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Abstract. At the turn of the twentieth century, the establishment of quantum theory propelled 

rapid advancements, particularly in the understanding of quantum tunnelling—a fundamental 

phenomenon in quantum mechanics crucial for various physical processes. The quantum 

phenomenon of particle passes through potential barriers is of great importance. In classical 

physics, when the energy of a particle is less than the height of a double barrier structure, it is 

impossible for it to pass through. However, quantum mechanics allows a particle to penetrate the 

barrier and emerge on the other side. This paper explores the quantum tunnelling effect, focusing 

on the single potential barrier model in one dimension and subsequently extending to the double 

potential barrier model. The Schrödinger equation provides the foundational framework for 

elucidating the motion of microscopic particles, emphasizing wave-particle duality inherent in 

quantum mechanics. The analysis of the single potential barrier model involves solving the 

Schrödinger equation in different regions, determining wave functions and coefficients through 

boundary conditions. The transmission coefficient is derived, representing the probability of a 

particle passing through a barrier. In the case of a “thick” barrier, an approximate form for 

transmission coefficient is provided, demonstrating the exponential decrease in transmission 

probability with increasing barrier thickness. 

Keywords: Quantum physics, Transmission coefficient, Double barrier, Quantum tunnelling 

effect. 

1.  Introduction 

At the dawn of the twentieth century, quantum theory was firmly established by scientists, allowing it 

to advance rapidly. Quantum tunnelling effect, a unique characteristic and fundamental quantum effect 

in quantum mechanics, is indispensable in numerous Physics processes. Exploring quantum mechanics, 

the Schrodinger equation furnishes a physical basis for elucidating the motion law of microscopic 

particles. This, combined with the theoretical investigation of electron tunnelling and the fact that 

numerous particles traverse the barrier, has made the electron transport phenomenon more widely known 

[1]. The probability of a particle passing through a barrier and appearing in the area behind it, regardless 

of its energy, is what is known as quantum penetration. Even when the barrier’s height is slightly lower 

than the particle’s energy, there is still a chance that it will reflect off its surface. 
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Hitherto, people must rely upon quantum mechanics, for classical mechanics is inadequate to explain 

these phenomena. The core of quantum mechanics is that particles possess wave-particle duality, and 

quantum tunnelling serves as the foundation for microcosmic particles to possess wave. It can also be 

used to explain tunnel diodes, cold emission of metal electrons, semiconductor p-n junction, decay of 

radioactive element a, thermonuclear fusion, etc. It can be applied to many different technologies, such 

as scanning tunnelling microscopy and programming floating gates, tunnel diodes for flash memory [2]. 

The Josephson effect, a common utilization of quantum tunnelling, is seen between superconducting or 

superfluid systems that are weakly coupled, where the current between them can be altered by the 

relative phase and tunnelling probability. This effect has some practical applications, such as in quantum 

biology, where electron penetration in enzyme catalysis and biochemical redox reactions is crucial. 

Quantum tunnels can also be used to measure magnetic fields and voltages with high precision, as well 

as superconducting qubits for quantum computers. Moreover, proton tunnelling is also associated with 

spontaneous DNA mutations [3]. 

The aim of this work is to illustrate the tunnelling effect in a double barrier and discuss the calculation 

of its transmittance. For this purpose, Section 2 reviews the single barrier module and discusses the 

double barrier tunnelling effect. The application of the tunnelling effect is introduced in Section 3. 

2.  Models of Potential Barriers 

2.1.  Brief review on single potential barrier model 

To better understand the double potential barrier, this article will briefly review the tunnelling effect of 

a one-dimensional single potential barrier. The potential energy function of a single potential barrier 

shown in Figure 1 is illustrated as [4] 

𝑉(𝑥) = {
𝑉0, 0 < 𝑥 < 𝐿
0, 𝑥 < 0, 𝑥 > 𝐿

. (1) 

 

Figure 1. Single potential barrier model. 𝐸 is the energy of particle energy, 𝑉 is the potential energy of 

barriers, and 𝑥 is the position. 

