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Abstract. Through the construction of mathematical model and the derivation of quantum 

mechanics formula, transmission coefficients of different one-dimensional barrier are explored. 

The difference of transmission coefficient and other properties under different materials was 

studied by controlling the change amount in the experiment. This study focuses on the analysis 

of one-dimensional barrier transmission coefficients of triangles and trapezoids, and ensures the 

accuracy of the experimental process through a large number of literature analysis. On this basis, 

the study of quantum tunneling effect should be easier, and it will be applied to more fields, 

which will play a crucial role for further research in the future. The special point of this 

experiment is to analyze and compare the transmission coefficient of different forms of one-

dimensional barrier, compare the theoretical value with the actual value, and correct.The purpose 

of this experiment is to re-examine the original inherent conclusions and add new ones, so as to 

keep pace with the time. 

Keywords: One-Dimensional Barrier, Quantum Tunneling Effect, Transmission Coefficients, 

Schrödinger Equation, Airy Functions. 

1.  Introduction 

The intriguing phenomenon of quantum tunneling has long captivated the minds of physicists. Unlike 

classical physics, which precludes the possibility of a particle crossing an energy barrier without 

sufficient kinetic energy, quantum mechanics allows for this baffling event. Thanks to the wave-like 

nature of particles in quantum mechanics, their existence is defined not by specific locations but by 

wave functions that distribute probabilities over a range of positions. This wave function introduces a 

non-zero probability that a particle, such as an electron, can ‘tunnel’ through an energy barrier, even 

when it appears energetically impossible [1]. 

Quantum tunneling is not a newly observed phenomenon but is deeply rooted in the origins of 

quantum mechanics. When Erwin Schrödinger laid down his wave equation in 1926, it provided a robust 

mathematical framework that could describe the dynamics of particles in various types of potential fields, 

including energy barriers. This equation was groundbreaking, opening doors for a comprehensive 

academic investigation into the realm of quantum tunneling. Experimental validations over the years 
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have often supported the theoretical calculations based on the Schrödinger equation, solidifying its 

standing in the scientific community [2]. 

Schrödinger’s equation has played a pivotal role in quantum physics. Introduced in a series of papers 

in 1926, the equation stands as a monumental contribution to science. It has a deterministic nature that 

incorporates the wave mechanics of quantum systems, and it is often interpreted using a probabilistic 

lens [2]. The versatility of the Schrödinger equation is truly remarkable. Whether it’s employed in the 

study of electrons within potential wells or in the complex configurations of molecules, it serves as an 

essential mathematical tool for understanding quantum systems. It’s not just confined to non-relativistic 

quantum mechanics but extends its reach to quantum field theory as well [3]. The practical implications 

of the Schrödinger equation are vast. For instance, it can calculate the energy eigenvalues and 

corresponding eigenfunctions or wave functions for quantum systems. This probabilistic interpretation 

allows for the computation of expectation values for physical observables like position, momentum, and 

energy [4]. One of the most important applications of the equation lies in its utility for studying quantum 

tunneling. By solving the equation, one can determine the probability amplitude of a particle crossing 

an energy barrier [4]. 

For a one-dimensional energy barrier, solving the Schrödinger equation leads people to find out the 

tunneling probability. This equation reveals that the tunneling probability decreases exponentially as the 

width of the barrier and the energy difference  between the barrier and the particle increase [1]. The 

implications of this are substantial, showing how even infinitesimal changes in these parameters can 

dramatically affect the likelihood of tunneling. The notion of quantum tunneling also finds applications 

in modern technologies like tunneling microscopes and quantum computing. Recent research focuses 

on the transmission coefficient of particles in various barrier structures, particularly ladder and triangular 

barriers, which have been less explored but hold promise for new applications [1,5]. 

2.  Formulas and derivations 

In the following, the indispensable values for solving the problem of calculating one-dimensional barrier 

structures will be explained and analyzed, and the different shapes of barrier structures will be analyzed 

and discussed in an exemplary manner. 

It is necessary to introduce the transmissivity coefficient before analyzing the various barriers later. 

In the context of quantum mechanics, the transmissivity coefficient refers to a quantity that characterizes 

the probability of a quantum particle, such as electrons, tunneling through a potential energy barrier. 

