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Abstract. Drones are much accounted for, with the advantage of low cost, flexibility, and easy-

controlled. As its application fields become more extensive, from human production to scientific 

research, the requirements for UAV path planning are getting higher. Reasonable path planning 

minimizes resource consumption and is worthy of continuous exploration. This article lists one 

algorithm each among heuristic algorithms, graph search algorithms, and traditional algorithms: 

ant colony optimization (ACO), A* algorithm, and artificial potential field. After a discussion of 

the process and steps, a simulation of three algorithms and a comparison has been made. ACO 

focuses more on path planning with disordered points, while the A* algorithm and artificial 

potential field do well in avoiding obstacles when traveling with a given starting point and 

destination. More strengths and weaknesses are explained later. Path planning still needs more 

research to adapt to current needs, such as emergencies, dynamic changes in actual situations, 

consideration of difficult terrain and climate, and weakness of signal connection. 
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1.  Introduction 

Nowadays, drones are able to finish some tasks that are difficult to operate manually, such as bridge and 

tunnel damage detection, identification of dropped objects from high altitudes, aerial photography, and 

taking a significant role in rescue and geological detection in the scientific field. Due to the complexity 

of the flight environment, the actual flight path often deviates from the pre-flight planned path, and the 

UAV needs to be more realistic and make temporary adjustments.  

Although it is inevitable to improve UAV information-sensing technology, pre-flight route planning 

must be continuously optimized and consider multiple factors. Hence, this paper makes a conclusion 

about frequently-used methods in UAV path planning with examples following and modified some basic 

methods. 

2.  Theoretical framework 

2.1.  Ant colony optimization (ACO) 

An intelligent bionic optimization method known as ACO was created by Dorigo M. et al. based on the 

foraging behavior traits of ant groups in nature. For other colony members to follow, these ants leave 

pheromones on the ground to indicate a good path. ACO has been tested on the TPS first, and the result 

that ACO solves routing problems is highly recognized. This study chose the Ant colony system (ACS) 
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over the Ant system (AS) for path planning optimization because ACS introduces offline pheromone 

updates (PU) in addition to local PU that is introduced at the conclusion of the build phase. A model 

𝑃 = (𝑆, 𝛺, 𝑓) of the combinatorial optimization problem includes: a search space 𝑆 defined on a finite 

set of discrete decision variables 𝑋𝑖 , 𝑖 = 1, . . . , 𝑛;  a set of 𝛺  constraints between variables; and the 

objective function 𝑓: 𝑆 → ℝ0
+ to be minimized. 

The generic variable 𝑋𝑖 takes values in {𝑣𝑖
1, . . . , 𝑣𝑖

𝑛}.  

The solution component 𝑐𝑖𝑗 = (𝑖, 𝑗)  indicates that the solution after analyzing and site 𝑖  must be 

followed by site 𝑗 immediately. The pheromone value 𝜏𝑖𝑗 is associated with edge joining site 𝑖 and 𝑗 of 

the solution component 𝑐𝑖𝑗, which conclude the assignment 𝑋𝑖 = 𝑣𝑖
𝑗
. Clearer vehicle routing is achieved 

by fully connected construction drawings 𝐺𝑐(𝑉, 𝐸), where 𝐶 is the collection of all possible solution 

components, 𝑉 and 𝐸 is a set of vertices and edges respectively. To contact each vertex once, the vehicle 

can only move from one to the next. The quality of the solution found may affect the extent ∆𝜏 to which 

pheromone is deposited. 

The algorithm flow is as shown below.  

𝑆𝑒𝑡 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑝ℎ𝑒𝑟𝑜𝑚𝑜𝑛𝑒 𝑡𝑟𝑎𝑖𝑙𝑠 

𝑾𝒉𝒊𝒍𝒆 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑛𝑜𝑡 𝑚𝑒𝑡 𝑑𝑜 
𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 𝑎𝑛𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠;  (1) 

𝐴𝑝𝑝𝑙𝑦 𝑙𝑜𝑐𝑎𝑙 𝑠𝑒𝑎𝑟𝑐ℎ; 

𝑈𝑝𝑑𝑎𝑡𝑒 𝑝ℎ𝑒𝑟𝑜𝑚𝑜𝑛𝑒𝑠; 
𝒆𝒏𝒅𝒘𝒉𝒊𝒍𝒆. 