For tunnelling effect this article will focus on 𝐸 < 𝑉0. When the particle energy less than the barrier 

potential energy, the boundaries of the barrier have probability to reflect the particle back. But in 

quantum mechanics, it also has probability through the barrier, which is impossible in classical physics. 

Start with the time-independent Schrödinger equation for one-dimensional system [5] 

−
ℏ

2𝑚

𝑑2𝜓(𝑥)

𝑑𝑥2
+ 𝑉(𝑥)𝜓(𝑥) = 𝐸𝜓(𝑥) (2) 
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Here, 𝜓(𝑥) is the wave function, 𝑚 is the mass of the particle, 𝑉(𝑥) is the potential, ℏ is the reduced 

Plank constant, and 𝐸 is the energy of the particle. 

Next, the authors try to find the general solutions in each region [6] 

{

𝜓𝐼(𝑥) = 𝐴0𝑒+𝑖𝑘𝑥 + 𝐴𝑒−𝑖𝑘𝑥

𝜓𝐼(𝑥) = 𝐴0𝑒+𝑖𝑘𝑥 + 𝐴𝑒−𝑖𝑘𝑥

𝜓𝐼𝐼𝐼(𝑥) = 𝐷𝑒+𝑖𝑘𝑥

(3) 

in which  𝑘 =
√2𝑚𝐸

ℏ
 and 𝛼 =

√2𝑚(𝑉0−𝐸)

ℏ
.To find out the coefficients in Eq. (3), authors use the boundary 

conditions for both sides to ensure that the wave function 𝜓(𝑥) and its first derivative 
𝑑𝜓(𝑥)

𝑑𝑥
 across the 

boundaries continuously. At 𝑥 = 0, it is found that 

{
𝐴0 + 𝐴 = 𝐵 + 𝐶

𝑖𝑘𝐴0 − 𝑖𝑘𝐴 = −𝛼𝐵 + 𝛼𝐶
. (4) 

Similarly, at 𝑥 = 𝐿: 

{ 𝐷𝑒𝑖𝑘𝐿 =   𝐵𝑒−𝛼𝐿 + 𝐶𝑒+𝛼𝐿

𝑖𝑘𝐷𝑒𝑖𝑘𝐿 = −𝛼𝐵𝑒−𝛼𝐿 + 𝛼𝐶𝑒+𝛼𝐿
(5) 

After solving the boundary conditions, one should find the ratio of the transmitted current to the 

incident current, which it is can be expressed in term of 𝐴0 and 𝐷. Namely, 

𝑇 = |
𝐷

𝐴0

|
2

=
−16𝑘2𝛼2

[(𝛼 + 𝑖𝑘)2𝑒−𝛼𝐿 − (𝛼 − 𝑖𝑘)2𝑒𝛼𝐿]2𝑒2𝑖𝑘𝐿
(6) 

Moreover, consider a “thick” barrier where 𝛼𝐿 ≫ 1, Eq. (6) can be replaced by an approximate form 

𝑇 ≈
16𝛼2𝑘2𝑒−2𝛼𝐿

(𝛼 − 𝑖𝑘)2
≈ 𝑒−2𝛼𝐿 = 𝑒−

2
ℏ

[2𝑚(𝑉0−𝐸)1/2𝐿], (7) 

which is the transmission coefficient of single potential barrier. 

2.2.  Double Potential Barrier Model 

Consider a particle moving from left to right with energy 𝐸, and the potential energy for two symmetrical 

barriers is 𝑉0. Using the same ideal in Sec. 2.1, assuming the particle energy is less than the barriers 

energy (𝐸 < 𝑉0), which is shown in Figure 2. 

 

Figure 2. Double potential barrier model. 𝐸 is the energy of particle energy, 𝑉 is the potential energy 

of barriers, and 𝑥 is the position. 

