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Abstract. In recent years, causal inference has achieved great results in recommendation systems, 

causal chain analysis, and individual treatment effects. The individual treatment effect (ITE), 

also known as the complier average treatment effect (CATE), is the focus of research in the 

medical, economic, and political fields. Its purpose is to solve the problem that it is impossible 

to predict an intervention's impact on individuals when interventions’ effects vary due to 

individual differences. Today's research focuses on estimating the counter-fact, that is, predicting 

the difference in treatment effect between individuals receiving one treatment and receiving 

another treatment. However, the above study was limited to two interventions and did not 

consider the issue of therapeutic dose. In this paper, a method combining both the idea of 

matching that prevalent in traditional ITE estimation, and a generative adversarial neural network 

(GAN) is proposed to achieve individual effect estimation under multi-intervention with 

continuous dosage intervention. This paper first proposes the idea of treatment effect space 

(𝑇𝐸𝑆), and proposes a neural network based on GAN, uses an improved discriminator, which 

takes a different approach from common GAN, using multiple discriminators in parallel structure 

to achieve discrimination of true samples from treatment space. The model was tested and 

validated under semi-simulated data. 

Keywords: Individual Treatment Effect, Casual Inference, GAN. 

1.  Introduction 

In the medical field, the treatment of a patient often requires the auxiliary cooperation of multiple drugs, 

and different doses will also affect the final therapeutic effect; In the political field, governance usually 

requires the introduction of multiple policies, and the intensity of the policies has an important impact 
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on the outcome of governance; In the economic field, multiple complex factors affect stock prices, 

exchange rates, and so on. In the above areas, different patients, governance regions, and market 

behaviors will change the results (treatment effect). In these fields, which are awash with large amounts 

of wealthy observational data, the use of causal inference models to develop the potential of this data is 

the core purpose of this paper. Although this paper uses the research on precision medicine as an 

example, it does not deny the scalability of the model in the political and economic fields. In the past, 

only a single dummy variable was designed to estimate individual treatment effects, and most existing 

methods predicted counterfactual outcomes based on observed factual data, and few models discussed 

multi-intervention, continuous numerical dosage for treatment effect estimation. This is the core of this 

paper. 

Estimating the effects of individual treatment effect requires counterfactual results from 

observational data, which is usually extreme difficult, because unlike experimental data, observational 

data cannot control variables, that is, there is a causal and correlation relationship between variables [1]. 

If using traditional machine learning or numerical models to directly predict the target treatment effect, 

it is likely to introduce heterogeneity bias into the model, resulting in inaccurate estimation of effects. 

And the traditional individual effect estimation is usually with dummy variable (i.e., with intervention 

or with no intervention, and only one type of intervention exists), and such simple and direct estimation 

models cannot be extended to the treatment effect estimation of multiple intervention. 

TSGAN (estimating Treatment Spaces using GANs) using GAN estimation to process treatment 

spaces is a novel GAN network model proposed for this problem. This paper constructs a structure 

similar to SCIGAN [2]. Inspired by its improvement on counter-factual discriminator, this paper further 

improve the discriminator, using a series of discriminators in parallel structures to achieve treatment 

effect space discrimination. Treatment effect space (TES) are a completely new idea proposed in this 

paper, referring to the individual 𝑥𝑖, who owns a space 𝑌𝑖 corresponding to different dose levels for each 

intervention, 𝑦𝑖 , which will described in detail in following sections. Because of the complexity of 

treatment effect space, it is not possible to use the ordinary generator of traditional GAN to generate 

𝑇𝐸𝑆, nor to use its discriminator to distinguish true samples from the generated 𝑇𝐸𝑆.  

 

Figure 1. Visualization of Treatment Effect Space 𝑇𝐸𝑆 . 

contour is counterfactual estimation from GAN using real sample. 

There is only one real sample in the 𝑇𝐸𝑆, but there is an entire space of counterfactual. For the generator, 

if the input has only one random noise 𝑧 and some features 𝑥𝑖 of the individuals, there will be too little 

information for generator to generate 𝑇𝐸𝑆 ; For discriminators, there are too many counterfactual 

samples that need to be discriminated against, and it is difficult to make accurate judgments. In order to 
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solve these two problems, this paper proposes the idea of matching of traditional ITE estimation to solve 

the problem of generators; Use the method of parallel structural discriminator to solve the problem of 

discriminators. 

