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Abstract. As the novel coronavirus continues to spread and mutate, there has been growing 

concern over public health. Multiple measures have been enacted to mitigate the transmission of 

the disease, resulting in varying infection scenarios across different countries. To achieve timely 

and effective control of the epidemic, we note that predicting the future course of an epidemic 

plays an important role. The logistic function, a continuous-time demographic model, may be a 

suitable mathematical tool for estimating the trend of the epidemic. This paper aims to evaluate 

the accuracy of the logistic map in estimating the future trend of the COVID-19. We collect the 

most recent COVID-19 epidemiological data prior to January 30, 2023, and subsequently 

integrate figures into the curve fitting tool in MATLAB to generate an epidemic curve. By 

comparing the actual numbers and the predicted figures, the accuracy of logistic map can be 

properly assessed. 
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1.  Introduction 

The COVID-19 pandemic, also known as the coronavirus pandemic, is a continual worldwide disease 

outbreak caused by the SARS-CoV-2 virus, resulting in severe acute respiratory syndrome [1]. Along 

with a diverse set of symptoms like fever, cough, fatigue, and difficulty breathing, the virus can induce 

anxiety, sleep disorders, cognitive decline, and has substantial effects on the well-being, mental health, 

and employment of individuals experiencing long COVID [2]. 

As of 11:31am CET on 16 March 2023, the World Health Organization has reported 760,360,956 

confirmed cases of COVID-19 globally, with 6,873,477 deaths [3]. Despite strict efforts to control it 

since its initial identification, the COVID-19 disease has now become a global pandemic, presenting a 

considerable threat and challenge to both global health and the economy [1,4]. Moreover, as the virus 

continues to spread, new variants have emerged with varying degrees of virulence and infectivity, posing 

a challenge to efforts to control the pandemic [5]. Therefore, to determine whether the pandemic will 

reach a peak or diminish, the trajectory of the global pandemic plays a pivotal role, as it motivates the 

accurate forecasting of the pandemic's infection trends. 

Over time, different predictive models have been developed and utilized to forecast and anticipate 

the trends and patterns of COVID-19. For instance, researchers in Spain used ARIMA (Autoregressive 

Integrated Moving Average), a mathematical statistical model, to forecast the number of hospitalizations 

and deaths due to COVID-19 and found that their models had good predictive performance [6]. An 
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additional illustration could be provided by the implementation of machine learning models. In India, 

scholars utilized machine learning models to anticipate the number of COVID-19 infections and 

fatalities in their nation, and their models showed reliable forecasting accuracy [7]. Furthermore, 

infectious disease models such as the SIR (susceptible-infected-removed) model were used to forecast 

the impact of different interventions such as quarantine measures and contact tracing on the spread of 

COVID-19, and it was found that these interventions were effective in reducing transmission [8]. It's 

important to note that the accuracy of predictions based on mathematical models depends on the ability 

of the models to capture the complexity of the epidemic and the quality of the available data.  

The logistic function is a first-order ordinary differential equation which was first introduced to 

represent natural population growth and species diffusion [9]. The equation describes the continuous 

growth of a population in terms of its current size and the rate of growth. It is commonly used in 

regression fitting primarily because of its simple formula and efficient computational capabilities.  

The logistic function has been applied in various fields such as ecology, medicine, economics and 

sociology. A typical application could be given by A. G. McKendrick, who experimentally tested the 

equation in modeling the growth of bacteria in broth by utilizing an approach to accurately estimate and 

validate the parameters involved in the logistic equation[10]. The logistic equation could also provide a 

useful framework for understanding and forecasting the spread of infectious diseases. Yang et al. [11] 

conducted a comparative analysis of the disease fitting capabilities between the logistic differential 

equation (LDE) model and the generalized logistic differential equation (GLDE) model and established 

a comprehensive disease early warning system for different types of infectious diseases. 

This study will mainly discuss the models based on the logistic function. We will construct a model 

for the epidemic trend of COVID-19 in China by inputting integrated data to the curving fitting tool in 

MATLAB. The predictive capability of the logistic function enables proactive measures to be taken, 

such as implementing timely interventions, allocating healthcare resources, and adjusting public health 

strategies. By leveraging the valuable information derived from the logistic function, policymakers can 

make informed decisions to mitigate the spread of the virus, protect public health, and minimize the 

societal impact of the epidemic.  

2.  Methodology 

The logistic function is a mathematical model that is often used to study the dynamics of populations, 

including the spread of infectious diseases. It is a simple, non-linear equation that can capture the 

behavior of complex systems. 

This experiment will record the weekly number of fresh COVID-19 cases in China for a period of 

13 weeks starting from November 7, 2022. And by adopting the mathematical estimation constructed 

by logistic map, another set of data can be calculated. If the error between the two sets of the data is 

acceptable, then in this case, the logistic map estimation can be applied to predict the future trends. 

