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Abstract. In this paper we show that multilayer feedforward networks with one single hidden 

layer.and certain types of activation functions can approximate univariant continuous functions 

defined on a compact set. arbitrarily well. In particular, our results contain some usual activation 

functions such as sigmoidal functions, RELU functions and threshold functions. Besides, since 

interpolation problems are highly related to approximation problem, we demonstrate that a wide 

range of functions have the ability to interpolate and generalize our results to functions which 

are not polynomial on ℝ. Compared to existing results by numerous work, our methods are more 

intuitive and less technical. Lastly, the paper discusses the possibility of combining interpolation 

property and approximating property together, and demonstrates that given any Riemann 

integrable functions on a compact set in ℝ , with several points on its graph, the finite 

combination of monotone sigmoidal functions can pass through these points and approximate 

the given function arbitrarily well with respect to 𝐿1(𝑑𝑥) (in the sense of Riemann integral) when 

the number of points getting large. 

Keywords: neural networks, approximation, interpolation. 

1.  Introduction 

The universality of activation function in neural network with one hidden layer has been vastly studied 

in the last three decades. Roughly speaking, people have considered whether the form of 

∑ 𝑎𝑖
𝑛
𝑖=1 σ(𝑤𝑖⊤𝑥 + 𝑏𝑖)        (1)  

have nice approximating property in certain function space, where 𝜎: ℝ → ℝ is the activation function, 

 𝑤𝑖, 𝑥, 𝑏𝑖 ∈ ℝ𝑛 . Both constructive and non-constructive methods have been adopted and various 

activation functions and function spaces have been studied.  

For example, the main result of Cybenko states that any continuous sigmoidal functions (functions 

that have different limits when 𝑥 → +∞ 𝑎𝑛𝑑 𝑥 → −∞) have the density property in the uniform on 

compacta, namely, given ϵ > 0 and 𝑓 ∈ 𝐶(𝐾) (space of continuous functions defined on a compact set), 

there exists 𝑔(𝑥)  which is the form of (1), where σ  is a continuous sigmoidal function such that 
|𝑔(𝑥) − 𝑓(𝑥)| < ϵ. His proof used the tool of Hahn-Banach theorem and Riesz-Representation theroem, 

which is quite standard nowadays[1]. 

Some other types of activation functions have also studied. In Cotter, he used Stone-Weierstrass 

theorem to conclude that activation function such as 𝑒𝑥 also have approximating property in the uniform 

on compacta[2]. Hornik improved Cybenko's tool by some techniques in Fourier analysis in groups and 

Sobolev space to develop 𝐿𝑝(μ) and derivative approximation results[3]. In 1993, Leshno, Lin, Pinkus 
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and Schocken proved a striking result that the necessary and sufficient condition for 𝜎 to have density 

property in the uniform on compacta is that 𝜎 is not a polynomial[4]. 

When lots of studies focused on the family of (1) to approximate functions, some tools in harmonic 

analysis got into people’s eyes. Namely, instead of varying 𝑤𝑖, one may consider whether the family 
∑ 𝑎𝑖𝜎(𝑤⊤𝑥 + 𝑏𝑖)𝑛

𝑖=1  can approximate continuous functions defined on a compact set well, and this 

turned out to be linked with 𝑚𝑒𝑎𝑛 − 𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐  functions, that is, functions in 𝐶(ℝ𝑛)  such that 

𝑠𝑝𝑎𝑛{𝑓(𝑥 − 𝑎): 𝑎 ∈ ℝ𝑛} is not dense in 𝐶(ℝ𝑛) in the uniform on compacta. However, the property of 

𝑚𝑒𝑎𝑛 − 𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐 functions in higher dimension is far too complicated, and for one dimensional case, 

Schwartz used the property of 𝑚𝑒𝑎𝑛 − 𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐 functions and proved the following result: given 𝜎 ∈
𝐶(ℝ) which is not a polynomial, and assume that 𝑤𝑖 ∈ 𝐹 ⊂ ℝ, where 𝐹 contains a sequence that has 

finite limit point, the form of (1) is dense in 𝐶(ℝ) in the uniform on compacta. 

