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Abstract. “The Colonel Blotto game” represents a classic case in game theory, embodying the 

essence of two-player zero-sum games. A vital game theory theorem has demonstrated a mixed 

Nash equilibrium in all zero-sum games. In this paper, the author will start with this classic game 

to expound the principles of mixed Nash equilibrium. Furthermore, the paper will explore the 

practical applications of mixed Nash equilibrium in the context of two-player zero-sum games, 

illustrating its significance in addressing real-world issues and decision-making. By delving into 

the Colonel Blotto game and its associated theories, the paper will reveal the importance and 

broad applicability of mixed Nash equilibrium, showcasing its role in various real-world 

applications, including competitive strategies, resource allocation, risk management, and more. 

This research will assist readers in gaining a better understanding of the concept of mixed Nash 

equilibrium and how to apply it to the resolution of practical problems.  
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1.  Introduction 

The Colonel Blotto game represents a classic example of a two-player zero-sum game [1]. In this game, 

Colonel Blotto and his adversary prepare for a battle over three mountain passes, each commanding five 

regiments. The objective is simple: send more regiments to a pass to occupy it. However, a draw occurs 

in the case of an equal number of regiments on both sides. The ultimate victory goes to the side that 

occupies more passes. 

Both Col. Blotto and his adversary independently craft strategies for this fierce battle. Their strategies 

involve dividing their five regiments into three groups, such as (0, 1, 4), indicating that one pass will 

face an attack from four regiments, another from one regiment, and one pass will remain unchallenged. 

These groups are then randomly assigned to the passes. 

This random assignment significantly impacts the winning probabilities for Col. Blotto and his 

adversary. They strive to skew the probabilities in their favor as much as possible. This intriguing game 

sets the stage for exploring the concept of mixed Nash equilibrium, which can be applied to various real-

world scenarios in decision-making and strategy development [2, 3]. 

The fundamental idea of mixed Nash equilibrium is further upon in this paper. In the context of a 

two-player zero-sum game, it addresses the practical application of mixed Nash equilibrium and explains 

its significance in problem-solving and decision-making. The paper aims at the importance and broad 

applicability of mixed Nash equilibrium. 
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2.  Theory and application 

2.1.  The Colonel Blotto Game- An Introduction to Mixed Nash Equilibrium 

The representation of payoffs in an 𝑚 × 𝑛 payoff matrix is facilitated by sequentially numbering the 

strategies as 1,2, … , 𝑚 for the one player and 1,2, … , 𝑛 for the other player [4]. 

In the Colonel Blotto game, the payoff matrix is structured with rows representing Col. Blotto’s 

strategies and columns representing those of the adversary. For instance, consider a scenario where Col. 

Blotto decides to allocate his regiments as (0, 2, 3) , and his adversary simultaneously chooses to 

distribute their forces as (0, 0, 5). 

In this situation, Colonel Blotto will secure a victory (without the need for actual combat) if and only 

if his two non-empty groups successfully occupy the unattended passes left by his adversary. The 

probability of this favorable outcome is 1/3. Conversely, there’s a 2/3 probability that a draw will ensue, 

resulting in a winning probability difference of 1/3 in Col. Blotto’s favor (Table 1). 

Table 1. The payoff matrix. 

 (𝟎, 𝟎, 𝟓) (𝟎, 𝟏, 𝟒) (𝟎, 𝟐, 𝟑) (𝟏, 𝟏, 𝟑) (𝟏, 𝟐, 𝟐) 

(𝟎, 𝟎, 𝟓) 0 −1/3 −1/3 −1 −1 

(𝟎, 𝟏, 𝟒) 1/3 0 0 −1/3 −2/3 

(𝟎, 𝟐, 𝟑) 1/3 0 0 0 1/3 

(𝟏, 𝟏, 𝟑) 1 1/3 0 0 −1/3 

(𝟏, 𝟐, 𝟐) 1 2/3 −1/3 1/3 0 

In the absence of prior knowledge about the adversary’s choices, Col. Blotto’s objective is to 

determine an approach that guarantees the highest possible payoff in the worst-case scenario [5]. The 

strategy that meets this criterion is (0, 2, 3). Irrespective of the adversary’s decisions, Col. Blotto secures 

a minimum payoff of 0 when employing this approach, while all other approaches yield negative payoffs 

in unfavorable circumstances. Col. Blotto assesses the minimum values within each row of the payoff 

matrix and opt for the row with the highest minimum value. 

