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Abstract. The COVID-19 pandemic has presented an urgent need to understand the long-term 

health implications faced by survivors. Post-COVID-19 complications, such as acute kidney 

injury, arrhythmia, and stroke, pose significant challenges to public health. Despite extensive 

research on COVID-19 complications, a comprehensive understanding of the risk factors 

remains elusive due to the potential confounding variables present in the data. Traditional 

statistical models, while insightful, may not fully capture the causal relationships between these 

risk factors and post-COVID-19 complications. Motivated by this gap in the literature, we 

propose a novel approach using causal inference models to predict the likelihood of post-

COVID-19 complications based on patient demographics and pre-existing conditions. Our 

model, trained on a dataset of COVID-19 inpatients in Wuhan Province, China, estimates the 

causal effect of these factors on the likelihood of patients experiencing post-COVID-19 

complications. This approach allows us to isolate the causal impact of each factor while 

accounting for potential confounders, providing a more accurate understanding of the underlying 

mechanisms driving these relationships. Unlike traditional models that predict the probability of 

certain outcomes, our model provides insights into the causal relationships between risk factors 

and complications, offering a more reliable and comprehensive understanding of the underlying 

mechanisms. This approach can help identify at-risk patients, inform targeted interventions, and 

contribute to the development of effective prevention and treatment strategies. Our work aims to 

contribute to the current understanding of the virus and inform public health policies and 

interventions.  

Keywords: Causal Inference, Post-COVID Complication, Risk Factors, Public Health 

1.  Introduction 

Post Covid-19 sequelae [1, 2] such as acute kidney injury [3], arrhythmia [4] and stroke [5] have been 

a formidable challenge for the society throughout the pandemic, which have a consistent impact on 

public health. Over 30% of COVID-19 patients have reported persistent syndromes up to 9 months after 

recovery [6]. The increasing concern in the public, reflected by the many reports on the Post Covid-19 

syndrome and complications [7], make us wonder what factors are causally responsible for post-COVID 

sequelae. Although it has been argued by some people that the COVID-19 pandemic is now over, 

considering the long-term effects of sequelae, we would still benefit a lot from a better understanding of 

the risk factors.  
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The existing body of literature on COVID-19 complications has extensively explored the statistical 

associations between risk factors and complications, providing insights by identifying highly correlated 

risk factors for certain sequelae [8]. However, relying solely on statistical dependencies may not provide 

a comprehensive understanding of these risk factors. When dealing with COVID-19 datasets that include 

extensive patient demographics, there may be numerous confounding variables present that can produce 

spurious relationships between variables that are not actually causally related. For instance, the age of 

inpatients can be highly correlated with other pre-existing conditions such as diabetes and heart disease. 

For the sake of argument, suppose previous heart disease is identified as a primary risk factor for 

COVID-19 cardiovascular complications. We may observe a statistical association between diabetes and 

cardiovascular complications in the data, but it is not necessarily true that diabetes causes cardiovascular 

complications. Instead, the observed association may be the result of confounding variables such as age, 

which can affect the likelihood of developing diabetes, the likelihood of heart disease, and the risk of 

cardiovascular complications. 

Therefore, it is essential to carefully consider the potential confounding variables when analyzing 

the relationship between patient demographics and COVID-19 complications. By addressing the impact 

of confounding factors, we can gain a more accurate understanding of the underlying mechanisms that 

drive these relationships, which can lead to more effective prevention and treatment strategies. 

Establishing a causal relationship between risk factors and COVID-19 complications is also essential 

for clinicians to accurately determine whether a patient is at a high risk of developing complications. 

However, understanding the pathology of sequelae can be challenging from the perspective of medicine. 

The mechanisms underlying the development of sequelae can be complex and multifactorial, and 

conducting the necessary longitudinal studies can be both costly and time-consuming.  

Despite these challenges, innovative approaches in data science may offer new breakthroughs in 

understanding the causal relationships between risk factors and complications. In our research, we 

collect the dataset of COVID-19 inpatients in the Wuhan Province, China. The dataset indicates the 

presence of Post COVID conditions for each patient respectively. While the virus affects individuals 

differently, evidence suggests that certain patient demographics and past medicine conditions may be 

more susceptible to severe complications. Taking this into consideration, we train a causal inference 

model that gives a causal effect estimation of the probability that COVID-19 inpatients will experience 

sequelae, according to their age groups, gender, clinical symptoms, severity of COVID-19, and prior 

comorbidities and habits of patients, etc. Unlike machine learning models or statistical models that only 

predict the probability of certain sequelae for a patient, our causal model renders understanding the cause 

of COVID-19 complications possible by highlighting the responsible demographics and/or medical 

conditions for the clinicians and researchers. This causation provided by our model is more stable since 

it considers the effect of confounders and can provide a comprehensive evaluation on the relevance of 

Pre-COVID symptoms or conditions against sequelae that patients may potentially experience. In all, 

this model can help identify at-risk patients and inform targeted interventions to prevent and manage 

long-term COVID-19 complications. 