At the same period, the ability of activation function to interpolate was also considered by a lot of 

researchers. Specifically, given 𝑚  different points {𝑥𝑖}𝑖=1
𝑚  in ℝ𝑛 , values {𝑦𝑖}𝑖=1

𝑚  and continuous 

activation function σ, does there exist 𝑔 is the form of (1) (𝑚, 𝑛 don't have to be dependent on each 

other) such that 𝑔(𝑥𝑖) = 𝑦𝑖 , 1 ≤ 𝑖 ≤ 𝑚 . In Itô and Saito, they proved that if σ  is a continuous, 

nondecreasing sigmoidal function then one can find 𝑚 = 𝑛, 𝑤𝑖 with |𝑤𝑖| ≤ 1 such that the previous 

question has a positive answer[5]. Huang and Babri extended their results to the case when σ is bounded, 

continuous, nonlinear and exists one-side limit (when 𝑥 approaches to the point ∞) [6]. In 1999. Pinkus 

gave a beautiful proof to generalize the case to 𝜎 not a polynomial [7]. 

In this paper, we mainly focus on the dimension one case and give some constructive methods which 

are less technical and abstract than previous researches to study both approximation and interpolation 

problems. Our main tools are the properties of approximate identity and Gershgorin’s theorem. At the 

end of the paper, we will slightly discuss is it able to combine interpolation and approximation together, 

that is, given 𝑓 defined on a compact set in ℝ, does there exist 𝑔 which is the form of (1) and equals 𝑓 

at given points and approximates 𝑓 well? We show that it is hard to approximate in the topology of 

𝐶(𝐾), but we may put other conditions on 𝑓 and try to approximate in another topology. Though the 

paper does not give a satisfying result in the case of approximating in the topology of 𝐶(𝐾), the 

discussion is still constructive. 

2.  Main results 

Given an activation function 𝑓, let 𝑆𝑓 denote the set of finite sums of form 𝑔(𝑥) = ∑ 𝑎𝑖
𝑛
𝑖=1 𝑓(𝑤𝑖𝑥 + 𝑏𝑖). 

We use || ⋅ || to denote the uniform norm on 𝐶[0,1]. We have the following result. 

Theorem 1. Suppose 𝑓 is absolutely Riemann integrable on ℝ. Then 𝑆𝑓 is dense in 𝐶[0,1] in the uniform 

norm. In other words, for any ℎ ∈ 𝐶[0,1] and ϵ > 0, there exists 𝑔 ∈ 𝑆𝑓 such that  

sup
𝑥∈[0,1]

|ℎ(𝑥) − 𝑔(𝑥)| < ϵ        (2)  

𝑃𝑟𝑜𝑜𝑓: Let 𝐶 ≔ ∫ 𝑓(𝑥)𝑑𝑥
ℝ

, 𝑓𝑎(𝑥) =
𝑎𝑓(𝑎𝑥)

𝐶
. Then 𝑓𝑎  is an approximate identity. Extend ℎ to ℝ, 

such that the extension is bounded on ℝ. For simplicity, we still denote the extension by ℎ. Then by the 

property of approximate identity (for example, one can see),  𝑓𝑎 ∗ ℎ → ℎ uniformly on every compact 

set in ℝ. In particular, 𝑓𝑎 ∗ ℎ → ℎ uniformly on [0,1]. Since 𝑓𝑎 ∗ ℎ is the limit of Riemann sum, which 

is in the set 𝑆𝑓, we deduce the desired result [8].  

Remark. The terminology “Riemann integrable on ℝ” here means the corresponding “improper” 

integral exists on ℝ which is used throughout the text. 

In particular, we focus on two cases by the theorem. 

Example 1. Suppose 𝑓 is a continuous nondecreasing sigmoidal function, that is, 

lim
𝑥→+∞

𝑓 (𝑥) = 1, lim
𝑥→−∞

𝑓 (𝑥) = 0. 
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Let 𝑔(𝑥) = 𝑓 (𝑥 +
1

2
) − 𝑓 (𝑥 −

1

2
). We want to show that 𝑔 is absolutely Riemann integrable. Since 

𝑔 ≥  0, we only need to show it is Riemann integrable. 

