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Abstract. Control systems play a crucial role in modern engineering and technology, and their 

stability and performance are vital for the success of various applications. This paper aims to 

explore the application and performance analysis of proportional feedback control (P control) 

in DC motors and integral control (PI control) in speed control. The following section provides 

an exposition of the fundamental principles underpinning P control and PI control, alongside an 

exhaustive account of their practical implementations within the Tinkercad and Octave 

software environments. The simulations carried out in Tinkercad serve as the basis for 

evaluating step responses associated with varying values, leveraging a 1Hz function generator. 

Subsequent analysis pertains to proportional-integral control through the utilization of Octave's 

PZmap and root locus methodologies, with specific regard to their implications for system 

stability and control performance in the context of speed control. The experimental outcomes 

reveal the aptitude of P control in scenarios demanding rapid responses, while establishing the 

superiority of PI control in the context of steady-state error mitigation. In the experimental 

analysis conducted, an evident trend emerged as Kp values were systematically increased 

within the framework of proportional feedback control. The primary observation related to the 

reduction in system response times, along with the concurrent rise in overshooting tendencies. 
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1.  Introduction 

Control systems constitute a pivotal component in modern engineering and technology, dictating the 

performance and stability of numerous critical applications. Whether in the automation of 

manufacturing lines, autonomous vehicles in transportation, or precise control systems in medical 

devices, the role of control systems cannot be understated. Currently, Proportional Integral Derivative 

(PID) controllers, a form of feedback control, dominate the field, accounting for over 90% of all control 

loops [1]. However, most controllers employed in industrial settings frequently encounter the risk of 

system instability, necessitating the establishment of robust feedback systems [2]. A classical approach 

is the Ziegler-Nichols method, which aims to maintain system stability by tuning the balance between 

regulation (disturbance suppression) and tracking behavior [3]. Nevertheless, the effectiveness of this 

method is less than ideal in scenarios with significant noise, frequent setpoint changes, or systems 

characterized by substantial time delays [2]. Against this backdrop, this paper delves into an in-depth 

exploration of two common control strategies: proportional feedback control (P control) and integral 
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control (PI control). The focus of this research lies in their application and performance analysis within 

two distinct yet interconnected domains. Specifically, the author investigates the application of P control 

in DC motors and the utilization of PI control in speed control. Methodology encompasses both 

simulation modelling and practical analysis, employing the Tinkercad and Octave tools for intuitive 

implementation and evaluation of these control strategies. The influence of various control parameters 

on system responses, with a particular emphasis on step responses and steady-state performance, is also 

examined. The results of this research are expected to contribute to the enhancement of control system 

design and performance, thereby propelling technological advancement and innovation across various 

application domains. 

2.  Literature review 

Shafiei et al. and Anon have optimized methods based on parameter space techniques for analyzing 

stability regions, emphasizing the role of gain and phase margin in parameter space [2][4]. These 

stability regions provide sets of controller parameters that ensure a stable closed-loop system. Through 

the analysis of stability regions, studies have achieved promising results [5-7]. The former relies on the 

Hermite-Bieler theorem, while the latter two are grounded in complex polynomial calculations. 

However, practical PID controller design often encounters numerous challenges. It extends beyond the 

application of classical methods to enhance system stability in more complex systems [3][8]. Several 

factors must be considered, including the need for controllers to adhere to design specifications, reliance 

on available/accessible process knowledge, and constraints imposed by computational capabilities and 

resources available for design [1]. Researchers have yielded results pertaining to several different design 

procedures characterized by distinct objectives and complexities [9-10]. 

Recent research in PI control has revealed several notable trends and advancements. Firstly, some 

studies are focusing on the adaptive adjustment of PI controller parameters to address uncertainties and 

variations within systems. For instance, the method utilizes fuzzy logic techniques to optimize PI 

parameters, enhancing the performance of hydrogen pressure control [11]. This approach combines 

engineering expertise and knowledge, improving the control system's responsiveness to dynamic 

changes. Secondly, researchers are striving to integrate PI control with other control strategies to 

enhance system responsiveness and performance. As mentioned in Li et al, a charging strategy 

employing PI control in conjunction with a high-dimensional nonlinear dynamic model and Ensemble 

Transform Kalman Filter (ETKF) has been developed for fast charging [12]. This approach not only 

increases charging speed but also reduces computational costs. Finally, there is a growing focus on 

further studying and understanding the convergence mechanisms of PI control. It is noted that the 

convergence of saturated PI control is demonstrated for the first time using an optimization solver and 

primal-dual neural networks [13]. This method enhances the understanding of PI control principles 

while improving control efficiency. Researchers are dedicated to enhancing its performance and 

applicability to meet evolving engineering demands. These studies hold the potential to have a 

significant impact in fields such as energy systems, battery management, and nonlinear systems. 

3.  Methods 

3.1.  Application and analysis of P Control in DC motors 

P Control is a straightforward yet effective control strategy that adjusts the control output based on the 

magnitude of the current error, which is the difference between the actual value and the desired setpoint. 

