
Aerodynamic analysis of airfoil in steady and unsteady 

motion 

Yunze Gao 

College of Engineering & Applied Sciences, University of Colorado Boulder, 

Boulder, CO, 80303, USA 

 

yuga7360@colorado.edu 

Abstract. In this paper, several basic methods for solving the wing force are introduced, namely: 

arranging constant vortices on the surface, linear vortices, arranging sources and sinks on the 

surface, and arranging vortex systems on the camber. The focus is on the last method. For 

thinner airfoils, the block form has a greater impact on the results; while for thicker symmetrical 

airfoils, the block form has little effect on the results. The results can be more accurate if the 

number of blocks is appropriately increased. The distribution vortices with higher order should 

be used on the camber surface, such as the plate vortex system and linear vortex system. 

Moreover, the force of the unsteady motion wing is also discussed, and the method of arranging 

the source and sink on the surface of the wing and the vortex system on the camber is used. For 

the wing with unsteady motion, the Kutta condition and the wake vortex system should be dealt 

with. Since the square term of the velocity term is included, the Kutta condition with equal 

trailing edge pressure cannot be directly adopted, and it needs to be improved. Regarding the 

treatment of the wake vortex, the calculation results show that the first free vortex adopts the 

vortex model, and the result is better. For the same airfoil, the calculation results are not very 

different under different time steps. Therefore, in order to improve the calculation efficiency, it 

is appropriate to consider increasing the time step. 

Keywords: panel method, airfoil, aerodynamic, motion calculation, performance analysis. 

1.  Introduction 

With the advent of high-performance computers, many numerical methods have been applied to the 

aerodynamic analysis of airfoils in ideal fluids, and the most widely used method is the panel method. 

The panel method has been widely used in other fields since it came out, showing strong vitality. 

Compared with the finite element method and the finite difference method, the advantage of the panel 

method is that the unknowns are limited to the boundary surface of the solution domain, which greatly 

reduces the calculation scale. For the basic principle of the panel method, please refer to Lamb, H [1]. 

The unsteady panel method is a classical boundary element method, which distributes sources and 

dipole singularities on the surface of the airfoil and object, and the dipole singularities simulate the 

wake. 

Considering the arbitrary motion of the wing, the trajectory of the wake vortex generated by the 

wing also changes with time. The calculation problem of the wing at this time is an unsteady motion 

problem. During the unsteady motion of the airfoil, the airfoil circulation changes with time, which will 
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inevitably lead to the equal and opposite direction changes of the circulation of the vented wake vortex. 

Each individual wake vortex element has an effect on the downwash speed of the wing, but the effect 

decreases as the wake vortex moves downstream. The lift and drag generated by the wing at a given 

instant depend on the downwash of the wake vortex system collected by the entire wake. In other words, 

they are related to the wake vortex system formed by the leakage in the time experience before the 

instant, the so-called memory effect in a steady motion. The lift and drag of the airfoil are affected by 

all wake vortices, which is a key characteristic of unstable motion wing issues. 

In order to determine the strength of the vortex, the Kutta condition needs to be introduced. 

Reference [2-4] sets a series of Kutta conditional control points downstream of the airfoil trailing edge, 

so that the normal velocity on the Kutta conditional control point is 0, and the Kutta conditional control 

point is taken on the extension surface of the camber of the wing; another method is to equalize the 

pressure on the pair of control points on the upper and lower surfaces closest to the trailing edge [5,6]. 

The first method is linear, but the selection of Kutta condition control points is empirical, and the second 

condition is nonlinear and it needs to be solved iteratively. Robert [7] uses the B-spline method function 

to represent the source and dipole distribution law of the object surface and the shape of the object 

surface, and successfully applied it to the solution of the Dirichlet model [8]. 

Based on the theory of potential flow, this paper summarizes the mathematical models and 

calculation methods used by different methods to calculate the force of a two-dimensional airfoil under 

steady motion and unsteady state, including the constant vortex method and the linear vortex method. 

The influence of different factors on the results is discussed, and the various factors that affect the 

accuracy of the results are summarized. 