Given ϵ > 0, choose 𝐴 > 0 such that |𝑓(𝑥) − 𝑓(𝑦)| < ϵ for any 𝑥, 𝑦 > 𝐴. Consider the sum 

1

𝑛
∑ 𝑔 (𝑥 +

𝑖

𝑛
)𝑐𝑛

𝑖=1 =
1

𝑛
∑ 𝑓 (𝑥 +

𝑖

𝑛
+

1

2
)𝑐𝑛

𝑖=(𝑐−1)𝑛+1 −
1

𝑛
∑ 𝑓 (𝑥 +

𝑖

𝑛
−

1

2
)𝑛

𝑖=1    (3)  

where 𝑐 is a positive integer, 𝑥 > 𝐴 + 1. It turns out that the sum is less than ϵ, so let 𝑐 → +∞ 𝑎𝑛𝑑 𝑛 →
+∞, we conclude that 𝑔 is integrable on [𝐴, +∞), 𝐴 is a real number. By a similar argument, we can 

show that 𝑔 is integrable on the real line ℝ. 

Combined with theorem 1, we conclude that continuous nondecreasing sigmoidal functions have 

density property. Moreover, since nondecreasing function only has countable discontinuous points, we 

can even drop the continuous condition. 

Example 2. Define 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑 𝑝𝑜𝑤𝑒𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 to be the function set  

𝐸 ≔ {ℎ(𝑥) |ℎ(𝑥) = 0 , 𝑤ℎ𝑒𝑛 𝑥 < 0; ℎ(𝑥) = 𝑥𝛼 , 𝑤ℎ𝑒𝑛  𝑥 ≥ 0 }. If ℎ ∈ 𝐸, we say ℎ is of order 𝑛, if 

𝑛 is the least integer that 𝑛 ≥ α, where ℎ(𝑥) = 𝑥𝛼, 𝑥 ≥ 0. Consider 𝑓 ∈  𝐸, 𝑓(𝑥) = 𝑥α when  𝑥 ≥ 0. 

Suppose 𝑓 is of order n. 

Given 𝑏 > 0, consider the function sequence:  

𝑓0(𝑥) = 𝑓(𝑥),  𝑓𝑖(𝑥) = 𝑓𝑖−1 (𝑥 +
𝑏

2𝑖−1) − 𝑓𝑖−1 (𝑥 −
𝑏

2𝑖−1), where 1 ≤ 𝑖 ≤ 𝑛 + 1   (4)  

We want to show that 𝑓𝑛+1(𝑥) is absolutely Riemann integral. The case if α is an integer is easier 

since 𝑓𝑛+1(𝑥) is compactly supported. Suppose α is not an integer. By using Lagrange mean value 

theorem several times, we see that 𝑓𝑛(𝑥) = 𝐶𝑛,𝑏𝑓(𝑛)(𝑦𝑛,𝑥) for 𝑥  is sufficiently large (if 𝑥  is small, 

derivative may not exist), where 𝐶𝑛,𝑏 is a constant relies on 𝑛 and 𝑏, 𝑦𝑛,𝑥 ∈ (𝑥 − 2𝑏, 𝑥 + 2𝑏). 

In our following analysis we always assume that 𝑥 is sufficiently large in case derivative does not exist. 

Therefore 𝑓𝑛  tends to 0  when 𝑥  is sufficiently large. Furthermore, 𝑓𝑛 is monotone when 𝑥  is 

sufficiently large. In fact, in order to prove that 𝑓𝑛 is decreasing, we only have to show that the second 

derivative of 𝑓𝑛−1 is less than 0, and we can get the result by showing the third derivative of 𝑓𝑛−2 is less 

than 0...finally, we only have to show that the (𝑛 + 1) − 𝑡ℎ derivative of 𝑓 is less than 0.  

Since the last statement is clear, our first claim holds.  

Mimicking the method in example 1, we find that 𝑓𝑛+1 is integrable, therefore absolutely integrable 

on the real line ℝ. By theorem 1 and above construction, we conclude that activation functions in  𝐸 

have density property. In particular, RELU function and threshold function have density property. 

Next, we will turn to some interpolation problems. Our main tool here is Gershgorin’s theorem. 