 

Figure 2. TSGAN architecture. 

Including a counterfactual generator and 𝑘 discriminators. 

The generator (𝐺) generates 𝑇𝐸𝑆 corresponding to the input sample and to the nearest neighbor matched 

group, and each discriminator discriminates the 1-D segmented 𝑇𝐸𝑆 with individual 𝑋 and 𝑇𝑝 as Input. 

In this paper, the construction of the model is described in detail, and the following is expanded in four 

parts: First, the literature review in individual effect estimation is reviewed and various models are 

described. Second, the problems that need to be solved in this paper are defined in detail, and the 

corresponding hypotheses are proposed. Third, the model is constructed part by part, with the generative 

results and loss functions of each part explained in detail. Forth, Using the TCGA dataset, the data 

required for model validation in this paper is semi-simulated, and the performance metrics and 

advantages of the model are compared and explained [2]. 

2.  Literature Review 

The study of the treatment effect began as early as the 1980s, and the idea has evolved from the early 

propensity score matching, which avoids the problem of heterogeneity bias and thus estimates the 

complier average treatment effect, to the use of machine learning methods such as representation 

learning and double robust regression [1,3,4]. 

The core idea of estimating the individual effect is that the treatment effect obtained by different 

individuals after receiving treatment will vary from person to person, that is, the individual 𝑥 has a 

treatment result 𝑦𝑓  after receiving treatment 𝑡𝑓 . How to estimate the treatment effect of 𝑦𝑐𝑓 , if the 

individual were to receive treatment 𝑡𝑐𝑓. And how to build a model according to 𝑥, 𝑡, 𝑦𝑓 , 𝑦𝑐𝑓 to choose 

the optimal treatment plan for each patient who has not yet received treatment. 

At the earliest, research in this area began with numerical imputation based methods, the most 

common method is called interpolation, including covariate adjustment, backdoor relationship 

correction, reaction curve estimation and so on [3-6]. 

After this, a statistical matching method, also known as "strategic downsampling", is often used to 

balance the inter-group bias between treatment and control groups [7]. Other methods for similar 

purposes include adjusting backdoor variables, adding instrumental variables, etc. The most notable 

feature of this type of matching method is that it requires two "regressions" (matches) to estimate the 

treatment effect. 

Today's popular method is causal machine learning, the most commonly used of which is the method 

of representational learning. The purpose of representation learning is to adjust the covariates through 

the neural network to balance the distribution of the treatment group and the control group, which are 

represented by: BNN, SITE, dragonet, TARNet, etc. [8-11]. 

Another class of methods that use machine learning is to implement counterfactual using adversarial 

neural networks, which typically also includes an inferential network to generalize the estimation of 

treatment effects. Representatives are: GANITE and SCIGAN [1,12]. 
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There is also a method of estimating a two-step neural network using a similar DML (double robust 

machine learning) [13]. 

The focus of this paper is to explore the estimation of treatment effects under multi-intervention with 

continuous dosage, of which GANITE and SCIGAN are the ones that realize multiple dose estimation, 

where this paper is largely inspired by it, and the continuous dosage treatment effect estimation is 

achieved by DRNets, SCIGAN, etc., of which SCIGAN realizes the treatment effect estimation of 

continuous dosage with one intervention [1,14] (i.e., patients may receive multiple different dose levels 

but receive only one treatment at a time, and there is no combination of multiple treatment options). 

This paper builds on this idea and aimed for estimating treatment effect under multi-continuous dosage 

intervention. 

3.  Problem Restatement 

Taking precision therapy as an example, assuming that the observed data include the covariates of the 

patient, the treatment received, and the actual treatment effect, where the covariate is denoted as 𝑋 =
{𝑥𝑖}𝑖=1