2.  Calculation of force on airfoil in steady motion  

2.1.  Problem formulation and basic assumptions 

The existing numerical methods for calculating the aerodynamic force of the airfoil can easily meet the 

accuracy requirements for the calculation of the lift coefficient, but it is not easy to obtain relatively 

accurate resistance and torque results. There are many factors that affect the numerical results of airfoil 

aerodynamics. In addition to the factors of the theoretical calculation model, the quality and quantity of 

meshing and the processing of boundary conditions will affect the accuracy of the calculation results. 

In order to obtain the best calculation results, various factors that affect the numerical calculation results 

should be evaluated to find an optimal calculation scheme. In the method presented below, the basic 

assumption is that the fluid is incompressible and the flow is irrotational. 

2.2.  Airfoil 

Airfoil refers to the cross-sectional shape of an airfoil, sail, propeller, rotor, and turbine. The airfoil can 

change the direction of the force, for example, it can convert parallel thrust into lift, or horizontal 

rotational moment into vertical thrust. 

The lift of the airfoil mainly comes from the shape of the airfoil and the angle of attack. As shown 

in Figure 1, the airfoil with a suitable angle of attack will disturb the incoming flow, thereby generating 

a force in the opposite direction of the disturbance, which is called aerodynamic force. Aerodynamic 

force can be decomposed into lift and drag. The resultant force perpendicular to the incoming flow 

direction is called lift force, and the resultant force parallel to the incoming flow direction is called drag 

force. Most airfoils require a positive angle of attack to generate lift, but cambered airfoils can also 

generate lift at zero angles of attack. After the incoming flow is disturbed, curved streamlines appear 

near the surface of the airfoil, so different pressures are generated on the two surfaces of the airfoil. 

According to Bernoulli's law, the pressure is low where the flow rate is fast, and the pressure is high 

where the flow rate is slow. Therefore, the lift of the airfoil can be calculated according to the flow rate 

difference between the upper and lower surfaces. In fact, after introducing the concept of circulation, 

the lift of the airfoil can be calculated according to the Kutta-Joukowski theorem. 
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Figure 1. Airfoil nomenclature [9]. 

2.3.  Kinematics definition, governing equations and boundary conditions 

Assuming that the perturbation velocity potential generated by the movement of the airfoil is Φ(x,z), 

the perturbation velocity of the fluid V = ∇Φ , the velocity potential governing equation is the Laplace 

equation: 

  ∇2Φ = 0 (1) 

Boundary conditions include: 

(1) The disturbance velocity generated at infinity is zero, that is, 

  ∇Φ = 0 (2) 

(2) The surface of the object is not penetrable, that is, 

  (∇Φ − VA) ∙ n = 0 (3) 

Among them, n is the unit normal vector of the object surface, the direction points to the inside of 

the object, and VA is the incoming flow velocity. 

(3) Satisfy the Kutta condition of equal pressure at the trailing edge of the airfoil 

  Pm = Pd = 0 (4) 

2.4.  Numerical method 

To solve the problem with the panel method, the first step is to divide the grid. In the calculation 

mentioned later, the grid is divided into the cosine form. Assuming that the airfoil surface is divided 

into N units, the number of the unit on the lower surface of the airfoil closest to the tail end is defined 

as 1, numbered clockwise, and so on. The unit on the airfoil's upper surface closest to the tail end has 

the number N. 

2.4.1.  Constant vortex method. The self-induced velocity generated by the constant vortex method at 

the center of the unit is 0. At the same time, when using the Kutta condition, if using γ1+γN = 0 (γ1 and 

γN are the distributions of the first and Nth units, respectively vortex strength). At the trailing edge, the 

lift produced by the higher and lower elements will be cancelled, so if it is N panels, only N-2 equations 

are available. In order to obtain a definite solution, additional conditions are required, and the boundary 

conditions need to be modified. 
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Figure 2. Equal strength vortices distributed along the x-axis [10]. 

As shown in Figure 2, the induced velocity generated by any panel at a point P in space can be 

decomposed along the x and z axes of the local coordinate system in the local coordinate system as  

  up =
γ

2π
[tan−1

z−z2

x−x2
− tan−1

z−z1

x−x1
] (5) 

  wp = −
γ

4π
ln
(x−x1)

2+(z−z1)
2

(x−x2)
2+(z−z2)

2 (6) 

  (
u
w
) = (

cosαi sinαi
−sinαi cosαi

)(
up
wp
) (7) 

Convert up, wp to the velocity in the geodetic coordinate system, there are  

  (u,w) = VOR2DC(γj,, x, z, xj, zj, xj+1, zj+1) (8) 