Gershgorin’s Theorem. Every eigenvalue of 𝐴  lies within at least one of the Gershgorin discs 

𝐷(𝑎𝑖𝑖 , 𝑅𝑖), where 𝐷(𝑎𝑖𝑖 , 𝑅𝑖) = {𝑥 ∈ ℝ2:   |𝑥 − 𝑎𝑖𝑖| ≤   ∑ |𝑎𝑖𝑗|𝑗≠𝑖 }.   

𝑃𝑟𝑜𝑜𝑓: We take the proof as in [9,10]. Let 𝜆 be an eigenvalue of 𝐴 with corresponding eigenvector 

𝑥 = (𝑥𝑗). Choose 𝑖  such that 𝑥𝑖  has the largest absolute value in the elements of 𝑥. Then we have 

∑ 𝑎𝑖𝑗𝑗 𝑥𝑗 = 𝜆𝑥𝑖 .  Alternatively, we have ∑ 𝑎𝑖𝑗𝑥𝑗 = (𝜆 − 𝑎𝑖𝑖)𝑥𝑖𝑗≠𝑖 . 

Therefore, by triangle inequality and our assumption, the following is valid: 

|𝜆 − 𝑎𝑖𝑖| =
|∑ 𝑎𝑖𝑗𝑥𝑗𝑗≠𝑖 |

|𝑥𝑖|
≤ ∑ |𝑎𝑖𝑗|𝑗≠𝑖       (5)  

Therefore the conclusion holds. 

Theorem 2. Suppose 𝑓: ℝ → ℝ with 𝑙𝑖𝑚|𝑥|→∞𝑓(𝑥) = 0, then given 𝑚 different points {𝑥𝑖}𝑖=1
𝑚  in ℝ, 

and {𝑦𝑖}𝑖=1
𝑚 , there exists 𝑔 ∈ 𝑆𝑓, 𝑔 = ∑ 𝑎𝑗

𝑚
𝑗=1 𝑓(𝑤𝑗𝑥 + 𝑏𝑗), such that 𝑔(𝑥𝑖) = 𝑦𝑖, 1 ≤ 𝑖 ≤ 𝑚. 

𝑃𝑟𝑜𝑜𝑓 : Set η(𝑥) = 𝑓(𝑤𝑥) , 𝑤 > 0 , we want to find a sequence 𝑎𝑗 , such that 𝐺(𝑥) ≔

∑ 𝑎𝑗
𝑚
𝑗=1 η𝑗(𝑥) satisfies 𝐺(𝑥𝑗) = 𝑦𝑖 , 1 ≤ 𝑖 ≤ 𝑚, where η𝑗(𝑥) = η(𝑥 − 𝑥𝑗). In other words, we want to 

solve the following equation: 𝑎 ⋅ 𝐴 = 𝑑 , where 𝐴  is an 𝑚 × 𝑚  matrix, 𝑎𝑖𝑗 = η𝑖(𝑥𝑗) , 𝑎 =

(𝑎1, … , 𝑎𝑚), 𝑑 = (𝑦1, , , 𝑦𝑚). 
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We should find 𝑤  such that ∑ |η𝑖(𝑥𝑗)|𝑗≠𝑖 < |η𝑖(𝑥𝑖)| . First note that |η𝑖(𝑥𝑖)| = 𝑓(0) . Set δ ≔

𝑚𝑖𝑛|𝑥𝑖 − 𝑥𝑗|, 1 ≤ 𝑖, 𝑗 ≤ 𝑚, and choose 𝑤 large enough such that when |𝑥| > 𝑤δ, |𝑓(𝑥)| <
𝑓(0)

𝑚
. Then 

∑ |η𝑖(𝑥𝑗)|𝑗≠𝑖 < 𝑚 ⋅
𝑓(0)

𝑚
< |η𝑖(𝑥𝑖)|. By Gershgorin’s theorem, 𝐴 is invertible, thus we conclude the 

result. 

Remark. The intuition of the above proof is that interpolation equation can be solved by 

∑ 𝑎𝑖
𝑚
𝑖=1 ℎ(𝑥 − 𝑥𝑗) , where ℎ(𝑥) = 1 , when 𝑥 = 0; ℎ(𝑥) = 0 , when 𝑥 ≠ 0 . What we do here is to 

approximate ℎ by 𝑓. A slight look at the proof shows that when 𝑤 is large, the matrix 𝐴 looks more like 

diagonal matrix, and 𝜂 looks more like ℎ. 