𝑛  , treatment received is denoted as 𝑇 = {𝐷1𝑖, 𝐷2𝑖, …𝐷𝑘𝑖}𝑖=1
𝑛 , the actual effect of the treatment is 

denoted as 𝑌𝑓 = {𝑦𝑓𝑖}𝑖=1

𝑛
. 𝑘 is the type of intervention received, 𝐷 is the dose of a certain intervention 

received, 𝑌 is a function of 𝑇 and 𝑋. 𝑌𝑓  can also be expressed as 𝑌𝑓 = 𝑌(𝑋, 𝑇𝑓). The observed data 

samples are  𝑥𝑖, 𝑡𝑖, 𝑦𝑖 . 𝑋 is considered as a eigen vector of 𝒳 space, 𝑇 is a eigen vector of 𝒯 space, 𝒯 =
{ 𝐷1, 𝐷2, … , 𝐷𝑘 :𝐷𝑘 ∈ 𝒟𝑘𝑤}. 𝒟𝑘𝑤 is the dosage range corresponding to the intervention, that is, if a 

dose range between 0 and 1, then 𝒟𝑤 ∈ [0, ]. 
As mentioned by PAUL R, the purpose of ITE is to calculate 𝐼𝑇𝐸 = 𝔼[𝑌 𝑡 =   ∣ 𝐗 = 𝑥] −

𝔼[𝑌 𝑡 = 0 ∣ 𝐗 = 𝑥], i.e., the difference in treatment effect between control group and experimental 

group under conditions of consistent covariate (localized), but this paper studies the treatment effect 

under multi-intervention with continuous dosage, that is, the treatment effect cannot be expressed by a 

value. On this basis, we propose the treatment effect space (𝑇𝐸𝑆), and our goal is to achieve an unbiased 

estimation of the TES for each patient based on the observed data given. 

𝑇𝐸𝑆 𝑡 ∣ [𝑋 = 𝑥] = 𝔼[𝑌 𝑡 ∣ 𝑋 = 𝑥]                                            (1) 

where 𝑡 ∈ 𝒯, x ∈ 𝒳. At the same time, to be able to estimate the treatment effect, the data should meet 

the following assumptions: 

Assumption 1 (Overlap): 

For all ∀x ∈ 𝒳, the probability of receiving a certain treatment plan 𝑝 𝑡 𝑥 > 0, 𝑡 ∈ 𝒯. 

Assumption 2 (Unconfoundedness): 

The treatment plan 𝑇𝑓 , and the treatment effect resulting from that plan 𝑌𝑓 , are conditionally 

independent under the premise given 𝑋.  

{𝑌 𝑡 ∣ 𝑡 ∈ 𝒯} ⊥ 𝑇𝑓 ∣ 𝐗 

3.1.  TSGAN Architecture 

To achieve the estimation of 𝑇𝐸𝑆, we propose a method of using a group-matched modified GAN 

generator, for each observed data sample with covariates 𝑥𝑖, define: 

𝐽𝑖 = 𝑗1 ⋅ 𝑗2,⋯ , 𝑗𝑐                                                             (2) 

Where: 

𝑗𝑐 𝑖 ∈ argmin𝑑(𝑥𝑗, 𝑥𝑖) , 𝑗 ∈   : 𝑛   𝑠. 𝑡.   𝑡𝑗 ≠ 𝑡𝑖                          (3) 

𝐶 is number of sample within the matched group. Since the estimation of the 𝑇𝐸𝑆 cannot rely solely on 

unique samples, estimating TES also need 𝐶 samples closest to 𝑥𝑖 as input. This paper refer to the GAN 

framework proposed in [1] and improve its generators and discriminators so that they can generate and 

discriminate against treatment effect space. As shown in Figure 2. 
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3.2.  Counterfactual Generator 

 

Figure 3. Counterfactual Generator. 

As shown in the Figure 3, counterfactual generator can be represented as: 𝒳 × 𝒥 × 𝒯 × 𝒴 × 𝒵 → 𝒴𝒯, 

where the input have covariates x ∈ 𝒳, the nearest 𝐶 sample groups adjacent to x, J ∈ 𝒥, the treatment 

effect 𝑦𝑓 ∈ 𝒴, the treatment plan 𝑡 ∈ 𝒯, and the Gaussian noise z ∈ 𝒵. The output 𝒴𝒯 is an equation 

from the treatment space 𝒯 to the treatment result 𝒴, which is the unbiased estimation of 𝑇𝐸𝑆: 

TES 𝑡 = G(x, 𝑡𝑓 , 𝑦𝑓 , z) 𝑡                                               (4) 

Because 𝑇𝐸𝑆 generated based on the sample’s covariates 𝑥𝑖 and the 𝐶 samples closest to 𝑥, we need to 

take these elements into account together when considering the generator's loss equation: 