To eliminate the element's zero induced velocity to itself, the boundary conditions need to be 

modified. Inside a closed object  

  ϕi
∗ = const (9) 

Since the tangential and normal derivatives of the total velocity potential inside the object are both 

0, that is 

  
∂ϕ∗

∂n
=
∂ϕ∗

∂l
= 0 (10) 

Applying it to each panel, we have 

  (U + u,W+w)i ∙ (cosαi, −sinαi) = 0 (11) 

The induced velocity of the J-th panel at the first control point is  

  (u,w)ij = VOR2DC(γj, x1, z1, xj, zj, xj+1, zj+1) (12) 

The influence coefficient of unit J of unit strength at the first control point is  

  aij = (u,w)ij ∙ (cosαi, −sinαi) (13) 

α1 is the included angle of the direction of element 1, and the influence coefficient is generally in 

the form of 

  aij = (u,w)ij ∙ (cosαi, −sinαi) (14) 

Let the incoming flow velocity from a distance be VA, let 

  RHSi = −(U,W)i ∙ (cosαi, −sinαi) (15) 
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A series of equations are obtained through the above process, the unknowns are γj ( j=1 to N), and 

the Kutta condition is γ1+γN = 0. There are N+1 equations and N unknowns, therefore, one equation 

must be discarded, and the Kutta condition is added to obtain 

  

(

 
 

a11 ⋯ ⋯ ⋯ a1N
a21 a22 ⋯ ⋯ a2N
⋮ ⋮ ⋱ ⋮

aN−1,1 aN−1,2 ⋱ aN−1,N
1 0 0 ⋯ 1 )

 
 

(

 
 

γ1
γ2
⋮
⋮
γN)

 
 
=

(

 
 

RHS1
RHS2
⋮
⋮

RHSN)

 
 

 (16) 

To obtain γj on each unit, the induced velocity of the airfoil in the flow field can be obtained 

according to Eqn. (5) and Eqn. (6). Then according to the Bernoulli equation in steady state  

  
p−p∞

p
= −VA ∙ ∇ϕ −

1

2
(∇ϕ)2 (17) 

Find the pressure at each control point and integrate it along the airfoil surface 

  F = ∮ pnⅆS
Sβ

 (18) 

The pressure on the airfoil can be obtained. 

2.4.2.  Linear Vortex Method. Each panel of the airfoil surface is covered in a pattern of linearly shifting 

vortices. The coordinate system of each element and the induced velocity at a point in space are shown 

in Figure 3. The vortices at both ends of the first element are set as γ1 and γ2, the vortex strengths at 

both ends of the second unit are γ2 and γ3 , and the vortex strength at both ends of the j-th unit are γj and 

γj+1 respectively. 

 

Figure 3. The induced velocity of a linear vortex at any point in space. 

The induced velocity generated by a single panel at any point in space can be decomposed along the 

coordinate axis in the local coordinate system as 

 up =
γ0

2π
[tan−1

z

x−x2
− tan−1

z

x−x1
] +

γ1

4π
[zln

(x−x1)
2+z2

(x−x2)
2+z2

+ 2x(tan−1
z

x−x2
− tan−1

z

x−x1
)] (19) 

 wp = −
γ0

4π
ln
(x−x1)

2+z2

(x−x2)
2+z2

−
γ1

2π
[
x

2
ln
(x−x1)

2+z2

(x−x2)
2+z2

+ (x1 − x2) + z (tan
−1 z

x−x2
− tan−1

z

x−x1
)] (20) 

Replace the subscripts 1 and 2 in the equation with j and j+1, and use the vortex strength γj and γj+1 

to represent the trigonometric function, we can get 
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  up =
z

2π
(
γj+1−γj

xj+1−xj
) ln

γj+1

γj
+
γj(xj+1−xj)+(γj+1−γj)(x−xj)

2π(xj+1−xj)
(θj+1 − θj) (21) 

  wp = −
γj(xj+1−xj)+(γj+1−γj)(x−xj)

2π(xj+1−xj)
ln

γj

γj+1
+

z

2π
(
γj+1−γj

xj+1−xj
) [
(xj+1−xj)

z
+ (θj+1 − θj)] (22) 

As can be seen from the above equations, up and wp can be decomposed into the induced velocity 