The working steps are initialization, constructed solution, and update phase. The most important and 

fundamental component of AOS iterative operation is solution creation. Its primary goal is to build 

potential solutions in the problem domain using state transition laws. To develop a complete path PU 

during path planning, solution construction primarily chooses the next path point in accordance with the 

state transition rule. After the solution is constructed, you must carry out the PU procedure, which 

consists of two parts. (1) Pheromone volatilization, which is utilized to lessen the pheromone on the 

path, will affect future ant behavior and improve the algorithm’s capacity for exploration; (2) Pheromone 

release: As ants move along a path, they release informational components [1, 2]. This raises the 

likelihood that the ant will select this route again in the future, improving the algorithm’s capacity for 

improvement. Until the termination condition is satisfied, solution creation and pheromone updating are 

repeated [3]. 

The probability of going to point 𝑗 from point 𝑖 is given by:  

 𝑝𝑖𝑗
𝑘 = {

𝜏𝑖𝑗
𝛼 ∙𝜂𝑖𝑗

𝛽

∑ 𝜏𝑖𝑙
𝛼∙𝜂𝑖𝑙

𝛽 ,    𝑖𝑓 𝑐𝑖𝑗 ∈ 𝑁(𝑠𝑝)

0,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, (2) 

where 𝑁(𝑠𝑝) is the set of feasible components; that is, edges (𝑖, 𝑙) where 𝑙 is a city about to be visited 

by the ant 𝑘 from 𝑖. The parameters 𝛼 and 𝛽 control the relative importance of the pheromone versus 

the heuristic information 𝜂𝑖𝑗, which is given by the equation: 

𝜂𝑖𝑗 =
1

𝑑𝑖𝑗
, where 𝑑𝑖𝑗is the distance between cities 𝑖 and 𝑗.  

In this method, 𝜏𝑖𝑗 is different to the value in AS with offline pheromone update: 

 𝜏𝑖𝑗 ⇐ {
(1 − 𝜑) ∙ 𝜏𝑖𝑗 + 𝜑 ∙ 𝜏0, 𝑖𝑓 (𝑖, 𝑙) 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑏𝑒𝑠𝑡 𝑡𝑜𝑢𝑟𝑠

𝜏𝑖𝑗 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, (3) 

Please follow these instructions as carefully as possible so all articles within a conference have the 
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2.2.  A* algorithm  

The second algorithm is the A* algorithm. 

There are two famous algorithms related to A* algorithm, which need to be mentioned first. That is 

Dijkstra’s algorithm and breadth-first search algorithm. But either of it have some weakness and A star 

algorithm highly combine these two algorithms. The A-Star algorithm not only considers the actual 

distance cost value 𝑔(𝑥) between the current node and the starting point, but also considers the estimated 

cost value ℎ(𝑥) between the node and the target point. This is also where the A-Star algorithm is more 

intelligent than these two algorithms and is considered to be one of the most effective methods for path 

search [4]. Manhattan distance is used to calculate the length instead of Euclidean distance in the grid 

[5]. 

Define the cost function 𝑓(𝑛) as the sum of these two cost values. The path formed by connecting 

the track nodes corresponding to the minimum total cost value is the globally optimal path. The cost 

function 𝑓(𝑛) is defined as follows: 𝑓(𝑛) =  𝑔(𝑛) + ℎ(𝑛) [5]. It consists of two parts of the cost value 

𝑔(𝑛)  and ℎ(𝑛) , 𝑛  represents the current node position; the cost of the visited node, denoted by the 

symbol 𝑔(𝑛), is the sum of the distances from the starting position 𝑆 to the current position 𝑛; ℎ(𝑛) 

represents the total cost estimate of the distance from the current position n to the target point G (the 

cost of the node to be visited) the calculation method of cost value and ℎ(𝑛) is obviously a little different 

[6]. When calculating ℎ(𝑛), it is needed to ignore the obstacles in the grid map because it does not 

represent the real value, but A heuristic estimate, tentative in nature. It is a heuristic and heuristic, so it 

is also called the heuristic function of the A-Star algorithm. 