ℒ𝑠 𝐺 =
1

𝑛
∑  𝑛

𝑖=1 |𝐺(𝑥𝑖, 𝐽𝑖, 𝑡𝑓𝑖, 𝑦𝑓𝑖 , 𝑧𝑖)(𝑡𝑓𝑖) − 𝑦𝑓𝑖|
2

+
𝛾

𝑛⋅𝑐
∑  𝑛

𝑖=1 ∑  𝐶
𝑐=1 |𝐺(𝑥𝑖, 𝐽𝑖, 𝑡𝑓𝑖 , 𝑦𝑓𝑖

, 𝑧𝑖)(𝑡𝑓𝐽𝑐) − 𝑦𝑓𝐽𝑐|
2               (5) 

3.3.  Discriminator 

 

Figure 4. Single Discriminator. 

As this paper has always emphasized, traditional GAN discriminators cannot be applied to the TES 

discriminator. Therefore, this paper tries to reduce the burden on discriminator by dividing the TES by 

intervention types and apply multiple discriminators. By using paralleled discriminators, each 

discriminator is responsible for determining 1-D treatment effect space with one intervention. 

We discretize the dose of each treatment 𝒟𝑤 and divide it into 𝑛𝑤 ∈ ℤ+ dose levels, at this time, 

𝒟𝑘𝑤 = {𝐷1
𝑘, … , 𝐷𝑛𝑤

𝑘 }, figuratively speaking, TES is meshed as dosage level is discretized. Our improved 

discriminator 𝐷𝑝 takes the covariate 𝑥, partial treatment plan 𝑡𝑝, and 𝑇𝐸𝑆 estimated by the generator as 

input, where 𝐷𝑝 is a discriminator specifically for the dose discrimination of the 𝑝𝑡ℎ intervention, and 

𝑡𝑝 is the treatment plan leave out 𝑝𝑡ℎ intervention. 
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𝑡𝑝 = {(𝐷1, 𝐷2, … , 𝐷𝑝−1, 𝐷𝑝+1, … , 𝐷𝑘): 𝐷𝑘 ∈  𝒟𝑘𝑤}                      (6) 

Define D𝑝: X × 𝑇𝑝 × 𝑇𝐸𝑆𝑝 → [0, ]𝑛𝑤, where 𝑇𝐸𝑆𝑝 is the linear space divided from the original 𝑇𝐸𝑆 

when only the dosage in the 𝑝𝑡ℎ intervention is a variable, and define that the loss function of D𝑝 is: 

ℒ𝑝(𝐷𝑝; 𝐺) = −
1

𝑛𝑤
∑  

𝑛𝑤
𝑖=1 [𝕀(𝐷𝑖=𝐷𝑓)

log 𝐷𝑝(𝑋, 𝑇𝑝, 𝑇𝐸𝑆𝑝) + 𝕀(𝐷𝑖≠𝐷𝑓)
log ( − 𝐷𝑝(𝑋, 𝑇𝑝, 𝑇𝐸𝑆𝑝))] (7) 

The output of the discriminator is a probability value between 0 to 1, and for the discriminator given 

intervention type 𝐷𝑝. For each dosage level, the discriminator outputs a probability value, meaning the 

probability that expected effect given that dosage is trustworthy. So there is a loss function above, 

where 𝕀(𝐷𝑖≠𝐷𝑓)
log𝐷𝑝(𝑋, 𝑇𝑝, 𝑇𝐸𝑆𝑝) is the logarithm of the probability at the predicted level as the 

actual dose level, and the closer the prediction probability is to 1, the smaller the loss; 

𝕀(𝐷𝑖≠𝐷𝑓)
log ( − 𝐷𝑝(𝑋, 𝑇𝑝, 𝑇𝐸𝑆𝑝)) is the logarithm after predicting the wrong dose level, and the 

closer the prediction is to 0, the smaller the loss. 

In summary, the optimization solution of GAN network is as follows: 

𝐆∗ = arg 𝑚𝑖𝑛
𝐆

 ∑  𝑘
𝑝=1 ℒ(𝐃𝑝; 𝐆) + 𝜆ℒ𝑆 𝐆                                   (8) 

𝐃𝓅
∗ = arg 𝑚𝑖𝑛

𝐃𝓅

 ℒ𝓅(𝐃𝓅; 𝐆
∗)                                          (9) 

(∗ sign represents the iteration relationship) 

3.4.  Inference Network 

After the generator and discriminator are optimized, we use the generator to generate a corresponding 

TES for each sample, and then train the inference network using the generated results and the original 

sample covariate X, so as to predict the TES for new samples. 