γj and γj+1, respectively. Let 

  up
a = −

z

2π
(

γj

xj+1−xj
) ln

γj+1

γj
+
γj(xj+1−xj)

2π(xj+1−xj)
(θj+1 − θj) (23) 

  ωp
a = −

γj(xj+1−x)

2π(xj+1−xj)
ln

γj

γj+1
−

z

2π
(

γj

xj+1−xj
) [
(xj+1−xj)

z
+ (θj+1 − θj)] (24) 

  up
b =

z

2π
(
γj+1

xj+1−xj
) ln

γj+1

γj
+

γj+1(x−xj)

2π(xj+1−xj)
(θj+1 − θj) (25) 

  ωp
b = −

γj+1(x−xj)

2π(xj+1−xj)
ln

γj

γj+1
 
z

2π
(
γj+1

xj+1−xj
) [
(xj+1−xj)

z
+ (θj+1 − θj)] (26) 

we can get  

  (u,w)p = (u
a, wa)p + (u

b, wb)
p
 (27) 

Let 

  (

u w
ua wa

ub wb
) = VOR2DL(γj, γj+1, xj, zj, xj+1, zj+1) (28) 

The induced velocity at the first calculation point can be expressed as 

(u,w)1 = (u
a, wa)11γ1 + [(u

b, wb)
11
+ (ua, wa)12] γ2 + [(u

b, wb)
12
+ (ua, wa)13] γ3 +⋯+

[(ub, wb)
1N−1

+ (ua, wa)1N] γN + (u
b, wb)1NγN+1  (29) 

Let 

  (u,w)11 = (u
a, wa)11γ1 (30) 

  (u,w)1,N+1 = (u
b, wb)

1N
γN+1 (31) 

  (u,w)1,j = [(u
b, wb)

1, j−1
+ (ua, wa)1j] γj (32) 

We can get 

  (u,w)1 = (u,w)11γ1 + (u,w)12γ2 +⋯(u,w)1N+1γN+1 (33) 

When γj=1, the influence coefficient 

  aij = (u,w)i,j ∙ ni (34) 

The free-flow velocity at each vortex element is 

  RHS1 = −(U,W)i ∙ (cosαi, sinαi) (35) 

We have N equations, N+1 unknowns, plus the Kutta condition γj + γj+1 = 1, the linear equation 

system can be obtained  
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(

  
 

a11 a12 ⋯ a1,N+1
a21 a22 ⋯ a2,N+1
a31 a32 ⋯ a3,N+1
⋮ ⋮ ⋱ ⋮
aN1 aN2 ⋯ aN,N+1
1 0 ⋯ 1 )

  
 

(

  
 

γ1
γ2
γ3
⋮
γN
γN+1)

  
 
=

(

 
 
 

RHS1
RHS2
RHS3
⋮

RHSN
0 )

 
 
 

 (36) 

After the vortex strength on each element is solved, the pressure is obtained according to Eqn. (17), 

and then the total force is calculated according to Eqn. (18). 

3.  Calculation of force on airfoil in unsteady motion 

In many cases, analyzing the aerodynamics of an airfoil requires an unsteady approach, such as:  

(1) The motion state of the airfoil changes; 

(2) The airfoil moves in an unsteady flow field; 

(3) The airfoil moves on the curved surface; 

When the two-dimensional airfoil is in an unsteady motion state, the trailing edge of the airfoil will 

drag out the wake vortex, and the influence of the wake vortex system must be considered when 

calculating the aerodynamics of the airfoil. In the unsteady state, since the time derivative term of the 

velocity potential is included in the pressure calculation, the influence of the time derivative of the 

velocity potential should be considered when introducing the Kutta condition and calculating the 

pressure distribution. In addition, when considering the influence of complex boundaries, the boundary 

conditions should also be properly handled. 

This chapter discusses the force of the unsteady motion airfoil. First, the mathematical model of the 

disturbance flow field generated by the two-dimensional unsteady motion airfoil is established, and 

definite solution conditions are given. Then, equations are discrete, and the singularity elimination 

equation of the wake vortex-induced velocity is calculated. Finally, the calculation of aerodynamics is 

discussed, and the factors that affect the accuracy of the results are summarized. 