When the error is substantial, the P controller generates a large control output to rapidly reduce the error. 

Conversely, when the error is small, the P controller produces a smaller control output to mitigate 

control overshoot. P control lacks memory; it solely focuses on the current error and does not consider 

the past error history. 

Tinkercad was used to construct a model of a DC motor, capable of translating input voltage into 

angular output. The model's transfer function is 
𝐾

𝜏𝑠+1
×

1

𝑠
. Within this framework, 

𝐾

𝜏𝑠+1
 represents the 

Proceedings of the 3rd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/26/20241023

82



transfer function responsible for converting voltage into speed, while 
1

𝑠
 signifies the integrator's transfer 

function, responsible for translating speed into angle. In the model, the default value of "K" is set to 3, 

and 𝜏 is defaulted to 0.1 seconds, representing the mechanical time constant of the DC motor. The 

choice of "K" being set to 3 and "t" being set to 0.1 is often based on practical considerations and the 

characteristics of the specific system being modeled. These values can vary depending on the specific 

DC motor and the requirements of the control system being designed. The gain "K" in the transfer 

function represents the amplification or sensitivity of the system. Setting "K" to 3 might be a reasonable 

default value if, for instance, it is known from the motor's specifications that a given voltage change of 1 

V results in an approximate speed change of 3 units (the specific units depend on the system and motor). 

A standardized default like "K = 3" makes it easier to compare the results of different control algorithms 

or scenarios because it provides a common reference point. The time constant "𝜏" represents how fast or 

slow the system responds to changes in the input voltage. A smaller value of "𝜏" (0.1 seconds in this case) 

indicates a relatively fast system response. This might be appropriate if the motor is designed for its 

rapid reaction to voltage changes. The transfer function of the DC motor itself is 
3

0.1s2+s
. 

The schematic diagram of the proportional feedback control circuit is shown in Figure 1: 

 

Figure 1. The schematic diagram of the proportional feedback control circuit 

The topological structure of the circuit is divided into four parts, from left to right. The first part is the 

"Summer," which subtracts the 1Hz output of the function generator from the angle. The second part is 

the gain module. The third part is the model of the DC motor. The fourth part is an inverter responsible 

for reversing the angle's value. Based on the schematic of the proportional feedback control circuit, the 

circuit was implemented in Tinkercad, as shown in Figure 2: 

 

Figure 2. The proportional feedback control circuit in Tinkercad 
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In Tinkercad, two power supplies were employed to provide a voltage of += 15V to all operational 

amplifiers, and an oscilloscope was used to visually display the system's step response. The ratio of 

resistance values in the gain module's left and right resistors was adjusted to set different values of Kp. 

When Kp is set to 0.5, the ratio of resistance values in the gain module's left and right resistors is 2:1. 

The oscilloscope's result is depicted in Figure 3: 

 

Figure 3. Oscilloscope's result when Kp is 0.5   Figure 4. Oscilloscope's result when Kp is 1 

From the oscilloscope, it can be observed that the system reaches steady-state at approximately 1.8 

seconds. 

When Kp is set to 1, with a ratio of 1:1 for the left and right resistors in the gain module, the 

oscilloscope's result is shown in Figure 4. Compared to Kp being 0.5, the system reaches steady-state 

faster, in just about 1 second. When Kp is set to 3, with a ratio of 1:3 for the left and right resistors in the 

gain module, the oscilloscope's result is depicted in Figure 5. At this point, the system reaches the target 

voltage value in very little time, but there are also some overshoots. 

 

Figure 5. Oscilloscope's result when Kp is 3   Figure 6. Kp Oscilloscope's result when Kp is 5 

When Kp is set to 5, with a ratio of 1:5 for the left and right resistors in the gain module, the 

oscilloscope's result is shown in Figure 6. At this setting, compared to being 3, there are more 

overshoots. 

The Root Locus plots for different values are shown in Figure 7, where "Cross" corresponds to Kp = 

5, "Red" to Kp = 3, "Green" to Kp = 1, and "Blue" to Kp = 0.5. 
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Figure 7. The Root Locus for 4 different values of Kp 

For Kp equal to 0.5, the system's roots lie on the real axis, all with negative values symmetrically 

around (-5, 0). In this scenario, all poles are located on the real axis and are negative. Since they all lie on 

the real axis, the damping ratio is 1, indicating a critically damped system. In a critically damped state, 

the system returns to a steady state as quickly as possible without oscillations. This occurs because a 

damping ratio of 1 signifies that the oscillation frequency equals the natural frequency but without 

amplitude growth. Therefore, the system stabilises rapidly without oscillations. For Kp values of 1, 3, 

and 5, the roots are distributed on the imaginary axis with a real part of -5, and the damping ratio 

gradually decreases as Kp increases. 