We also dive into cases discussed in example 1 and 2. 

Example 3. When 𝑓  is a sigmoidal function, the case is quite easy. Set 𝑔(𝑥) = 𝑓 (𝑥 +
1

2
) −

𝑓 (𝑥 −
1

2
), then 𝑔 satisfies the condition in theorem 2, a priori, 𝑓 has interpolation property. 

Example 4. Consider 𝑓 to be a generalized power function as defined in example 2. Define 𝑓𝑖 the 

same as in example 2, and by the discussion in example 2, we see that, 𝑓𝑛+1 satisfies the condition in 

theorem 2, therefore 𝑓 has interpolation property. In particular, RELU function and threshold function 

have interpolation property. 

Next, we are going to extend theorem 2 by the famous result in [4]. We cite it here without proof. 

Theorem (Leshno, Lin, Pinkus and Schocken). The necessary and sufficient condition for 𝜎 to have 

density property in the uniform on compacta is that 𝜎 is not a polynomial. That is, given 𝜖 > 0 and 𝑔 ∈
𝐶(𝐾) , there exists 𝑓(𝑥) ∈ 𝑆𝜎, such that |𝑔(𝑥) − 𝑓(𝑥)| < 𝜖 iff σ is not a polynomial on ℝ. 

Theorem 3. Suppose 𝑓 ∈ 𝐶(ℝ) which is not a polynomial, then given 𝑚 different points {𝑥𝑖}𝑖=1
𝑚  in ℝ, 

and {𝑦𝑖}𝑖=1
𝑚 , there exists 𝑔 ∈ 𝑆𝑓, 𝑔 = ∑ 𝑎𝑗

𝑚
𝑗=1 𝑓(𝑤𝑗𝑥 + 𝑏𝑗), such that 𝑔(𝑥𝑖) = 𝑦𝑖, 1 ≤ 𝑖 ≤ 𝑚. 

𝑃𝑟𝑜𝑜𝑓: We will modify the method in theorem 2. First by the above theorem, given 
1

𝑚
> ϵ > 0, there 

exists ℎ ∈ 𝑆𝑓 , such that ||ℎ − 𝑝|| < ϵ on [−𝑎, 𝑎] (we will set the value of 𝑎 later, of course 𝑎 > 0), 

where 𝑝(𝑥) = 𝑚𝑎𝑥{0,1 − |𝑥|}. 

Set η(𝑥) = ℎ(𝑤𝑥), 𝑤 > 0, we want to find a sequence 𝑎𝑗, such that 𝐺(𝑥) ≔ ∑ 𝑎𝑗
𝑚
𝑗=1 η𝑗(𝑥) satisfies 

𝐺(𝑥𝑗) = 𝑦𝑖 , 1 ≤ 𝑖 ≤ 𝑚, where η𝑗(𝑥) = η(𝑥 − 𝑥𝑗). Namely we will solve 𝑐 ⋅ 𝐴 = 𝑑 , where 𝐴 is an 

𝑚 × 𝑚 matrix, 𝑎𝑖𝑗 = η𝑖(𝑥𝑗), 𝑐 = (𝑎1, … , 𝑎𝑚), 𝑑 = (𝑦1, , , 𝑦𝑚). 

Just as in the proof of theorem 2, we will find suitable 𝑤 such that ∑ |η𝑖(𝑥𝑗)|𝑗≠𝑖 < |η𝑖(𝑥𝑖)|.  

Set δ ≔ 𝑚𝑖𝑛{|𝑥𝑖 − 𝑥𝑗|}, Δ ≔ 𝑚𝑎𝑥{|𝑥𝑖 − 𝑥𝑗|}, 1 ≤ 𝑖, 𝑗 ≤ 𝑚, we choose 𝑤 such that 𝑤δ > 1, 𝑤Δ < 𝑎. 

To satisfy these two inequalities, we choose 𝑎 = 1 +
Δ

δ
. Then we have ∑ |η𝑖(𝑥𝑗)|𝑗≠𝑖 < (𝑚 − 1)ϵ < 1 −

ϵ < ℎ(0) = |η𝑖(𝑥𝑖)|. By Gershgorin’s theorem, 𝐴 is invertible, thus we get the desired result. 