This coefficient is a fundamental concept in quantum mechanics and plays a crucial role in 

understanding the tunneling phenomena. and value of the transmissivity coefficient can range from 0 to 

1, where 𝑇 =  1  indicates the particle complete transmission and 𝑇 =  0  indicates there only exist 

reflection. In this part, different barriers will be compared, including the square barrier, triangle barrier, 

and trapezoid barrier. This article will introduce the basic condition of these three barriers and analysis 

the distinction of transmissivity [6]. 

2.1.  Square barrier 

This basic barriers of the one-dimensional square barrier can be expressed as 

𝑉(𝑥) = {
0  , 𝑥 < 0, 𝑥 > 𝑎
𝑉0     ,0 ≤ 𝑥 ≤ 𝑎

. (1) 

When the 0 ≤ 𝑥 ≤  a, the potential energy is a limited value, while the potential energy is zero when 

x outside. Sketch of this barrier is shown in Figure 1.  

The tunneling in the single one-dimensional can embody the wave property of particle. It means that 

even if the energy of the particles are smeller than the barriers, they have probabilities to pass through 

the barriers. The probabilities are increasing with the decrease of the height and the width of the barriers. 

However, the pass through coefficient will sharply decrease when the 𝑈0 − E = 5eV, and the width of 

the barrier surpass 50nm, the quantum concept will become classical macroscopic theory. 

One can get the solution of the one-dimensional by solving the stationary Schrödinger equation 
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[−
ℏ

2

2𝑚
+ 𝑉(𝑥)]Ψ(𝑥) = 𝐸Ψ(𝑥). (2) 

Thus, the three individual equations for different regions are given by 

{
  
 

  
 
𝑑2Ψ1

𝑑𝑥2
+ 𝑘1

2Ψ1 = 0

𝑑2Ψ2

𝑑𝑥2
+ 𝑘2

2Ψ2 = 0

𝑑2Ψ3

𝑑𝑥2
+ 𝑘3

2Ψ3 = 0

(3) 

where 𝑘1 =
√2𝑚𝐸

ℏ
, 𝑘2 =

√2𝑚(𝐸−𝑉0)

ℏ
, and 𝑘3 =

√2𝑚𝐸

ℏ
.  

 

Figure 1. This picture shows the structure of one-dimension square barrier. 

When  E > 𝑈0, one can get the wave function by solving these equations 

{

Ψ1 = 𝐴1𝑒
𝑖𝑘1𝑥 + 𝐵1𝑒

−𝑖𝑘1𝑥

Ψ2 = 𝐴2𝑒
𝑖𝑘2𝑥 + 𝐵2 𝑒

−𝑖𝑘2𝑥

Ψ3 = 𝐴3𝑒
𝑖𝑘1𝑥 + 𝐵3𝑒

−𝑖𝑘1𝑥

(4) 

where Ψ1, Ψ2, Ψ3 are the wave functions of the parts Ⅰ, Ⅱ, Ⅲ. The authors define the first item and the 

positive index as right spread, the second item and negative index as left spread. The Ⅲ part does not 

exist left wave function so the 𝐵3 = 0. According to the continuity and differentiability condition, it is 

found that 

{

𝐴1 + 𝐵1 = 𝐴2 + 𝐵2

𝐴1 − 𝐵1 =
𝑘2

𝑘1

(𝐴2 −𝐵2)
(5) 

when 𝑥 = 0, and they are 

{

𝐴2𝑒
(𝑖𝑘2𝑎) + 𝐵2𝑒

−𝑖𝑘2𝑎 = 𝐴3𝑒
𝑖𝑘1𝑎

𝐴2𝑒
(𝑖𝑘2𝑎) − 𝐵2𝑒

−𝑖𝑘2𝑎 =
𝑘1

𝑘2

𝐴3𝑒
𝑖𝑘1𝑎

 (6) 

when 𝑥 =  𝑎. Solving these simultaneous equations and it is arrived that 

𝐴3 =
4𝑘1𝑘2𝑒

−𝑖𝑘1𝑎

(𝑘1 + 𝑘2)
2𝑒−𝑖𝑘2𝑎 − (𝑘1 − 𝑘2)

2𝑒𝑖𝑘2𝑎
𝐴1. (7) 
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Therefore, the transmissivity coefficient of this barrier can be expressed as 

𝑇 =
|𝐴3|

2

|𝐴1|
2
=

4𝑘1
2𝑘2

2

(𝑘1
2 − 𝑘2

2)
2
𝑠𝑖𝑛2𝑘2𝑎 + 4𝑘1

2𝑘2
2
. (8) 

When 𝐸 < 𝑈0, 𝑘2 is an imaginary number. So one should make the 𝑘2 = 𝑖𝑘3, 𝑘3 = √(
2𝜇(𝑈0−𝐸)

ℏ
 )  .  