3.1.  Basic equations and boundary conditions 

Assuming that the perturbation velocity potential generated by the movement of the airfoil is Φ(x,z), 

the perturbation velocity of the fluid V = ∇Φ, and the velocity potential governing equation is Laplace 

equation:  

  ∇2Φ = 0 (37) 

Boundary conditions include: 

(1) The disturbance velocity generated at infinity is zero, that is 

  ∇Φ= 0 (38) 

(2) The surface of the object is not penetrable, that is 

  
∂ϕ

∂n
| = (U − VA + Ω × r) ⋅ n (39) 

Among them, n is the unit normal vector of the object surface, the direction points to the inside of 

the object, Ω is the rotational angular velocity of the airfoil around the reference point, r is the vector 

radius of the point on the airfoil surface in the local coordinate system, and VA is the incoming flow 

velocity. 

(3) Satisfy the Kutta condition of equal pressure at the trailing edge of the airfoil 

  Pm = Pd (40) 

where Pm and Pd represent the pressure at the corresponding points on the upper and lower surfaces 

of the airfoil trailing edge, respectively. 
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3.2.  Numerical methods 

3.2.1.  Governing equation. Using the method based on the velocity field, the source and sink are 

arranged on the airfoil surface 𝑆𝐵, and the linear vortex is arranged on the camber line 𝑆𝑀; the wake 

vortex surface 𝑆𝑊  is approximated by discrete point vortices. The velocity potential and induced 

velocity generated by these singularities at any point p in the flow field can be expressed as  

  ϕ(p, t) = ∫ σ(q, t)G(p, q)ⅆsq
 

St
+ ∫ Γ(q, t)θ(p, q)ⅆsq

 

SM+Sw
 (41) 

  v(p, t) = ∫ σ(q, t)∇pG(p, q)ⅆsq
 

Sp
+  Γ∫ γ(q, t)V(p, q)ⅆsq

 

SM+Sw
 (42) 

σ  and Γ are the strength of the distribution vortex on source-sink of the airfoil surface and the 

strength of the distribution vortex on the wake surface, respectively, where 

  G(p, q) =
1

2π
lnrp,q (43) 

  θ(p, q) =
1

2π
arctan

yp−yq

xp−xp
 (44) 

  V(p, q) =
1

2π
(
yp−yq

rpq
2 , −

xp−xq

rpq
2 ) (45) 

  rp,q = √(xp − xq)
2
+ (yp − yq)

2
 (46) 

The airfoil surface is divided into N panels, and the camber surface is divided into M panels. When 

dividing the camber panel, in order to avoid singularity, take the center of the leading circle at the front 

of the airfoil as the starting point of the panel, and arrange a linear vortex on the camber surface. The 

strength of the vortex at the starting point is γ0 = 2γf, and the end point is γ(Cf) = 0, so, the strength 

distribution function of the vortex on the camber surface can be expressed as  

  γ(l) = 2γ f(C1 − 1)lCf (47) 

where Cf is the arc length of the camber line, and the total strength of the vortices distributed on the 

camber line can be expressed as  

  Cf = ∑ ∫ ⅆl
 

Smj

 M
 j=1   (48) 

  Γf = ∫ γ(l)ⅆl
 

Smj
= Cfγf (49) 

The wake surface is approximated by a system of point vortices that are discrete over time steps, 

with a total strength of Γw. Since the unsteady motion is considered, the distribution of source, sink and 

vortex strength of the above discrete units changes with time, and the time series are expressed as 

  tk = kΔt (50) 

where Δt is the time step. The discrete variable corresponding to the k-th time step is denoted as σi
(k), 

γf
(k), Γf

(k), Γw
(k). In this way, the velocity potential satisfies Eqn. (39) at each control point on the airfoil 

surface, and the following equations can be obtained:  

 ∑ Ai,j
 N
j−1  σj + Ai,N+1 ∙ γf + ∑ Ci,j

 k
j−1  ∙ γw

(j)
= ni ∙ (U − VA + Ω ∙ ri)       (i=1,2,3....N) (51) 

where 

  Ai,j =   ∫
∂

∂ni
G(pi, q)ⅆsq

 

Sbj 
       j=1,2...N (52) 

  Ai,N+1 =  ni ∙ ∑ ∫ 2(Cf − l)lCf
 

Sbj 
M
j=1 ∙ V(pi, q)ⅆsq         i=1,2....N (53) 
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  Ci,j =  ni ∙ V(pi, qw,j)          i=1,2.....N, j=1,2……k (54) 

The equation system Eqn. (51) contains N equations and N+3 unknowns, namely the distribution 

source strength σi of the discrete elements on the airfoil surface at the current time step, the distribution 

vortex strength γf on the camber, and the wake vortex strength γw
(k) at the current time step. In addition, 

there is an implicit unknown, which is the position γw,k
(k) of the newly generated wake vortex at the 

current time step. The equation system can be closed by processing the Kutta condition and the wake 

vortex. 