Remark. In Pinkus’s paper, the result is formulated under the same condition but through a more 

technical proof[7]. Namely, the paper converts the problem to the linear dependency of 𝑓(𝑤𝑥𝑖 + 𝑏) 

(regarded as functions in 𝑤  and 𝑏) and uses tools in linear algebra and functional analysis (more 

precisely, as mentioned in the introduction section, Hahn-Banach theorem and Riesz representation 

theorem are applied) to derive the result. 

Comment. All interpolation results above can be generalized to multidimensional case: given 𝑚 

different points {𝑥𝑖}𝑖=1
𝑚  in ℝ𝑛 , values {𝑦𝑖}𝑖=1

𝑚  and activation function 𝑓: ℝ → ℝ , we consider the 

existence of 𝑔 = ∑ 𝑎𝑗𝑓(𝑤𝑗⊤𝑥 + 𝑏𝑗)𝑚
𝑗=1 , such that 𝑔(𝑥𝑖) = 𝑦𝑖 , 1 ≤ 𝑖 ≤ 𝑚 . We first choose 𝑤 ∈ ℝ𝑛 

such that {𝑡𝑖}𝑖=1
𝑚 are distinct, where 𝑡𝑖 = 𝑤 ⋅ 𝑥𝑖 . Set 𝑤𝑗 = 𝑠𝑗𝑤 , 𝑠𝑗 ∈ ℝ , then we only have to find 

{𝑎𝑗}, {𝑏𝑗}, {𝑠𝑗}, such that 𝑔′ = ∑ 𝑎𝑗𝑓(𝑠𝑗𝑡 + 𝑏𝑗)𝑚
𝑗=1  with 𝑔′(𝑡𝑖) = 𝑦𝑖, which will be the dimension one 

case. 
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3.  Further discussion 

In this section we discuss the relation between approximation and interpolation. Given 𝑓 ∈ 𝐶(𝐾) and 𝑛 

points on the graph of 𝑓(𝑥), one attempt to prove density property of a certain activation function is to 

prove interpolation property first and then try to prove that interpolation function oscillates slowly when 

𝑛 gets larger. For example, given 𝑓 ∈ 𝐶([0,1]), if one can show that (i): there exists  

𝑔𝑚(𝑛)(𝑥) = ∑ 𝑎𝑖
𝑚
𝑖=1 σ(𝑤𝑖𝑥 + 𝑏𝑖)       (6)  

with 𝑔 (
𝑖

𝑛
) = 𝑓 (

𝑖

𝑛
), 0 ≤ 𝑖 ≤ 𝑛, where σ is the activation function and (ii):  

𝑙𝑖𝑚𝑛→∞ sup
|𝑥−𝑦|≤

1

𝑛

|𝑔𝑚(𝑛)(𝑥) − 𝑔𝑚(𝑛)(𝑦)| = 0     (7)  

However, it is difficult to find such 𝑔𝑚(𝑛)  satisfies the two conditions at the same time. In our 

construction in theorem 2 and theorem 3, we can find 𝑔𝑚(𝑛) satisfies (i) but they can not satisfy (ii) 

which can be seen from the remark after theorem 2. 

While it is difficult to require an activation function to have interpolation property and approximating 

property in 𝐶(𝐾) at the same time, we can loose ourselves to another kind of approximating property. 

Theorem 4. Suppose 𝑓  is a continuous monotone sigmoidal function. Given 𝑔: ℝ → ℝ  Riemann 

integrable in [0,1] and 𝑛 a positive integer, there exists ℎ ∈ 𝑆𝑓 such that ℎ (
𝑖

𝑛
) = 𝑔 (

𝑖

𝑛
),  0 ≤ 𝑖 ≤ 𝑛 and 

𝑙𝑖𝑚𝑛→∞ ∫ |𝑔 − ℎ|𝑑𝑥
[0,1]

= 0 

𝑃𝑟𝑜𝑜𝑓: Set  

𝑓𝑚(𝑥) ≔ 𝑓 (𝑚 (𝑥 +
1

2
)) − 𝑓 (𝑚 (𝑥 −

1

2
))      (8)  

𝑚 > 0,  η(𝑥) = 𝑓𝑚(𝑤𝑥). 