Thus, it is arrived that 

𝐴2 =
2𝑖𝑘1𝑘3𝑒

−𝑖𝑘1𝑎

(𝑘1
2 − 𝑘3

2)𝑠ℎ𝑘3𝑎 + 4𝑘1
2𝑘3

2
𝐴1 (9) 

In this case, the transmissivity of this barrier can be expressed 

D =
(4k1

2
 k3

2)

((k1
2 + k3

2
 )

2
 sh

2
 k3 a+ 4k1

2
 k3

2
 )
. (10) 

Figure 2 shows the transmissivity coefficient as a function of energy 𝐸. 

 

Figure 2. Diagram of the transmission coefficient of the square barrier. 

2.2.  Triangle barrier 

Actually, there does not exists an essential difference between a square barrier and a trianglar barrier. 

The basic form is familiar, and it can be expressed in Figure 3. Triangle barriers are often used as 

idealized models for various physical systems. They can represent situations such as the behavior of 

electrons in semiconductor devices, the behavior of particles in quantum wells, or the potential energy 

profile in tunneling phenomena. So it is important to calculate the transmissivity coefficient to know 

about the system [7].  
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Figure 3. this picture shows one-dimension triangular barrier structure. 

This article uses successive conditions to calculate the transmissivity coefficient before. Using 

transfer matrix algorithm to calculate transmissivity coefficient can also be useful. So transfer matrix 

algorithm will be used to calculate the trianglar barrier transmissivity coefficient. To get the transmission 

coefficient of triangular barriers, it is useful to list the time-independent Schrödinger equation as shown 

in Eq. (2). Assume a triangular barrier that is given by 

{
 
 

 
 𝑈(𝑥) = 𝑠1𝑥, 0 ≤ 𝑥 ≤

1

2
𝑎

𝑈(𝑥) =  𝑈𝑚 − 𝑠1𝑥,
1

2
≤ 𝑥 ≤ 𝑎

𝑈(𝑥) = 0 , 𝑥 < 0 𝑜𝑟 𝑥 > 𝑎

(11) 

with 𝑠1 =
2𝑈𝑚

𝑎
 .  For convenience the notation 𝐴𝑘𝜆 ≡ 𝐴𝑖(−𝜌𝑘𝑈𝜆) , 𝐵𝑘𝜆 ≡ 𝐵𝑖(−𝜌𝑘𝑈𝜆) , 𝐴𝑘𝜆

’ ≡

𝐴𝑖
’(−𝜌𝑘𝑈𝜆),   𝐵𝑘𝜆

’ ≡ 𝐵𝑖
’(−𝜌𝑘𝑈𝜆)  are adopted, where the 𝐴𝑖

’   and 𝐵𝑖
’  are the derivatives of the Airy 

functions respecting to the argument and 𝜌1 = (
2𝑚

ℏ2𝑠1
2)

1

3
  .  Assume 𝑆 =

2𝑖𝜇1𝑘1

𝜋2
 
𝑒−𝑖𝑘2𝑎

(𝛼𝛽−𝛾𝛿)
 , where the 

constants are given by 

𝛼 = [𝐴22𝐵23
’ − 𝐴23

’ 𝐵22] +  𝑖𝜇2𝑘2[𝐴22𝐵23 − 𝐴23𝐵22] (12) 

𝛽 = [𝐴11
’ 𝐵12

’ − 𝐴12
’ 𝐵11

’ ] +  𝑖𝜇1𝑘1[𝐴11𝐵12
’ − 𝐴12

’ 𝐵11] (13) 

𝛾 = [𝐴11
’ 𝐵12 − 𝐴12𝐵11

’ ] +  𝑖𝜇1𝑘1[𝐴11𝐵12 − 𝐴12𝐵11] (14) 