3.2.2.  Wake vortices and kutta conditions. The adopted Kutta condition states that identical pressures 

exist on the top and lower surfaces of the airfoil's trailing edge, which is  

  Pu − Pd = 0 (55) 

From Bernoulli’s equation 

  
p−p∞

ρ
= −

∂ϕ

∂t
+ (U − VA + Ω× r) ∙ ∇ϕ −

1

2
(∇ϕ)2 (56) 

Plug it into Eqn. (55), we can get 

pu−pd

ρ
= −

∂ϕd

∂t
−
∂ϕu

∂t
+ (U − VA + Ω× ru) ∙ ∇ϕu − (U − VA + Ω × rd) ∙ ∇ϕd +

1

2
[(∇ϕd)

2 −

(∇ϕu)
2] = 0                             (57) 

Among them, the subscript representing the upper surface variable of the airfoil trailing edge is u, 

the subscript of the lower surface variable of the airfoil trailing edge is d, and r is the vector radius in 

the local coordinate system. Eqn. (57) contains the square term of the velocity term, so the general 

iterative solution efficiency is not high, especially when the airfoil motion is complex and the flow field 

changes drastically, the iterative process is very slow, and even divergence occurs. 

The upper and lower surfaces of the trailing edge of the airfoil are very near if the number N of 

panels on the surface of the airfoil is large enough, then there is 

  ru ≈ rd ≈
1

2
(ru + rd) = re (58) 

where re is the average vector radius at the trailing edge. Plug it into Eqn. (57), then we have  

 
∂(ϕu−∂ϕd)

∂t
=
∂Γf

∂t
≈ (U − VA + Ω × re) ∙ (∇ϕu − ∇ϕd) +

1

2
(∇ϕd − ∇ϕu)(∇ϕd − ∇ϕu) =

(U − VA + Ω× re − V) ∙ (∇ϕu − ∇ϕd)  (59) 

Among them, V is the average velocity vector of the upper and lower surfaces of the trailing edge. 

If the initial value of V is given in the specific solution process, the equation can be linearized and easy 

to converge. 

According to Kelvin's theorem 

  
dΓ

dt
=
d(Γf+Γw)

dt
= 0 (60) 

So at the k-th time step, we have: 

  
dΓf

dt
= −

dΓw

dt
≈ −

Γw
(k)
−Γw

(k−1)

Δt
= −

γw
(k)

Δt
 (61) 

From this, it can be obtained 

  Γw
(k) − Γw

(k−l) = γw
(k) = −(Γf

(k) − Γf
(k−1)) (62) 

Which is 
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  Γf
(k)
+ γw

(k)
= Γf

(k−1)
 (63) 

From Eqn. (49), we can get 

  Cfγf
(k)
+ γw

(k)
= Cfγf

(k−1)
 (64) 

Eqn. (59) is satisfied at each control point, and the upper and lower surfaces of the trailing edge 

correspond to the N-th and first panels, respectively, then they can be discretized to obtain: 

  ∑ AN+1,j
 N
j=1  σj + AN+1,N+1 ∙ γf + ∑ CN+1,j

 k
j−1  ∙ γw

(j)
= −

γw
(k)

Δt
 (65) 

which 

  AN+1,j =  (U − VA + Ω× re − V) ∙ ∫ [∇pG(pN, q) − ∇pG(p1, q)]ⅆsq
 

Sbj
 (66) 

  CN+1,j =  (U − VA +Ω × re − V) ∙ [V(pN, qwj) − V(p1, qwj)] (67) 

  re =
1

2
(r1 + rN) (68) 

  V =
1

2
[∇ϕ(pt, t) + ∇ϕ(pN, t)] (69) 

The position of the newly generated wake vortex γw,k
(k) can be determined by equation (70). 

