) will be very hard to calculate for very large 𝑁 (there is no quick algorithm for 

calculating 𝜑(𝑁)  if the prime factors of 𝑁  are not known and factoring a number much larger than 

10200 is also as difficult without the help of quantum computing). As a result, there have not yet been 

methods to use intercepted data to immediately acquire 𝑀 [11]. 

4.2.  Proving Lagrange’s theorem 

Lagrange’s Theorem states that if 𝐻 ≤ 𝐺, then |𝐻| divides |𝐺|. To prove this, we need to prove two 

lemmas first. We prove that if 𝐻 ≤ 𝐺, then for all 𝑎 ∈ 𝐻, we have 𝑎𝐻 = 𝐻; we also prove that if 𝐻 ≤ 𝐺 

and 𝑎, 𝑏 ∈ 𝐺, then either 𝑎𝐻 = 𝑏𝐻 or 𝑎𝐻 ∩ 𝑏𝐻 = ∅. 

To prove the first lemma, we prove that 𝑎𝐻 ⊆ 𝐻 and 𝐻 ⊆ 𝑎𝐻. To show that 𝑎𝐻 ⊆ 𝐻, note that 𝐻 is 

a group which must be closed by definition, so for every ℎ ∈ 𝐻, 𝑎ℎ ∈ 𝐻. Thus 𝑎𝐻 ⊆ 𝐻.To show that 

𝐻 ⊆ 𝑎𝐻, we let ℎ be any element in 𝐻. 𝑎−1ℎ ∈ 𝐻 due to the properties of group 𝐻, so 𝑎(𝑎−1ℎ) = ℎ ∈
𝑎𝐻. Since 𝑎𝐻 ⊆ 𝐻 and 𝐻 ⊆ 𝑎𝐻, 𝑎𝐻 = 𝐻. 
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For the second lemma, we assume that 𝑎𝐻 ∩ 𝑏𝐻 ≠ ∅, and show that 𝑎𝐻 = 𝑏𝐻. Let an element 𝑥 ∈

𝑎𝐻 ∩ 𝑏𝐻 , so there must exist ℎ1  and ℎ2  such that 𝑎ℎ1 = 𝑏ℎ2 = 𝑥 . 𝐻  is a group, so ℎ1
−1 ∈ 𝐻 . We 

operate the two sides by ℎ1
−1

  on the right: 𝑎ℎ1ℎ1
−1 = 𝑎 = 𝑏ℎ2ℎ1

−1
 , so 𝑎𝐻 = 𝑏ℎ2ℎ1

−1𝐻 . Since 

ℎ2ℎ1
−1𝐻 = 𝐻 (𝐻 is closed), 𝑎𝐻 = 𝑏𝐻. 

Having proven those two lemmas, we can now prove Lagrange’s Theorem. We realize that any 

element in a group 𝐺, 𝑎, must be inside at least one of the cosets of 𝐺, because 𝑎 ∈ 𝑎𝐻 (𝐻 contains 𝑒 

and 𝑎𝑒 = 𝑎). Next, as two cosets are either equal or contain no common elements, we can choose one 

coset from each set of identical cosets, totaling 𝑛  cosets. Since |𝑎𝐻| = |𝐻| , |𝐺| = |𝑎1𝐻| + |𝑎2𝐻| +
⋯ + |𝑎𝑛𝐻| = 𝑛|𝐻|, where 𝑎𝑘 is the 𝑘th coset that is chosen to be included, so |𝐻| divides |𝐺|. Thus, 

Lagrange’s theorem has been proven. 

4.3.  Proving the validity of RSA using Lagrange’s theorem  

Proving the validity of RSA means showing that 𝑋𝑑  mod 𝜑(𝑁) = 𝑚; that is, the decrypted message is 

the same as the original. Before proving this, we must first prove Fermat’s Little Theorem using 

Lagrange’s Theorem. 