Chen et al. [12] conducted a fitting analysis of the daily cumulative number of reported COVID-19 

cases in Hubei, China. Figure 1 [12] illustrates that the findings consistently demonstrated an S-shaped 

curve pattern, effectively captured by employing a logistic fitting method.  

 

Figure 1. The sigmoid growth curve of total number of confirmed cases of COVID-19 in Hubei 

Province [12]. 
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2.1.  Data collection 

The latest updated information on the global COVID-19 outbreak is obtained from WHO, which 

provides a country-level dashboard [3]. Consequently, we collected data on the COVID-19 case count 

from November 7, 2022, to January 30, 2023, for periodic analysis.  

Before November 7, 2022, there have been 9,159,106 confirmed cases of COVID-19 reported to 

WHO [3]. We set the week of November 7 to be Week 0, and the week of January 30 to be Week 12. 

The weekly increment and the number of accumulated confirmed cases can be observed in Table 1 and 

Figure 2 intuitively. 

Table 1. The weekly increment and the number of accumulated confirmed cases from Week0 to Week12. 

Week Weekly increment Accumulate cases 

0 167,652 9,326,758 

1 157,203 9,483,961 

2 142,745 9,626,706 

3 146,919 9,773,625 

4 1,845,892 11,619,517 

5 14,419,505 26,039,022 

6 41,174,900 67,213,922 

7 21,483,225 88,697,147 

8 6,982,790 95,679,937 

9 1,975,433 97,655,370 

10 658,339 98,313,709 

11 158,680 98,472,389 

12 188,554 98,660,943 

 

 

Figure 2. The histogram of China situation. 

2.2.  Logistic function  

The logistic equation was first introduced by Pierre François Verhulst in 1838 [13]. The function is a 

generalization of the equation for exponential growth but with a ceiling on population size, and the 

differential equation is given by 

  
𝑑𝑃

𝑑𝑡
= 𝑟𝑃(1 −

𝑃

𝐾
)     (1) 

In this equation, r represents the intrinsic growth rate, K represents the carrying capacity of the 
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environment, and P represents the population size. As time progresses, the value of P changes, leading 

to the emergence of an S-shaped curve in the logistic equation. 

There are many previous examples using logistic map to predict the trends of the COVID-19. For 

instance, in 2020, Wang et al. [14] suggested a forecasting strategy using the Prophet and logistic models 

to analyze the COVID-19. By identifying the fastest-growing point, the logistic model fits the cap value, 

which is subsequently sent into the prophet model for forecasting. Studies were carried out to forecast 

the peak of the pandemic, the point at which it grew most quickly, and the time at which recovery would 

turn. The results showed how well the model predicts the COVID-19 epidemic turning point and size 

by plotting predicted trends of the world and five specific nation. 

Another example could be given by Giuseppe Consolini and Massimo Materassi [15]. The 

researchers proposed a relatively simple enhancement to the logistic dynamics used for modeling the 

spread of a pandemic. This enhancement incorporated a power-law dependence on the duration of 

infection, which may result from at least two separate methods, including the simple elimination of 

interpersonal connections and/or the isolation of afflicted individuals. The findings clearly indicated the 

necessity for additional theoretical and numerical investigation, as well as for applying the same 

methodology to the spread of COVID-19 in other countries. 

From Figure 1 and Figure 2, we can observe that the accumulated number of COVID-19 is S-shaped, 

which can support the hypothesis that the epidemic trend of COVID-19 could be well fitted into the 

logistic function. Initially, during the outbreak, when precautionary measures were not stringent and the 

number of infected individuals was low, the rate of infection increased slowly. However, as the 

proportion of infected individuals reached a certain threshold, the spread of the disease witnessed a rapid 

and exponential growth, as evidenced by the escalating numbers. Subsequently, through government 

regulations and public cooperation, the spread of the disease gradually slowed down, eventually 

reaching the maximum number of cumulative infections. 

One of the key observations is the turning point in the cumulative curve, indicating a shift from rapid 

to slower increases in the number of cases. This turning point signifies a transition in the trajectory of 

the cumulative curve and is a significant milestone in the progression of the outbreak. If the dataset 

encompasses this turning point and a subsequent time interval, predictions of future case numbers can 

be conducted with a reasonable level of accuracy. 

2.3.  Parameter estimation 

By solving Eq. (1), we have  

  𝑃(𝑡) =
𝐾

1+𝑐𝑒−𝐾𝑟𝑡
     (2) 

where c is a constant. To find out the turning point, we calculate the second derivative of P(t), which 

is given by 

 
𝑑2P

𝑑𝑡2
= 𝑟2P(1−

P

K
)(1 −

2P

K
)    (3) 

Note that P(t) starts with 𝑃(0) =
𝐾

1+𝑐
. By assumption, P is a positive number between 

𝐾

1+𝑐
 and K, 

therefore 
𝑑P

𝑑t
 increases before 𝑃(𝑡∗) =

𝐾

2
 and decreases after this turning point, where 𝑡∗ =

ln 𝑐

𝐾𝑟
 represents 

the time point indicating a transition from rapid increases in the number of cases to slower increases. 