Proceedings of the 3rd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/25/20240965

194



The potential energy function is 

𝑉(𝑥) = {
𝑉0, 0 < 𝑥 < 𝐿, 𝐿 + 𝑏 < 𝑥 < 2𝐿 + 𝑏
0, 𝑥 < 0, 𝐿 < 𝑥 < 𝐿 + 𝑏, 𝑥 > 2𝐿 + 𝑏

. (8) 

In this model, there are five regions in total. For region I, II, III and IV, the wave function has both 

incident and reflected possibility by the barrier boundary. In region V, there will be only the transmitted 

wave function. The paper aims to find the general solutions in each region, which are 

Region I:  𝜓𝐼(𝑥) = 𝐴0𝑒+𝑖𝑘𝑥 + 𝐴𝑒−𝑖𝑘𝑥 (9) 

Region II:  𝜓𝐼𝐼(𝑥) = 𝐵𝑒−𝛼𝑥 + 𝐶𝑒+𝛼𝑥 (10) 

Region III:  𝜓𝐼𝐼𝐼(𝑥) = 𝐷𝑒+𝑖𝑘𝑥 + 𝐸𝑒−𝑖𝑘𝑥 (11) 

Region IV:  𝜓𝐼𝑉(𝑥) = 𝐹𝑒−𝛼𝑥 + 𝐺𝑒+𝛼𝑥 (12) 

and 

Region V:  𝜓𝑉(𝑥) = 𝐻𝑒𝑖𝑘𝑥 (13) 

in which  𝑘 =
√2𝑚𝐸

ℏ
,𝛼 =

√2𝑚(𝑉0−𝐸)

ℏ
. 

At the boundary of each potential, the wave function and its first-order derivative must be continuous. 

From the equality of the wave function as well as its first-order derivatives at the boundary, the authors 

obtain the following four pairs of equations: 

𝑥 = 0: {
𝐴0 + 𝐴 = 𝐵 + 𝐶       

𝑖𝑘𝐴0 − 𝑖𝑘𝐴 = −𝛼𝐵 + 𝛼𝐶
(14) 

𝑥 = 𝐿: {    𝐷𝑒𝑖𝑘𝐿 + 𝐸𝑒−𝑖𝑘𝐿 = 𝐵𝑒−𝛼𝐿 + 𝐶𝑒+𝛼𝐿    
𝑖𝑘𝐷𝑒𝑖𝑘𝐿 − 𝑖𝑘𝐸𝑒−𝑖𝑘𝐿 = −𝛼𝐵𝑒−𝛼𝐿 + 𝛼𝐶𝑒+𝛼𝐿

(15) 

𝑥 = 𝐿 + 𝑏: { 𝐹𝑒−𝛼(𝐿+𝑏) + 𝐺𝑒+𝛼(𝐿+𝑏) =  𝐷𝑒𝑖𝑘(𝐿+𝑏) + 𝐸𝑒−𝑖𝑘(𝐿+𝑏)      

−𝛼𝐹𝑒−𝛼(𝐿+𝑏) + 𝛼𝐺𝑒+𝛼(𝐿+𝑏) = 𝑖𝑘𝐷𝑒𝑖𝑘(𝐿+𝑏) − 𝑖𝑘𝐸𝑒−𝑖𝑘(𝐿+𝑏)
(16) 

and 

𝑥 = 2𝐿 + 𝑏: {       𝐻𝑒𝑖𝑘(2𝐿+𝑏) = 𝐹𝑒−𝛼(2𝐿+𝑏) + 𝐺𝑒+𝛼(2𝐿+𝑏)

𝑖𝑘𝐷𝑒𝑖𝑘(2𝐿+𝑏) = −𝛼𝐹𝑒−𝛼(2𝐿+𝑏) + 𝛼𝐺𝑒+𝛼(2𝐿+𝑏)
(17) 