𝛿 = [𝐴23
’ 𝐵22

’ − 𝐴22
’ 𝐵23

’ ] +  𝑖𝜇1𝑘2[𝐴23𝐵22
’ − 𝐴22

’ 𝐵23] (15) 

in which 𝜇1 =
1

𝜌1𝑠1
 and 𝜇2 = −

1

𝜌1𝑠1
. So, the transmission coefficient can be written as 

𝑇 =
𝑘2

𝑘1

|𝑆|2 =
4𝜇1

2𝑘1𝑘2

𝜋4

1

|𝛼𝛽 − 𝛾𝛿|2
. (16) 

2.3.  Trapezoidal barrier 

The trapezoidal barrier can be described as below: 

𝑉(𝑥) =  {
𝑣0 + 𝐹𝑥, 0 ≤ 𝑥 ≤ 𝑎
   0, 𝑥 < 0, 𝑥 > 𝑎

. (17) 

Consider the real condition, the trapezoidal barriers can be expressed in Figure 4. 
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Figure 4. this picture shows one-dimension trapezoidal barrier structure. 

In fact, trapezoidal barriers provide a simplified yet meaningful model to study the behavior of 

quantum particles encountering potential energy barriers in various systems. They are valuable tools for 

understanding quantum phenomena in different contexts, from electron transport in semiconductors to 

particle behavior in quantum wells. One can also get transmissivity coefficient of this system. Suppose 

a signal trapezoidal and the particles will conform to the Schrödinger equation 

{
 
 

 
 

−
ℏ

2

2𝑚

𝑑2𝜓

𝑑𝑥2
= 𝐸, (𝑥 < 0, 𝑥 > 𝑎)

−
ℏ

2

2𝑚

𝑑2𝜓

𝑑𝑥2
+ (𝑉0 + 𝐹𝑥)𝜓 = 𝐸𝜓, (0 ≤ 𝑥 ≤ 𝑎)

(18) 

The author makes 𝑘 =
√2𝑚𝐸

ℏ
, and 𝜉 = 𝜅 (

𝜖

𝐹
− 𝑥) , where 𝜖 = 𝐸 − 𝑉0 , 𝜅 = (

2𝑚𝐹

ℏ2
)

1

3
, so the original 

equation set can be rewritten: 

𝑑2𝜓

𝑑𝜉2
− 𝜉𝜓 = 0. (19) 

This is Airy functions, the solution can be expressed the linear combination with 𝐴𝑖(𝜉) and 𝐵𝑖(𝜉). 
When the 𝑥 < 0 and 𝑥 > 𝑎, wave functions can be described as: 

{
𝜓𝑙 = 𝐴𝑙𝑒

𝑖𝑘𝑥 + 𝐵𝑙𝑒
−𝑖𝑘𝑥

𝜓𝑟 = 𝐴𝑟𝑒
𝑖𝑘𝑥 + 𝐵𝑟𝑒

−𝑖𝑘𝑥
(20) 

When 0 ≤ 𝑥 ≤ 𝑎, the wave function can be described as: 

𝜓𝑐 = 𝐴𝑐𝐴𝑖(𝜉) + 𝐵𝑐𝐵𝑖(𝜉). (21) 

According to real situation, there are not particles passing into the barrier, so 𝐵𝑟 = 0. Due to the 

continuity condition in 𝑥 = 0 and 𝑥 =  𝑎, then one can get the following solutions. When 𝑥 =  0,  

 {
𝐴𝑙 + 𝐵𝑙 = 𝐴𝑐𝐴𝑖 (ξ

𝑚𝑎𝑥
+ 𝐵𝑐𝐵𝑖(ξ𝑚𝑎𝑥))

𝑖𝑘(𝐴𝑙 − 𝐵𝑙) = κ (𝐴𝑐𝐴𝑖
′(ξ𝑚𝑎𝑥) + 𝐵𝑐𝐵𝑖

′(ξ𝑚𝑎𝑥))
(22) 

where ξ𝑚𝑎𝑥 = −
κϵ

𝐹
, and when 𝑥 =  𝑎,  

{
𝐴𝑟𝑒

𝑖𝑘𝑎 = 𝐴𝑐𝐴𝑖 (ξ
𝑚𝑖𝑛

+ 𝐵𝑐𝐵𝑖(ξ𝑚𝑖𝑛))

𝑖𝑘𝐴𝑟𝑒
𝑖𝑘𝑎 = κ (𝐴𝑐𝐴𝑖

′(ξ𝑚𝑖𝑛) + 𝐵𝑐𝐵𝑖
′(ξ𝑚𝑖𝑛))