We will set the value of 𝑚 and 𝑤 later (𝑚 will depend on 𝑛). 

First we want to solve the interpolation equations. Mimicking the proof if Theorem 2, we want to 

find a sequence 𝑎𝑗, such that 𝐺(𝑥) ≔ ∑ 𝑎𝑗
𝑚
𝑗=1 η𝑗(𝑥) satisfies 𝐺(𝑥𝑖) = 𝑦𝑖, 0 ≤ i, 𝑗 ≤ 𝑛, where η𝑗(𝑥) =

η(𝑥 − 𝑥𝑗), 𝑥𝑗 =
𝑗

𝑛
, 𝑦𝑗 = 𝑔(𝑥𝑗). We have to solve the inequality: ∑ |η𝑖(𝑥𝑗)|𝑗≠𝑖 < |η𝑖(𝑥𝑖)|. 

We choose 𝑤 = 𝑛 + 𝑘 , where 𝑘  is a positive constant (independent of 𝑛 ). We choose 𝑚  large 

enough such that  

η(𝑥) = 𝑜(𝑛−2)   𝑤ℎ𝑒𝑛 |𝑥| ≥
1

2𝑛
       (9)  

and  

|1 − η(𝑥)| = 𝑜(𝑛−2)  𝑤ℎ𝑒𝑛 |𝑥| <
1

2(𝑛+2𝑘)
           (10) 

Indeed, given 𝑥 < −
1

2(𝑛+𝑘)
, we can choose 𝑚 large enough such that 𝑓 (𝑚 (𝑤𝑥 +

1

2
)) is arbitrarily 

close to 0, in particular, we may choose 𝑚 such that = 𝑓 (𝑚 (𝑤𝑥 +
1

2
)) = 𝑜(𝑛−2), and by monotone 

assumption, we have that η (−
1

2𝑛
) = 𝑜(𝑛−2), and by monotone assumption once again, we can find 𝑚 

such that η(𝑥) = 𝑜(𝑛−2)   𝑤ℎ𝑒𝑛 𝑥 ≤ −
1

2𝑛
. By a similar argument, for suitably big 𝑚, (9) holds. For 

−
1

2(𝑛+𝑘)
< 𝑥 <

1

2(𝑛+𝑘)
, we can find big 𝑚  such that 𝑓 (𝑚 (𝑤𝑥 +

1

2
))  is arbitrarily close to 1 and 

𝑓 (𝑚 (𝑤𝑥 −
1

2
)) is arbitrarily close to 0. In particular, there exists large 𝑚 such that (10) holds. 

Therefore ∑ |η𝑖(𝑥𝑗)|𝑗≠𝑖 = 𝑜(𝑛−1) < |η𝑖(𝑥𝑖)| when 𝑛  is large and the interpolation equations are 

solved. 
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Next, we notice that |𝑎𝑖 − 𝑦𝑖| < ϵ𝑛,𝑖  with 𝑙𝑖𝑚𝑛→∞𝜖𝑛,𝑖 = 0 and all 𝑎𝑖  are bounded. By the above 

estimate, we have the following inequality    

∫ |𝐺(𝑥) − 𝑦0|
1

2𝑛
0

𝑑𝑥 < 𝑜(𝑛−2) +
1

2𝑛
ϵ𝑛,0           (11) 

Indeed, by triangle inequality, we have ∫ |𝐺(𝑥) − 𝑦0|
1

2𝑛
0

𝑑𝑥 ≤ ∫ |𝐺(𝑥) − 𝑎0|
1

2𝑛
0

𝑑𝑥+
1

2𝑛
ϵ𝑛,0. Notice that 

𝐺(𝑥) = 𝑎0𝜂(𝑥) + ∑ 𝑎𝑖𝜂𝑖(𝑥)𝑖≠0 , we have  

∫ |𝑎0𝜂(𝑥) − 𝑎0|

1
2𝑛

0

𝑑𝑥 = |𝑎0| ∫ |1 − 𝜂(𝑥)

1
2𝑛

0

|𝑑𝑥

= |𝑎0|( ∫ |1 − 𝜂(𝑥)|𝑑𝑥 +

1
2(𝑛+𝑘)