The adversary’s objective aligns with selecting an approach that ensures the lowest worst-case payoff 

for Col. Blotto, just as Col. Blotto aims to secure the highest worst-case payoff [6]. It becomes evident 

that the choice of (0, 2, 3) remains the sole optimal option for the adversary, ensuring that Col. Blotto 

can receive a maximum payoff of 0. All other strategies provide opportunities for Col. Blotto to attain a 

positive payoff if he successfully anticipates or uncovers the adversary’s strategy. The adversary assesses 

the maximum values in each column of the payoff matrix and selects the column with the most modest 

maximum value. 

Likewise, the adversary strives to choose an approach that ensures the least unfavorable outcome for 

Col. Blotto. It appears that (0, 2, 3) is the unique choice for the adversary, ensuring that Col. Blotto 

receives a maximum of 0 payoff. All other strategies allow Col. Blotto to achieve a positive payoff if he 

correctly anticipates or spies on the adversary’s approach. The adversary evaluates the maximum value 

in each column of the payoff matrix and chooses the column with the smallest maximum [7]. 

In a similar vein, the adversary’s objective revolves around identifying an approach that ensures the 

lowest possible payoff for Col. Blotto in the worst-case scenario. It becomes evident that the exclusive 

choice for the adversary is the strategy (0, 2, 3). This particular strategy guarantees that Col. Blotto will 

receive a maximum payoff of 0, while all alternative strategies provide him with the potential for a 

positive payoff if he can accurately anticipate or gather intelligence about the adversary’s strategy [8]. 

In the context of the payoff matrix, the adversary assesses the highest value within each column and 

selects the one with the least maximum value. 

In practice, when both Col. Blotto and his adversary employ the aforementioned strategies, they find 

themselves facing the worst-case scenarios they had envisioned when adopting their strategies with a 

cautious approach. Observing these worst-case scenarios may dampen any hopes of a more favorable 
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outcome in the impending battle. However, it also provides a sense of relief, as it assures them that their 

choices have been prudent. After the battle concludes, neither Col. Blotto nor his adversary will have 

cause for regret. Even if both had possessed prior knowledge of each other’s strategies, they would still 

lack any incentive to revise their own strategies. 

This intriguing aspect of the game highlights that the strategies chosen by Col. Blotto and his 

adversary represent optimal responses to each other. In terms of the payoff matrix, the entry 0 in both 

the row(0, 2, 3)and the column (0, 2, 3) is referred to as a “saddle point”; it constitutes both the row’s 

minimum and the column’s maximum. A pair of strategies that serve as optimal responses to each other 

is identified as a mixed Nash equilibrium of the game [9,10].  

2.2.  A Deeper Explanation of Mixed Nash Equilibrium and Linear Programming Approaches 

Continuing into the exploration of mixed Nash equilibrium in two-player zero-sum games, we will now 

provide a more formal description of the setup. We maintain the convention of referring to the players 

as Elsa and Peter. Elsa possesses a set of 𝑚 pure strategies, while Peter holds a set of 𝑛 pure strategies 

(assuming 𝑚, 𝑛 ≥ 1). 

Within this framework, we have an m × n payoff matrix, denoted as M, consisting of real numbers. 

The entry 𝑚𝑖𝑗 signifies Elsa’s gain (and Peter’s loss) when Elsa employs her 𝑖 th pure strategy against 

Peter’s 𝑗 th pure strategy. For clarity, one can envision this as Peter having to make a payment of 𝑚𝑖𝑗 to 

Elsa. It is crucial to recognize that this scenario is symmetric, meaning that if 𝑚𝑖𝑗 is negative, Elsa would 

be obligated to pay  −𝑚𝑖𝑗 to Peter. 

The payoff matrix 𝑀 serves as the foundation for assessing and understanding the outcomes and 

strategies within a given two-player zero-sum game. It encapsulates the consequences of their choices 

and is instrumental in the calculation of mixed Nash equilibria. In the subsequent sections, we will delve 

into the mathematical modelling process that underlies the existence and computation of mixed Nash 

equilibria in zero-sum games, shedding light on the optimal strategies employed by the players [11]. 

A player’s mixed strategy is characterized by a probability distribution across their set of pure 

strategies. In the context of Elsa, her mixed strategy is represented through an 𝑚 -dimensional vector 

comprising probabilities. 