(23) 
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where ξ𝑚𝑖𝑛 = κ(𝑎 −
ϵ

𝐹
). Next, solve these functions set simultaneously, it is found that 

{
 
 

 
 𝐴𝑐 = π𝑒𝑖𝑘𝑎 (𝐵𝑖 ′(ξ𝑚𝑎𝑥) −

𝑖𝑘

κ
𝐵𝑖(ξ𝑚𝑖𝑛))𝐴𝑟

𝐵𝑐 = −π𝑒𝑖𝑘𝑎 (𝐴𝑖 ′(ξ𝑚𝑖𝑛) −
𝑖𝑘

κ
𝐴𝑖(ξ𝑚𝑖𝑛))𝐴𝑟

(24) 

Overall, one can get the transmission coefficient of trapezoidal barriers [8] 

𝑇 =

{
 
 
 

 
 
 

4θ
2𝑘2

(𝑘2 − θ
2)

2
𝑠𝑖𝑛2(θ𝑎) + 4θ

2𝑘2
, 𝐸 > 𝑉0

                         
4

4+ 𝑘2𝑎2
               , 𝐸 = 𝑉0

4Θ2𝑘2

(𝑘2 + Θ2)
2
𝑠𝑖𝑛ℎ

2(Θ𝑎) + 4Θ2𝑘2
, 𝐸 < 𝑉0

(25) 

where θ =
√2𝑚(𝐸−𝑉0)

ℏ
 , Θ =

√2𝑚(𝑉0−𝐸)

ℏ
. 

3.  Applications 

The authors begin by exploring the importance of one-dimensional barriers in the realm of quantum 

mechanics, where these systems manifest in various unique configurations. Each of these structures has 

its own set of characteristics and consequential applications. One such captivating structure is the one-

dimensional periodic barrier, which is composed of recurring potential barriers and wells aligned along 

a single spatial axis. This regimented form of energy landscape is remarkably different from systems 

with random or irregular barriers where the potential energy varies without a pattern. The periodic nature 

of these barriers allows for phenomena like band formation and resonant tunneling, and they have been 

foundational to advanced research in quantum mechanics and solid-state physics [1]. 

Moving beyond academic interest, periodic barriers have also found practical applications. In real-

world scenarios, these barriers are usually constructed in artificially engineered materials, particularly 

semiconductors. In such materials, what’s known as superlattices are engineered by stacking alternating 

layers of different semiconductor materials. The result is a predictable, periodic potential energy 

landscape, offering a perfect real-world representation of a one-dimensional periodic barrier. The vast 

range of applications for these superlattices extends from optoelectronic devices to thermoelectric 

modules that are adept at converting heat into electricity. These modules serve as both a testimony and 

a playground for exploring and utilizing the unique properties of periodic barriers [9]. 

Within the intriguing domain of one-dimensional periodic barriers, the authors encounter a 

specialized structure known as the square barrier. In this structure, regions of constant potential energy 

are punctuated by abrupt changes, either rising or falling to a different constant value. This structured 

energy profile makes square barriers particularly common in semiconductor heterostructures, especially 

in Gallium Arsenide/Aluminum Gallium Arsenide (GaAs/AlGaAs) systems. Their well-defined 

structural nature renders them amenable to mathematical modeling [10]. This, in turn, allows square 

barriers to serve as an ideal testbed for analytical solutions and computational simulations, enriching the 

body of literature in both quantum mechanics and engineering. 

As the authors delve deeper into computational simulations, it’s worth noting that tools like 

MATLAB offer robust platforms for modeling these complex quantum structures. MATLAB provides 

functionalities for numerically solving the Schrödinger equation, thereby enabling simulations that 

capture not just basic tunneling but also intricate phenomena like resonant tunneling and energy band 

formation. Such simulations offer compelling graphical outputs that deepen people’s understanding of 
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particle behavior under varying barrier parameters, contributing to both academic research and practical 

applications. 

One of the most remarkable aspects of periodic barriers is their role in quantum tunneling. These 

structures enable a phenomenon known as resonant tunneling, which occurs under specific conditions 

and at particular energy levels. This quantum form of resonance is a result of the constructive 

interference between the wave functions of tunneling particles, leading to significantly increased 

tunneling probabilities. This is a unique quantum behavior that has potentially transformative 

applications in ultrafast electronic devices where high-speed data transmission is critical. 