0

∫ |1 − 𝜂(𝑥)|)

1
2𝑛

1
2(𝑛+𝑘)

≤ 𝐶1(𝑜(𝑛−3) + 𝐶2𝑜(𝑛−2)) = 𝑜(𝑛−2)                        (12) 

The contribution of other terms are small: 

∫ |𝑎𝑖𝜂𝑖(𝑥)|𝑑𝑥 ≤
1

2𝑛
𝐶𝑖𝑜(𝑛−2)

1

2𝑛
0

= 𝑜(𝑛−3)           (13) 

So we have ∑ ∫ |𝑎𝑖𝜂𝑖(𝑥)|𝑑𝑥 = 𝑜(𝑛−2)
1/2𝑛

0𝑖≠0 . Add (12) and (13) and by triangle inequality again, 

we have (11). 

By a similar argument with proper translation, we have following inequalities: 

∫ |𝐺(𝑥) − 𝑦𝑖|𝑑𝑥
2𝑖+1

2𝑛
2𝑖−1

2𝑛

< 𝑜(𝑛−2) +
1

2𝑛
ϵ𝑛,𝑖           (14) 

for 1 ≤ 𝑖 ≤ 𝑛 − 1  

∫ |𝐺(𝑥) − 𝑦𝑛 |𝑑𝑥
1

2𝑛−1

2𝑛

< 𝑜(𝑛−2) +
1

2𝑛
ϵ𝑛,𝑛           (15) 

Add them up and notice that  

∑
1

𝑛
𝑦𝑖

𝑛−1
𝑖=1 +

1

2𝑛
𝑦0 +

1

2𝑛
𝑦1 → ∫ 𝑔(𝑥)𝑑𝑥

[0,1]
           (16) 

when 𝑛 → ∞, we have that 𝑙𝑖𝑚𝑛→∞ ∫ |𝑔 − 𝐺|𝑑𝑥
[0,1]

= 0 

Remark. We don't necessarily need 𝑓 to be continuous. Replacing continuity by Riemann integrable 

also works. 

4.  Conclusion 

We have demonstrated that finite combination of a univariate function that is absolute Riemann 

integrable on ℝ  can uniformly approximate any continuous functions of one variable with compact 

support. We then show that there exists a finite sum of monotone sigmoidal functions and generalized 

functions that is absolute Riemann integrable. Combined with the previous result, we derive that any 

univariant continuous function can be approximated by a neural network with one hidden layer and 

monotone sigmoidal functions and generalized power functions as activation functions. (example 1 and 

example 2). 

Next, we show that functions have limit 0 when |𝑥| approaches to +∞ have the interpolation ability. 

(theorem 2) After that, we prove the existence of finite combination of sigmoidal functions and 

generalized power functions that tends to 0 when |𝑥| → +∞ and derive the interpolation results as 
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application of theorem 2. Moreover, we loose the restriction on activation function and show that when 

𝑓 is not a polynomial on ℝ and prove the interpolation ability of such functions. (theorem 3) 

In section 3, the combination of approximation and interpolation is discussed and we deduce that 

monotone sigmoidal functions have the interpolation property and approximate the original function 

well with respect to 𝐿1(𝑑𝑥) (in the sense of Riemann integral) when the number of interpolating value 

gets larger. (theorem 4) 

While we have derived a lot of useful results about approximation and interpolation with feedforward 

artificial neural networks, there are still some questions we cannot answer in this paper. First, are there 

any analogues of theorem 1 in higher dimension? One can not apply the proof in theorem 1 directly to 

derive the corresponding result. Second, is it possible to get other types of approximation in theorem 4? 

For example, given certain type of continuous activation function 𝑓, 𝑔: ℝ → ℝ a continuous function 

and 𝑛 a positive integer, does there exist ℎ ∈ 𝑆𝑓 such that ℎ (
𝑖

𝑛
) = 𝑔 (

𝑖

𝑛
), 0 ≤ 𝑖 ≤ 𝑛 and 𝑙𝑖𝑚𝑛→∞||𝑔 −

ℎ|| = 0? Moreover, is it possible to consider the problem in multidimensional case? We believe these 

problems are interesting enough to raise more attention.  
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