3.2.  Proportional-Integral Control in speed control: application and analysis 

PI control, an extension of P control, is introduced to address the issue of steady-state error. The integral 

component of PI control takes into account the historical error to ensure that the system eventually 

reaches the desired setpoint. While the proportional component still adjusts the control output based on 

the current error, similar to P control, the integral component considers the sum of past errors to suppress 

steady-state errors. If there is a steady-state error present in the system, the integral component gradually 

increases the control output until the error is eliminated. Additionally, the integral component enhances 

the system's robustness, enabling it to better handle uncertainties and external disturbances. 

In the simulation, Octave was employed to model PI control, transforming the input voltage into an 

output speed. Within the simulation, the transfer function from voltage to speed, denoted as 
3

0.1𝑠+1
, was 

utilized. The control module C(S) had a transfer function represented by Kp +
𝐾𝐼

𝑆
, which is given as 

C(S) =
Kp(S+

𝐾𝐼
𝐾𝑝

)

𝑆
. The parameters within the control module included Kp, which represented the gain 

module's transfer function, and 
𝐾𝐼

𝑆
, corresponding to the transfer function of the integral module. The 

values of Kp were varied, specifically set to 0.1, 0.3, 0.6, and 1.2, to observe the step response and 

create the corresponding PZmap. 

When Kp = 0.1, the corresponding PZmap is shown in Figure 8. Zeros are indicated by red points 

labeled "O," while poles are represented by red points labeled "X." When Kp= 0.3, the corresponding 

PZmap is displayed in Figure 9. 
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Figure 8. PZmap when Kp is 0.1 

 

Figure 9. PZmapwhen Kp is 0.3  

When Kp = 0.6, the corresponding PZmap can be seen in Figure 10. When Kp  = 1.2, the 

corresponding PZmap is illustrated in Figure 11. 

 

    Figure 10. PZmap when Kp is 0.6         Figure 11. PZmap when Kp is 1.2 

The ellipse, as shown in Figure 8-11, with a longer axis along the imaginary axis than the real axis 

may indicate that the system's frequency response has a resonant frequency near the imaginary axis, a 

critical point in the frequency response characteristic. The resonant frequency typically corresponds to 

the short axis of the ellipse, i.e., the imaginary axis. This suggests that the system may exhibit specific 

frequency response behavior near the resonant frequency. The increasing Kp values generally widen 

the system's bandwidth, making the frequency response faster. This can cause a shift in the position of 

the resonant frequency, typically towards higher frequencies. Therefore, with the increasing Kp values, 

the points on the ellipse move further from the real axis, indicating a higher resonant frequency. 

Excessively high Kp values introduce more high-frequency components, leading to changes in the 

position of the resonant frequency. After Kp  reaches 1.2, the system becomes unstable, and the 

frequency response becomes complex, causing points on the ellipse to approach the real axis, indicating 

a trend towards oscillation or instability. 

The step responses for different Kp values are depicted in Figure 12. 
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Figure 12. The step responses for different Kp values 

On the step response graph, as shown in Figure 12, it can be observed that as Kp increases, the 

system's response speed also increases, accompanied by varying degrees of overshoot. 

4.  Discussion 

A significant limitation lies in the simulation-based nature of these experiments (e.g., Tinkercad and 

Octave), as opposed to actual deployment on embedded systems or real-time control platforms. This 

disparity might introduce certain biases, potentially leading to variations between simulation results and 

real-world scenarios. The experiments utilized simplified P and PI control algorithms for the sake of 

simulation and comparative analysis. Nevertheless, practical applications often involve more intricate 

control algorithms. To address these limitations, future research could emphasize the validation of my 

findings on real embedded systems, consideration of more complex control algorithms, and a broader 

range of real-world application scenarios. 

5.  Conclusion 

In the simulation of proportional feedback control, the analysis of the step response graphs reveals that 

as the value of Kp increases, the system's response time decreases, accompanied by a growing number 

of overshoots. An unstable system results in sustained oscillations rather than a gradual convergence to a 

steady state. A decrease in damping ratio typically indicates an enhanced tendency for system oscillation, 

potentially leading to more pronounced oscillations, larger oscillation amplitudes, and shorter settling 

times. The oscillation frequency is determined by the imaginary part. This could negatively affect 

system performance and stability. Hence, careful consideration of damping ratio selection is necessary 

in control system design to balance fast response and stability according to specific application 

requirements and performance goals. In the simulation of proportional-integral (PI) control, poles and 

zeros for different Kp values are all located in the left half of the complex plane with negative real parts, 

indicating system stability. On the PZmap, the length of the ellipse along the imaginary axis is greater 

than along the real axis, and with increasing Kp values, the points on the ellipse move further away 

from the real axis. However, after a certain Kp value, these points start to move closer to the real axis, 

reflecting changes in the frequency response characteristics of the PI control system. Compared to the 

step response of proportional feedback control, the degree of system oscillation significantly decreases. 

This indicates that introducing integral control into proportional feedback control helps make the system 

more stable, allowing for a relatively fast response while enhancing stability. 
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