It's worth noting that prior to Week 0, a substantial number of cases had already been accumulated, 

which cannot be neglected. Therefore, we decide to improve the model by adding another parameter h. 

For convenience, we further set a=Kr, hence 𝑡∗ =
ln 𝑐

𝑎
 and the revised version is given by  

 𝑃(𝑡) =
𝐾

1+𝑐𝑒−𝑎𝑡
+ ℎ    (4) 

In this article, we will choose Eq. (4) to capture the dynamics of the epidemic. We first plot the 

number of cases over time using a graph, which can provide a visual display of how the number of cases 

is changing over time. Then we utilize the Nonlinear Least Squares method [16] by using MATLAB to 

fit the logistic model to the data. Subsequently, we can employ the logistic function to model the 

progression of the virus and estimate the parameters K, c, a, and h. With the derived parameters obtained 
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from the logistic growth model, we can make predictions about the future trend of the epidemic and the 

maximum number of cases within a specific time interval. 

Different countries have implemented various measures to mitigate the transmission of the disease, 

resulting in varying infection situations [17]. For instance, COVID-19 growth in China has already 

stabilized [18], whereas India is still experiencing an upward trend [19]. Hence, the initial task is to 

determine whether the virus is still undergoing rapid growth or has transitioned beyond the exponential 

growth phase, approaching the maximum number of cases. If the current day is not greater than 𝑡∗, it 
signifies that the turning point is yet to be reached, and the growth may still be in an exponentially 

increasing phase. Otherwise, it indicates that growth is approaching its endpoint and the spread of the 

virus has been contained. 

3.  Results 

Since the number of accumulated confirmed cases is quite large, we decide to represent it in the form of 

×10^6, and by plotting the statistics on MATLAB, we obtain Figure 3.  

 

Figure 3. Confirmed cases (×10^6) vs. Week.  

Four parameters are utilized in this estimation. We set the upper bound for K and h to be 100×10^6 

and 10×10^6, respectively. Applying logistic model to the curve fitting tool, we obtain Figure 4 and the 

Table 2. There is a remarkable congruence observed between the actual number of confirmed cases and 

the predicted curve during the period from November 7 to January 30. This congruence highlights the 

ability of the model to accurately capture the dynamics of the epidemic and generate reliable predictions.  

 

Figure 4. Fitting curve of the logistic function generated by MATLAB. 
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Table 2. The estimated values. 

 K (×10^6) c a h (×10^6) 

Estimated value 90.2177 24400 1.7650 8.7995 

Subsequently, we employed the generated model to produce dynamic forecasts 3 weeks ahead, 

spanning from February 7, 2023, to February 20, 2023. 

Table 3. Comparison between the actual number of confirmed cases and the predicted curve. 

Week Actual number Predicted number Relative error (‰) 

13 (Feb 6) 98,809,986 98,916,961 1.083 

14 (Feb 13) 98,904,475 98,917,159 1.282 

15 (Feb 20) 98,982,145 98,917,193 0.656 

As is shown in Table 3, the predicted values are quite close to the actual numbers and relative errors 

are acceptable. From the figures and tables above, we can discover that the turning point has already 

passed and the total size of the COVID-19 epidemic, which can be represented as K+h, is projected to 

reach 99.0172×10^6. These findings contribute to the scientific understanding of the epidemic dynamics 

and provide valuable insights for public health planning and interventions. 

4.  Conclusion 

In this paper, we used the logistic function to model the pandemic trend of COVID-19 in China. The 

estimated curve generated by MATLAB was applied to predict the weekly increment and the total 

epidemic size. The Results in Section 3 demonstrated that the logistic map provides a valuable and 

accurate tool for understanding and predicting the epidemic trend, as showcased by the plotted predictive 

trend. 

However, it’s essential to note that the precision of the predictions relies on the validity of the 

assumptions underlying the models. For instance, when using the logistic function, we have already 

assumed that there will be a maximum outbreak size. However, in the real world, achieving complete 

eradication of the virus is a challenging task, making the exact prediction of the total epidemic size an 

elusive goal. Also, this approximation is valid if the growth rate is continuous and smoothly varying. 

When the growth rate is subject to abrupt changes or other nonlinearities, a discrete map may be a more 

accurate and efficient. Furthermore, factors such as the efficacy of public health measures and the 

emergence of new variants should be also considered. Therefore, it's essential to interpret the predictions 

with caution and to update the models regularly as new data becomes available. By acknowledging these 

limitations and considering the dynamic nature of the pandemic, we can use the logistic function as a 

guide while incorporating other relevant factors to improve our understanding of the course of epidemic 

and make more informed decisions in managing the outbreak. 
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