2.3.  Artificial potential field (APF) 

Based on the electrostatic particle interaction, the proposed APF algorithm. Similar particles’ charges 

will produce a repulsive force, while opposite particles’ charges will produce an attractive force. In order 

to create an attracting force, place the opposite charges of the particles at the beginning and destination 

points. The barriers and the UAV (unnamed aerial vehicle) are supposed to have the same charge in 

order to offer a collision-free and goal-reaching path. The obstruction produces repelling force under 

these circumstances. The following is the model’s equation. 

For basic charges: 𝐹 = −
𝑘𝑞1𝑞2

𝑟2 ,  where: 𝑘  is the interactions constant; 𝑞1 and 𝑞2  are the electric 

charges of the particles; and 𝑟 is the distance between the particles. 

For overall force towards to UAV:  

 �⃗� = �⃗�𝑔𝑜𝑎𝑙 + �⃗�𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠, (4) 

 �⃗�𝑔𝑜𝑎𝑙 =
𝑘𝑉𝐺𝑞𝑉𝑞𝐺

|𝑟𝑉𝐺⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗|2
⋅

𝑟𝑉𝐺⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗

|𝑟𝑉𝐺⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗|
, (5) 

 �⃗�𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠 = − ∑ {

𝑘𝑉𝑂𝑞𝑉𝑞𝑂

|𝑟𝑉𝑂𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ |
2 ∙

𝑟𝑉𝑂𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

|𝑟𝑉𝑂𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ |

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 𝑖𝑓 |𝑟𝑉𝑂𝑖
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ | < 𝑑. (6) 

For the next direction and linear velocity of the UAV: 

 𝜃∗ = arctan (
𝐹𝑤

𝑦

𝐹𝑤
𝑥), where: 𝜃∗ is reference UAV’s orientation. (7) 

  𝑉∗ = Limit(|𝐹𝑤
⃗⃗ ⃗⃗⃗|, 𝑉𝑚𝑎𝑥), (8) 

where: 𝑉∗ is reference UAV’s linear velocity; and 𝑉𝑚𝑎𝑥 is maximum UAV’s linear velocity allowed; 𝑑 

is the distance of influence of the repulsive field. But in reality, the path of UAV might be restricted by 

many facts, such as UAV limited dynamics. It is not possible to change the UAV orientation rapidly. To 

prevent UAV from travelling near the obstacles, direction error needs consideration. In this case, the 

linear velocity equation is modified. 

 𝛼 =
𝜃𝑒𝑟𝑟𝑜𝑟

𝑚𝑎𝑥 −abs(𝜃𝑒𝑟𝑟𝑜𝑟)

𝜃𝑒𝑟𝑟𝑜𝑟
𝑚𝑎𝑥 , (9) 
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 𝑉∗ = {
Limit(𝛼, |𝐹𝑤

⃗⃗ ⃗⃗⃗|, 𝑉𝑚𝑎𝑥), 𝑖𝑓 𝑎𝑏𝑠(𝜃𝑒𝑟𝑟𝑜𝑟) ≤ 𝜃𝑒𝑟𝑟𝑜𝑟
𝑚𝑎𝑥

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. (10) 

And it needs to check the curvature 𝑘: 

 𝑔√𝑛2 − 1/𝑣2 ≤ 𝑘max = 1/𝑅min. (11) 

𝐸 total energy function obtained by the above formula is: 

 𝐸(𝑡) = ∫ (𝑚𝑣(𝑡)𝑎(𝑡) + 𝐼𝜔(𝑡)𝛽(𝑡) +
2𝑓𝑣

𝑟
𝜈(𝑡) + 𝐵) 𝑑𝑡 + 𝑃𝑠𝑡, (12) 

where: m is UAV mass; 𝐼 is UAV moment of inertia; 𝑓𝑣 is a viscous friction coefficient; 𝐵 is fixed power 

provided for the motors to overcome the static friction; 𝑃𝑠  is other energy consumed for real-time 

detection, analysis and calculations ; 𝑣(𝑡) and 𝜔(𝑡) are linear velocity and angular velocity respectively; 

𝛼(𝑡) and 𝛽(𝑡) are linear and angular acceleration respectively; From the depicted equation, one can see 

that linear and angular velocity and acceleration have an impact on the terminal value of this complex 

energy equation [7].  