  γw,k
(k)

= re − β(U − VA + Ω × re − V)Δt (70) 

Where β is a constant coefficient, and usually, β = 0.4 to 0.6. In this way, the equation system 

composed of Eqn. (51), Eqn. (64), Eqn. (65) and Eqn. (70) has N+3 equations and N+3 unknowns. The 

equation system is closed, and it can be iterated. The method is directly solved, that is, given the initial 

value of V, calculate the coefficients of the equation system, and solve the strength of the source, sink 

and vortex according to these coefficients (σ1, σ2...σN), γf and γw
(k); Calculate the average velocity V of 

the upper and lower surfaces at the trailing edge using the source-sink and vortex strengths, recalculate 

the equation coefficients and new source-sink and vortex strengths; repeat this until convergence. The 

wake vortex needs to be processed before the calculation of the next time step. Without considering the 

effect of viscosity on the generation and dissipation of vortices, and assuming that the circulation size 

of the wake vortex remains unchanged and moves at the local speed, the wake vortex at the next moment 

is described as follows: 

  γw,j
(k+1) = γw,i

(k)
 (71) 

  rw,i
(k+1) = rw,i

(k) + ΔtVw,i
(k)

 (72) 

where Vw,i
(k) is the local velocity of the wake vortex numbered i at the current time (time k). Since 

the calculation of unsteady motion adopts the time stepping method, a large number of new wake 

vortices are generated at each time step. If there are many time steps or a small time step, so that a large 

number of wake vortices are generated, the related processing will be taken up a lot of computing time. 

Due to the limitation of computer memory and computing power, it is necessary to deal with free 

vortices. There are two commonly used methods. One is to truncate the free vortex system to control 

the number of free vortex systems; the other is to merge the distant point vortices to reduce the total 

amount of free vortex systems. The former is that when the number of free vortices exceeds a 

predetermined value, the initially generated free vortices that are far enough away from the airfoil are 

discarded, and the latter is to merge the point vortices far away from the airfoil, and combine the 

distance from the wake vortex system to the airfoil. The free vortices larger than the set value are 

merged, and then the vortex system is renumbered. The position and intensity of the point vortices after 

merging are as follows:  
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  rw,i
(new)

=
γw,i

γw,i+γw,i+1
rw,i =

γw,i+1

γw,i+γw,i+1
rw,i+1 (73) 

  γw,i
(new)

= γw,i + γw,i+1 (74) 

Eqn. (41) can be used to determine the velocity potential of a location on the airfoil's surface at any 

time, or it can be obtained by the integral of the speed along the contour of the airfoil, which is 

  ϕ(l) = ϕ(q1) + ∫ v(l) ∙ ⅆl
q

q1
 (75) 

Among them, Φ(q1) is the velocity potential at point q1 on the lower surface of the airfoil, which 

has different values at different times, but considering that the constant distribution pressure around the 

airfoil has no effect on the aerodynamics, the effect of Φ(q1) is ignored in the actual calculation. Then 

the pressure distribution on the airfoil surface can be obtained according to Bernoulli's equation Eqn. 

(38). Define the airfoil surface pressure distribution coefficient: 

  Cp =
p−p∞

0.5ρVA
2  (76) 

The wing force is 

  F = (Fx,Fy) = 0.5ρVA
2 ∙ ∫ Cpn ⅆS

 

Sb
 (77) 

4.  Conclusion 

This paper first summarizes the force problem of calculating the steady and unsteady motion of two-

dimensional airfoils, and the main conclusions are summarized as follows: 

First, the numerical method for solving the aerodynamic problem of two-dimensional steady motion 

airfoil is discussed. For the aerodynamic calculation problem of two-dimensional airfoil, various factors 

that affect the accuracy of the result in numerical calculation are discussed, that is, the choice of grid 

division method, the selection of the distribution vortex law of the camber surface, and the selection of 

the number of meshes; in order to obtain numerical results with higher accuracy, it is best to use an 

asymmetrically refined mesh division method, and appropriately increase the number of meshes. It is 

best to use a high-precision vortex distribution law. 

Second, the numerical method for solving the aerodynamic problem of two-dimensional unsteady 

motion airfoil is discussed, and the factors that affect the result, such as the time step, are discussed. 

For the same airfoil, different time steps have little effect on the results. In the calculation, the time step 

can be appropriately increased to save the calculation time and improve the calculation efficiency. 
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