Similarly, after solving the boundary conditions, one can find the ratio of the transmitted current to 

the incident current, which is expressed as 

𝑇 =
(𝑘2 + 𝛼2)

2
𝑐𝑜𝑠ℎ

2(𝛼𝐿) − 2(𝑘2 + 𝛼2)(𝑘2 − 𝛼2)

(𝑘2 + 𝛼2)2𝑐𝑜𝑠ℎ
2(𝛼𝐿) − 2(𝑘2 + 𝛼2)(𝑘2 − 𝛼2) + (4𝑘2𝛼2𝑐𝑜𝑠ℎ

2(𝛼𝐿) − 4𝑘2𝛼2)𝑠𝑖𝑛2(𝑘𝑏)
(18) 

The Eq. (18) is the transmission coefficient of the particles in double potential barrier. 

3.  Applications 

In this section, the authors delve into the practical implications and real-world applications of the 

insights gained from our study on quantum tunnelling effect. As documented by Lovas at 1998, the 

transmission coefficient of α  practical that is conducted by the continuity of wave equation and 

Schrodinger’s equation can be used to resolve the half-life of alpha practical 

𝑇1 2⁄ =
ln2

𝑛𝑃
, (19) 

Here, 𝑛 is the number of times the particle hit the wall of barrier in per unit time and 𝑃 is transmission 

probability [7].  
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By the calculation conducted by Lui using Mathematica program, the relationship between the half-

life and the kinetic energy is unveiled, and it is equivalent to the one found by Geiger and Nuttall in 

experiment. The relation is shown as follows, which also nicely shows the consistency of theoretical 

and experimental results 

ln𝑇1 2⁄ = 𝐴𝐸−
1
2 + 𝐵 (20) 

where 𝑛 this form A and B are constant related to nucleus of decay. This simple relationship can be 

applied to compute the half-life of material exhibit extremely brief or prolonged radioactive decay. 

Moreover, quantum tunnelling has efficiently application in condensed matter physics. according to 

the study conducted by Wang, it has found that single-layer graphene has affluent tunnelling 

characteristics. In tow-dimensional square barrier situation graphene has shown it’ s superb electrical 

conductivity and the excellent property as semiconductor. Wang studied how is transmission coefficient 

vary as changes in angle of incidence in different height and width of barrier. When an electron with an 

incident angel 𝜑 is encountered, the wave functions of the external and internal wave vectors of the 

potential barrier are as follows: 

𝜓1(𝑥, 𝑦) = {

(𝑒𝑖𝑘𝑥𝑥 + 𝑟𝑒−𝑖𝑘𝑥𝑥)𝑒𝑖𝑘𝑦𝑦, 𝑥 < 0

(𝑎𝑒𝑖𝑞𝑥𝑥 + 𝑏𝑒−𝑖𝑞𝑥𝑥)𝑒𝑖𝑘𝑦𝑦, 0 < 𝑥 < 𝑑

𝑡𝑒𝑖𝑘𝑥𝑥+𝑖𝑘𝑦𝑦, 𝑡 > 𝑑

. (21) 

and 

𝜓2(𝑥, 𝑦) = {

𝑠(𝑒𝑖𝑘𝑥𝑥+𝑖Φ − 𝑟𝑒−𝑖𝑘𝑥𝑠−𝑖Φ)𝑒𝑖𝑘𝑥𝑦, 𝑥 < 0

𝑠′(𝑎𝑒𝑖𝑞𝑥𝑥+𝑖𝜃 − 𝑏𝑒−𝑖𝑞𝑥𝑥−𝑖𝜃)𝑒𝑖𝑘𝑥𝑦, 0 < 𝑥 < 𝑑

𝑠𝑡𝑒𝑖𝑘𝑥𝑥+𝑖𝑘𝑦𝑦+𝑖𝜃, 𝑡 > 𝑑

. (22) 

Here, 𝑘𝑓 is femi wave vactor, 𝑘𝑥 and 𝑘𝑦 is external wave vector component, 𝑞𝑥 is the 𝑥-component 

of the wave vector inside the potential barrier, 𝜃 = arctan (
𝑘𝑥

𝑞𝑥
)  is relax angle, 𝑠 = sgn(𝐸)  and 𝑠’ =

sgn(𝐸 − 𝑉0). Also, based on the continuity conditions at the boundary, the coefficients 𝑎, 𝑏, 𝑡, 𝑟, and 

transmission probability can be determined. 