3.5.  Semi-simulated Data Validation 

This paper used the Cancer and Tumor Genome Atlas (TCGA) database, with a sample size of over 

10,000, covering various omics data such as genome, transcriptome, epigenetics, proteome, etc., 

providing a comprehensive, multidimensional data. Using the data provided as covariates to construct 

three treatment plan as shown below: 

Table 1. Semi-simulated Data (without interaction terms). 

Treatment 

Plan 
Dosage and Treatment Effect 

Optimal 

Dosage 

A 𝑓1 x, 𝑑 = 𝐶  v1
1 𝑇x +    v2

1 𝑇x𝑑 −    v3
1 𝑇x𝑑2  𝑑1

∗ =
 v2

1 𝑇x

  v3
1 𝑇x

 

B 𝑓2 x, 𝑑 = 𝐶 ( v1
2 𝑇x + sin (𝜋 (

v2
2𝑇x

v3
2𝑇x

)𝑑)) 𝑑2
∗ =

 v3
2 𝑇x

  v2
2 𝑇x

 

C 𝑓3 x, 𝑑 = 𝐶 ( v1
3 𝑇x +   𝑑 𝑑 − 𝑏 2, where 𝑏 = 0.75

 v2
3 𝑇x

 v3
3 𝑇x

) 

𝑏

3
 if 𝑏 ≥ 0.75

  if 𝑏 < 0.75

 

Note: 𝑣 is pre-defined simulating terms. 

Proceedings of the 2nd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/18/20230368

179



 
 
 
 
 
 

Table 2. Semi-simulated Data (with interaction terms). 

Treatment Plan Dosage and Treatment Effect 

A 𝑓1 x, 𝑑 = 𝐶  v1
1 𝑇x +    v2

1 𝑇x𝑑 −    v3
1 𝑇x𝑑2 − 𝑓2 ∗ 𝑓3 

B 𝑓2 x, 𝑑 = 𝐶 ( v1
2 𝑇x + sin (𝜋 (

v2
2𝑇x

v3
2𝑇x

) 𝑑)) + sin  𝑓3  

C 𝑓3 x, 𝑑 = 𝐶 ( v1
3 𝑇x +   𝑑 𝑑 − 𝑏 2, where 𝑏 = 0.75

 v2
3 𝑇x

 v3
3 𝑇x

) − log  𝑓1 ∗ 𝑓3  

 

 

Figure 5 Validation results 

Light grey: data simulated without interaction terms 

Dark grey: data simulated with interaction terms 

In the validation process, TSGAN performed well without interaction terms, showing more accurate 

prediction of the optimal dose for treatment plans 1, 2, and 3, and a large nonlinear deviation for 3, but 

overall more accurate. However, after the addition of interaction terms, the accuracy is greatly reduced, 

and it is clear that the model needs further improvement to accommodate the interaction effects under 

multiple treatment regimens. 

4.  Conclusion 

In this paper, the author proposes a method that combines the popular matching idea in traditional ITE 

estimation with the generative antagonism neural network (GAN) to realize the individual effect 

estimation under continuous dose intervention and multiple interventions. This work first proposes the 

idea of processing effect space (TES), and proposes a neural network based on GAN, which uses an 

improved discriminator. This discriminator uses a different method from the ordinary GAN, and uses 

multiple discriminators with parallel structure to realize the recognition of real samples in the processing 

space. In this paper, the discriminator is further improved, and a series of parallel discriminators are 

used to distinguish the processing effect space. Therapeutic effect space (TES) is a new concept 

proposed in this paper. Due to the complexity of processing the effect space, it is impossible to use the 

traditional GAN ordinary generator to generate TES, nor to use its discriminator to distinguish the real 

samples from the generated TES. In order to solve these two problems, the matching idea of traditional 

ITE estimation is proposed to solve the generator problem; The parallel structure discriminator is used 
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to solve the discriminator problem. more and better methods and ideas are expected to be found in the 

future. 
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