 𝐱 = (𝑥1, … , 𝑥𝑚), ∑  𝑚
𝑖=1 𝑥𝑖 = 1, 𝐱 ≥ 0. (1) 

And a mixed strategy of Peter by an 𝑛 -dimensional vector of probabilities 

 𝐲 = (𝑦1, … , 𝑦𝑛), ∑  𝑛
𝑗=1 𝑦𝑗 = 1, 𝐲 ≥ 0. (2) 

A mixed strategy is distinct from a pure strategy. When considering mixed strategies x and y 

employed by Elsa and Peter, respectively, the expected payoff (corresponding to Elsa’s expected gain) 

when x is pitted against y can be determined as follows: 

 

∑  𝑖,𝑗 𝑚𝑖𝑗Pr𝐱,𝐲 [ Elsa plays 𝑖, Peter plays 𝑗]

= ∑  𝑖,𝑗 𝑚𝑖𝑗Prob𝐱 [ Elsa plays 𝑖] ⋅ Prob𝐲 [ Peter plays 𝑗]

= ∑  𝑖,𝑗 𝑚𝑖𝑗𝑥𝑖𝑦𝑗

= 𝐱𝑇𝑀𝐲

. (3) 

The paper now proceeds to formalize the principle akin to Col. Blotto’s approach: “Prepare for the 

worst.” When Elsa contemplates the implementation of a mixed strategy denoted as 𝐱, her expectation 

involves Peter selecting a best response against 𝐱. This best response is encapsulated within a strategy 

denoted as 𝐲, designed to minimize her anticipated payoff, defined as 𝐱𝑇𝑀𝐲. Similarly, when y is fixed 

and known, Peter anticipates Elsa’s strategy as 𝐱, seeking to maximize the value of 𝐱𝑇𝑀𝐲. 

For a fixed matrix 𝑀, these worst-case payoffs are captured by the following two functions: 

 𝛽(𝐱) = 𝑚𝑖𝑛
𝐲

𝐱𝑇𝑀𝐲, 𝛼(𝐲) = 𝑚𝑎𝑥
𝐱

𝐱𝑇𝑀𝐲. (4) 
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In the context of the paper, 𝛽(𝐱) signifies the optimal, or smallest, expected payoff that Peter can 

attain when confronted with Elsa’s mixed strategy denoted as 𝐱. Similarly, 𝛼(𝐲) represents the most 

advantageous, or largest, expected payoff that Elsa can achieve in response to Peter’s strategy 𝐲. It is 

noteworthy that 𝐲0 serves as Peter’s optimal response to a specific 𝐱 if and only if 𝐱𝑇𝑀𝐲0 = 𝛽(𝐱). The 

symmetrical statement regarding Elsa’s optimal response is left for the reader’s consideration. 

In the context of the paper, a mixed Nash equilibrium of the game is defined as a pair of mixed 

strategies(𝐱
~

, 𝐲
~

) where in 𝐱
~

 serves as a best response to 𝐲
~

, and concurrently, 𝐲
~

 acts as a best response to 

𝐱
~

 . It is worth noting that the adjective “mixed” is frequently omitted in scholarly contexts. In 

mathematical notation, this concept can be articulated as follows: 

 𝛽(𝐱
~

) = 𝐱
~𝑇𝑀𝐲

~
= 𝛼(𝐲

~
). (5) 

It can be defined within the context of the paper that Elsa’s mixed strategy, denoted as 𝐱
~

, is considered 

worst-case optimal when 𝛽(𝐱
~

) = 𝑚𝑎𝑥
𝐱

𝛽(𝐱). In this scenario, Elsa foresees Peter’s best response to any 

of her mixed strategies and strategically chooses a mixed strategy, denoted as  𝐱
~

, that maximizes her 

expected payoff under this cautious assumption. 

Likewise, Peter’s mixed strategy, referred to as  𝐲
~

 , is deemed worst-case optimal when 𝛼(𝐲
~

) =

𝑚𝑖𝑛
𝐲

𝛼(𝐲). In this case, Peter seeks to minimize his expected payoff by selecting the mixed strategy 𝐲
~

, 

operating under the assumption that Elsa will strategically respond with her best strategy. This approach 

of worst-case optimality underscores the careful consideration of strategic choices under adverse 

circumstances. 