Further broadening people’s perspective, the paper turns to band theory to explore the electronic 

properties of materials. Unlike isolated atoms, which have discrete energy levels, electrons in solids 

reside in continuous bands of energies separated by gaps known as band gaps. In the context of tunneling, 

these band gaps serve as zones where the tunneling probability is incredibly low. However, the quantum 

mechanical phenomenon of tunneling allows particles to circumvent these high-energy barriers under 

certain conditions. Such a feat has far-reaching implications, especially in semiconductor technology 

where controlled tunneling phenomena are harnessed in various cutting-edge electronic components like 

tunnel diodes [11]. 

In summary, one-dimensional barriers in their various forms offer a fertile ground for both theoretical 

exploration and practical applications. Understanding the transmission coefficients in these barriers, 

especially in configurations like ladder and triangular barriers, can provide keen insights into the 

manipulative potential of quantum tunneling effects. Whether in academic research or in the fabrication 

of advanced electronic devices, these insights prove invaluable. 

4.  Conclusion 

Quantum tunneling has far-reaching implications across multiple disciplines.The results show that when 

the width of the potential well is constant, the width of the potential barrier increases with the width of 

the potential well .The width of the microstrip decreases, and the beam between each adjacent quantum 

well decreases.The coupling between the bound energy levels is used to decrease and gradually change 

the microband.When the barrier width is fixed, it increases with the potential well widthLarge, resonance 

transmitted resonance energy gradually to the direction of low energyWhile moving, the resonant 

transmission peaks gradually become more and more sharp, both the distance between microstrips also 

gradually decreases. In electronics, it forms the basis of operation for tunnel diodes, devices that take 

advantage of the tunneling effect to allow current to flow even at very low voltages. Through 

experimental analysis and matlab calculation, tunnel effect can be applied to different conditions. By 

means of Schrödinger formula, the conclusions drawn from the theory can be further confirmed and 

finally applied to the practice of real life. Beyond semiconductors, the phenomenon is crucial in enabling 

the function of Scanning Tunneling Microscopes, which provide atomic-level imaging of materials. 

Additionally, in astrophysics, tunneling plays an essential role in nuclear fusion processes that fuel 

stars.Conclusions based on experiments play a vital role in academic research or in the development of 

cutting-edge scientific and technological equipment. In biochemistry, the concept is applied to explain 

certain enzymatic reactions that would otherwise be deemed too slow based on classical considerations 

alone. 

Authors Contribution 

All the authors contributed equally and their names were listed in alphabetical order. 

References 

[1] Griffiths, D. J. (2018). Introduction to Quantum Mechanics. Cambridge University Press. 

[2] Zettili, N. (2009). Quantum Mechanics: Concepts and Applications. Wiley.  

[3] Zhao Zheng, Zhang Jingyi (2006). Quantum Tunneling Radiation of Particles with Rest Mass are 

Unequal to Zero. Acta Physica Sinica. 55(7), 3.  

Proceedings of the 3rd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/25/20240950

158



[4] Haifeng Li, Xinmao Wang(2022). Research and Value Simulation of Quantum Tunneling of One-

dimensional Double Square Barriers. University physics, 41(1), 5. 

[5] Sakurai, J. J., Napolitano, J. (2017). Modern Quantum Mechanics. Pearson.  

[6] Lou Ming, Yang Shuangbo (2012). Calculation of Resonant Transmission Coefficient of Multiple 

Barriers. Journal of Nanjing Normal University (Natural Science Edition). 35(2).  

[7] Luo Ming, Yu Guanxia, Lin Yangfan, Su Jun. Calculation of Resonant Transmission Coefficient 

of Triangular Multiple Barriers Construct. Journal of Sichuan University (Natural Science 

Edition). 52(1), 171-173. 

[8] Christodoulides D. N., Andreou A. G., Joseph R. I., Westgate C. R. (1985). Analytical calculation 

of the quantum-mechanical transmission coefficient for a triangular, planar-doped potential 

barrier. Solid-State Electronics, 28(8), 821-822. 

[9] Madelung O. (1996). Introduction to solid-state theory (Vol. 2). Springer Science & Business 

Media. 

[10] Ashcroft N. W., Mermin N. D. (1976). Solid State Physics. Holt, Rinehart and Winston. 

[11] Streetman B. G., Banerjee S. (2005). Solid State Electronic Devices. Prentice Hall. 

Proceedings of the 3rd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/25/20240950

159