Fermat’s Little Theorem states that 𝑎𝑛−1 ≡ 1 mod 𝑛, where 𝑎 ∈ ℤ and 𝑛 is prime. We prove this by 

using the properties of the group ℤ𝑛. Let 𝑎 be any element in ℤ𝑛, and let 𝑘 = ord(𝑎). The elements 

generated by 𝑎, 𝐾 = {1, 𝑎, 𝑎2, … , 𝑎𝑘−1} (note that 1 = 𝑎0), form a subgroup of 𝐺, because the set of 𝐾 

is a subset of the integers from 1 to 𝑛 − 1 (subset), 𝑎𝑖 × 𝑎𝑗 = 𝑎𝑖𝑗 mod 𝑘 (closure), 𝐺 is associative so the 

group of its subset must also be associative (associativity), the element 𝑎0 = 1 is in the group (identity), 

and 𝑎𝑖 × 𝑎𝑘−𝑖 ≡ 1 mod 𝑛 (existence of inverses). |𝐾| = 𝑘, because it contains all elements from 𝑎0 to 

𝑎𝑘−1, and according to Lagrange’s Theorem, |𝐾| divides |𝐺|, which means that 𝑘 divides 𝑛 − 1. We can 

write 𝑛 − 1 = 𝑟𝑘 , where 𝑟 ∈ ℤ+ . Then, 𝑎𝑛−1 ≡ 𝑎𝑟𝑘 ≡ (𝑎𝑘)𝑟 ≡ 1𝑟 ≡ 1 mod 𝑛 . Thus, Fermat’s Little 

Theorem is true. 

When proving the validity of RSA, we assume that 𝑀 and 𝑁 are relatively prime to each other. We 

want to show that (𝑀𝑒)𝑑 ≡ 𝑀 mod 𝑁 for all 𝑀 between 1 and 𝑁 − 1. Since 𝑒𝑑 ≡ 1 mod 𝜑(𝑁), 𝑒𝑑 =
𝑠𝜑(𝑁) + 1 = 𝑠(𝑝 − 1)(𝑞 − 1)  for some 𝑠 ∈ ℤ+ ( 𝜑(𝑁) = (𝑝 − 1)(𝑞 − 1)  because 𝑝  and 𝑞  are 

different primes). Because 𝑝 − 1|𝜑(𝑁), 𝑝 − 1|𝑘𝜑(𝑁). 𝑀𝑒𝑑 ≡ 𝑀𝑠𝜑(𝑁)+1 ≡ 𝑀 × 𝑀𝑠(𝑝−1)(𝑞−1) ≡ 𝑀 ×

(𝑀𝑝−1)𝑠(𝑞−1) ≡ 𝑀 × 1𝑠(𝑞−1) ≡ 𝑀 mod 𝑝 (𝑀𝑝−1 = 1 due to Fermat’s little theorem), so 𝑝|𝑀𝑒𝑑 − 𝑀. 

Similarly, 𝑞|𝑀𝑒𝑑 − 𝑀 , thus 𝑝𝑞|𝑀𝑒𝑑 − 𝑀  (because 𝑝  and 𝑞  are both prime). Rearranging, we get 

𝑀𝑒𝑑 ≡ 𝑀 mod 𝑝𝑞, leading to 𝑀𝑒𝑑 ≡ 𝑀 mod 𝑁, validating the RSA system. 

5.  Conclusion 

This paper mainly covers two commonly used cryptographic protocols, the Diffie-Hellman protocol and 

the RSA protocol. First, the important cryptographic terms and notions were introduced, such as the 

definition of a cryptographic protocol and its security. Next, the underlying theory of the Diffie-Hellman 

protocol was explained using group theory, and relevant concepts were explained earlier in the paper. 

The security of certain platform groups of the Diffie-Hellman protocol was also mentioned, and for now 

these algorithms stay quite safe, if the correct techniques and choice of platform groups are used. For 

the RSA protocol, the algorithm and the proof of validity is mentioned, by using group theory 

(Lagrange’s theorem) to prove the result. In the future, though, the emergence of quantum computers 

may make some protocols prone to attack by using completely new computing methods. There has been 

hints that even the DLP can be broken soon by quantum computers. 

This paper provides an overview of the main algorithms proposed before for the purposes of 

cryptography and some basic ideas about group theory for readers new to cryptography and to group 

theory. 

However, there are many limitations on this paper. Many other useful and common protocols have 

not been covered in this paper, and the attacks have also not been well described. Also, some of the 

protocols and methods (such as the Ko protocol) have not been fully described due to time reasons.  
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