But the path planning only by the attraction of the target point, it might be trapped in dilemma. Hence, 

based on the traditional APF, the attraction effect of the target point on the moving body relatively is 

weaken. To strengthen the coherence of path adjustment, the algorithm in this paper regards the pre-

planned trajectory as consisting of continuous particles, and the gravity is provided by adjacent particles. 

The specific implementation is to insert one particle per unit length between adjacent pre-planned track 

points, and the path adjustment is reflected by the movement of the particle. 

 �⃗�𝑔𝑜𝑎𝑙 =
𝑘𝑉𝐴𝑞𝑉𝑞𝐴

|𝑟𝑉𝐴⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗|2
⋅

𝑟𝑉𝐴⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗

|𝑟𝑉𝐴⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗|
. (13) 

The direction is that the moving body points to the gravitational source, which is the adjacent particle 

[8]. 

3.  Simulation 

3.1.  Ant colony optimization (ACO) 

For ACO, there is a typical example, the travel restrictor problem (TSP problem) [2]. Consider a journey 

in which the participant is required to return to the original place of departure after visiting each of the 

31 provincial capital cities on the itinerary only once. The path requirements are all paths. Given the 

latitude and longitude of each city, the optimized path with the least length can be figured out. 

 

 

Figure 1. Path planning result by ACO. 
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Figure 2. Path length changes with algorithm iteration times. 

3.2.  A* algorithm 

For the A star algorithm, the goal point, beginning point, and obstacles are set randomly. Then these two 

cases are solved. figure 1 greatly tells that the A star algorithm focuses more on the overall situation. It 

will not form a local optimal solution, but is flexible and highly optimizable. Starting from the green 

point and finding the optimal path to the red point endpoint, the black square obstacles in the grid is 

needed to avoid. The pictures below show randomly set obstacles and starting and ending points. The 

iterative search process progresses from dark blue to red in the grid. 

 

Figure 3. Result of how the A*algorithm works. 

 

Figure 4. Result of how the A*algorithm works. 

3.3.  APF  

The search environment is set to a 200×200 grid, with 5 threats each from radar, missiles, and anti-

aircraft guns randomly generated. The UAV wants to fly from (-90, -90) to the (90, 90) coordinate point 

at a constant speed. Set the attractive field constant 𝐾𝑎 is 2.5, the repulsion field constant 𝐾𝑏 is 5.4. The 

minimum safe distance should be a small enough value relative to the threat radius, here set to d=0.1 
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[8]. This result is figured out by the modified function of the APF. Otherwise, the SAV will be trapped 

between the two biggest circles in the middle. 

 

Figure 5. Simulation results of APF [8]. 

3.4.  Compare 

After viewing the examples above, a summary can be made. The three algorithms represent three 

categories of path optimization models. ACO model, A star algorithm, and artificial potential field 

method are respectively heuristic optimization model, graph search algorithm and traditional model [9]. 

They all fall under the category of path planning, but ACO focuses on the shortest connection arrival 

time or the shortest path length over a number of places. The artificial potential field technique and the 

A star algorithm can both be utilized to avoid obstacles. Moreover, the artificial potential field is useful 

when dealing with graphical data, such as environment maps. Although the A* algorithm has the benefit 

of global optimization, it increases the amount of calculation and sometimes causes transition situations. 

With large amounts of data, the calculation speed is low [10].  

4.  Conclusion 

Listing three methods from different categories, simulating and comparing, this paper shows ACO 

contributes to path planning of multiple passing points, while A*star algorithm and artificial potential 

are good at path planning with obstacle avoidance. The above methods are all relatively basic path 

optimization methods. However, the flight environment is more complex, with factors such as wind 

speed, direction, and terrain changes. More comprehensive optimization models need to be produced. 

Drone flying is increasingly popularized and used in human and scientific fields such as disaster relief 

and surface exploration. Continuous improvement and optimization of algorithms require constant 

attention. 
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