The result shows that the transmission probability is equally coincide to 1 as long as this incident 

angel 𝜑 is close to 0. Furthermore, this result is not influenced by the width and height of the potential 

barrier [8]. According to quantum scattering theory, the probability of tunnelling decays exponentially 

with the height and width of the potential barrier. When charge carriers in graphene approach speeds 

close to 1/300th of the speed of light, relativistic effects cannot be ignored. The Dirac equation has 

previously predicted that relativistic electrons can completely penetrate potential barriers [9], and 

carriers in graphene are considered massless fermions, thus following the Dirac equation. This type of 

tunnelling situation is also referred to as Klein tunnelling, which is a significant reason for the excellent 

electrical conductivity of graphene.  

Nuclear quantum tunnelling significantly affects the recombination dynamics of polaronic electron-

hole pairs within the crystalline lattice of hematite, a distinct form of iron oxide [10]. In the study 

conducted by Fan et al, it was observed that due to strong electron-phonon coupling, the charge carrier 

displaces the equilibrium position of ions, creating a potential well that entraps the carrier itself [11]. In 

α-Fe2O3, optical excitation generates free electrons and small polarons, which interact with lattice 

deformations, leading to the formation of a potential well that captures the charge carriers. Under low-

temperature conditions, the influence of quantum tunnelling enables these small polarons to transition 

to lower energy states without the need to overcome significant energy barriers. 

The exploration extends to the double potential barrier model, considering both symmetrical and 

unsymmetrical barriers. General solutions for the wave function are derived in each region, and 

boundary conditions yield a transmission coefficient for the particle passing through the barriers. The 

practical applications of quantum tunnelling are discussed, ranging from its role in determining the half-

life of alpha particles to its significance in condensed matter physics, particularly in materials like single-
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layer graphene. The study of transmission coefficients in graphene reveals its exceptional electrical 

conductivity and semiconductor properties. 

4.  Conclusion 

The exploration of quantum tunnelling in the context of single and double potential barriers reveals the 

profound impact of quantum mechanics on our understanding of particle behavior. The single potential 

barrier model provides a theoretical framework for elucidating the probabilities associated with particles 

traversing energy barriers, showcasing the departure from classical mechanics. The derived transmission 

coefficients unveil the counterintuitive nature of quantum tunnelling, allowing particles to penetrate 

barriers even when their energy is lower than the barrier height. The extension to the double potential 

barrier model further emphasizes the versatility and practical applications of quantum tunnelling. This 

phenomenon, where particles exhibit probabilities of passing through two successive barriers, finds 

relevance in semiconductor technology and nanotechnology. Quantum mechanics, in contrast to 

classical physics, enables the explanation of conduction in microscopic devices, expanding the horizons 

of technological applications. The findings presented in this study not only contribute to a deeper 

comprehension of quantum phenomena but also underscore the potential for leveraging these principles 

in cutting-edge technologies. The ability to control and utilize quantum tunnelling opens avenues for 

innovations in electronic devices and materials science. As the authors continue to delve into the 

intricacies of quantum mechanics, the insights gained from this study pave the way for future 

advancements in quantum computing, nanoelectronics, and beyond. In essence, the study of quantum 

tunnelling serves as a bridge between theoretical principles and practical applications, offering a glimpse 

into the transformative possibilities that quantum mechanics holds for the future of technology. 
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