It is established that within the paper’s framework, the inequality holds: 𝑚𝑎𝑥
𝐱

𝛽(𝐱) ≤ 𝑚𝑖𝑛
𝐲

𝛼(𝐲). In 

fact, for any given pair of mixed strategies, denoted as 𝐱 and 𝐲, it follows that 𝛽(𝐱) ≤ 𝐱𝑇𝑀𝐲 ≤ 𝛼(𝐲). 

This inequality relationship underscores the fundamental dynamics within the context of the discussed 

concepts. 

The Minimax theorem for zero-sum games, as outlined in the paper, posits the existence of worst-

case optimal mixed strategies for both players within every zero-sum game. Furthermore, it asserts that 

these strategies can be effectively computed through linear programming techniques. When a mixed 

strategy denoted as 𝐱
~

 is the worst-case optimal choice for Elsa, and 𝐲
~

 represents the worst-case optimal 

mixed strategy for Peter, it follows that (𝐱
~

, 𝐲
~

) constitutes a mixed Nash equilibrium. Importantly, the 

value 𝛽(𝐱
~

) = 𝐱
~𝑇𝑀𝐲

~
= 𝛼(𝐲

~
)remains consistent across all potential worst-case optimal mixed strategies, 

both for 𝐱
~

 and 𝐲 
~

[12]. This theorem elucidates the foundational principles underpinning zero-sum games 

and the inherent equilibrium properties they exhibit. 

The terminology “minimax theorem” requires clarification. By examining the equality 𝛽(𝐱
~

) = 𝛼(𝐲
~

) 

and applying the definitions of 𝛽, 𝛼, and the worst-case optimality of 𝐱
~

 and 𝐲
~

, we derive the expression: 

 𝑚𝑎𝑥
𝐱

𝑚𝑖𝑛
𝐲

𝐱𝑇𝑀𝐲 = 𝑚𝑖𝑛
𝐲

𝑚𝑎𝑥
𝐱

𝐱𝑇𝑀𝐲. (6) 

This equality captures the essence of the minimax theorem and underscores its significance in zero-

sum games. It highlights the interchangeability of the maximization and minimization operations, 

emphasizing the fundamental duality inherent in these games. 

The paper proceeds by outlining the methodology for identifying worst-case optimal mixed strategies, 

𝐱
~

 for Elsa and 𝐲
~

 for Peter, through linear programming. Subsequently, it establishes the validity of the 

desired equality, 𝛽(𝐱
~

) = 𝛼(𝐲
~

)). 

To initiate this process, it is observed that Peter’s best response to a fixed mixed strategy, x, employed 

by Elsa, can be effectively determined through the solution of a linear program. In this context, 𝛽(𝐱), 

with 𝐱 denoting a specific vector of m numerical values, serves as the optimal solution for the ensuing 

linear program, featuring variables 𝑦1, … , 𝑦𝑛 [13]. Based on the theoretical development of mixed Nash 
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equilibrium discussed above, the objective function is defined as 𝐱𝑇𝑀𝐲, and the variables  𝑦1, … , 𝑦𝑛 are 

subject to the following set of linear constraints. 

∑  𝑛
𝑗=1 𝑦𝑗 = 1 (7) 

𝐲 ≥ 𝟎 (8) 

In conclusion, the preceding discussion can be translated into the following linear programming 

problem. 

 

 Minimize 𝐱𝑇𝑀𝐲

 subject to ∑  𝑛
𝑗=1 𝑦𝑗 = 1

𝐲 ≥ 𝟎

. (9) 

By employing the principles of operations research duality theory [13], the dual problem for this 

issue can be derived. 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑥0. 

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑀𝑇𝐱 − 𝟏𝑥0 ≥ 𝟎. (10) 

3.  Conclusion  

In conclusion, “The Colonel Blotto game” is a quintessential case in game theory, representing the 

essence of two-player zero-sum games. The fundamental theorem of game theory establishes the 

existence of a mixed Nash equilibrium in all zero-sum games. This paper has elucidated the principles 

of mixed Nash equilibrium, using the Colonel Blotto game as a starting point. Furthermore, we have 

explored the practical applications of mixed Nash equilibrium within two-player zero-sum games, 

demonstrating its importance in addressing real-world issues and decision-making. 

By delving into the Colonel Blotto game and its associated theories, we have highlighted mixed Nash 

equilibrium’s significance and broad applicability. This equilibrium concept finds its place in various 

real-world applications, including competitive strategies, resource allocation, risk management, etc. 

This paper aim has been to provide readers with a comprehensive understanding of mixed Nash 

equilibrium and how to employ it effectively to solve practical problems. 
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