By providing a comprehensive analysis of the causal relationship between patient demographics and 

COVID-19 complications, this paper aims to contribute to the current understanding of the virus and 

inform public health policies and interventions. 

2.  Background Description 

Traditionally, machine learning and statistical models have been employed to identify associations 

between patient characteristics and COVID-19 complications. These models have been useful in 

detecting patterns and correlations in the data. However, they primarily focus on associations rather than 

causation, which can limit their ability to inform targeted interventions or provide insights into the 

underlying mechanisms driving the observed relationships. 

Causal inference, on the other hand, aims to elucidate cause-and-effect relationships in observational 

data. By employing causal inference techniques, researchers can obtain a more profound understanding 

of the causal mechanisms that may contribute to the development of COVID-19 complications. This 
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approach can help isolate the direct impact of specific patient demographics and pre-existing medical 

conditions on the likelihood of severe outcomes, which is critical for developing effective prevention 

and treatment strategies. 

Causal inference models differ from traditional machine learning and statistical models in several 

ways. Firstly, they explicitly model the causal relationships between variables, allowing for the 

estimation of causal effects. Secondly, they account for confounding factors, which may bias the 

observed associations between variables. Thirdly, causal inference models can provide insights into 

potential interventions, enabling researchers to predict the impact of changes in specific patient 

characteristics on the risk of COVID-19 complications. 

3.  Experimental 

3.1.  Problem Description 

The COVID-19 complication tabular dataset can be identified by the patients’ demographics, symptoms 

and prior diseases before hospital admissions A ∈ R𝑛 × 𝑟 , and the COVID-19 complications B ∈ 

R𝑛 × ℎ. Here, n denotes the number of patients in the dataset. r and h denote the number of features for 

A and B, respectively. Our main goal in this paper is to use causal inference to analyze the average 

treatment effect (ATE) of each feature T ∈ R𝑛, T ∈ A for each feature Y ∈ R𝑛, Y ∈ B among the 

populations, while removing the confounding factors from other features X = A – T. In other words, T 

→ Y with T ⫫ X, where “→” denotes the causal relationship and “⫫” denotes the decorrelation. 

To achieve this goal, we need to make several assumptions for our causal inference setup: 

1. SUTVA (Stable Unit Treatment Value Assumption), which asserts that the treatment effect T 

for a given individual is independent of the treatment assignment or outcome of any other 

individual in the study. In other words, SUTVA posits that there is no interference or spillover 

effect between people in the treatment and control groups, and that the treatment effect is 

consistent and stable for a particular unit.  

2. Ignorability (or Unconfoundedness): This assumption posits that, conditional on the observed 

confounders X, the treatment assignment T is independent of the potential outcomes Y. In other 

words, once we control for X, we think there are no unmeasured confounders that could affect 

the relationship between T and Y. 

3. Positivity (or Overlap): This assumption ensures that there is a non-zero probability of observing 

each level of treatment T for every combination of confounders X. This is crucial for estimating 

causal effects, as it ensures that we have sufficient data to compare the outcomes under different 

treatment conditions. 

4. Consistency: This assumption requires that the observed outcome Y for an individual is equal to 

the potential outcome under the treatment they received. In our context, this means that the 

observed COVID-19 complication for each patient corresponds to the potential complication 

under their actual demographic and pre-existing medical conditions. 

The above assumptions are very important in the literature of causal inference. The question, however, 

is whether these assumptions align with the real-world situation. We do not want to analyze results based 

on unreliable assumptions. Let us examine the assumptions: 

1. SUTVA (Stable Unit Treatment Value Assumption): Given that we’re working with medical 

data, SUTVA is reasonable because medical treatments and outcomes for one patient generally 

do not affect another patient’s treatment or outcome. For example, the demographics, symptoms, 

or pre-existing diseases (the treatment T) of one patient have no influence on the same factors 

of another patient. Each patient’s case can be considered independently of others, which is in 

line with the SUTVA assumption. 

2. Ignorability (or Unconfoundedness): The data set includes comprehensive information about 

each patient (demographics, symptoms, and prior diseases), which are all factors that could 

influence their treatment and outcome. By controlling for these variables, we can reasonably 

assume that these cover most of the confounders in the world that could affect the relationship 
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between T and Y. This is however a strong assumption, since there might still be variables not 

included in our data that could affect the treatment (like genetic factors etc.). 

3. Positivity (or Overlap): With a large dataset of patients, we’re likely to have a wide variety of 

demographics, symptoms, and pre-existing diseases represented. This diversity in the data 

ensures a non-zero probability of observing each level of treatment T for every combination of 

confounders X. However, positivity could be violated if there are rare combinations of patient 

characteristics that we might not have in our data, thus making it hard to infer the treatment 

effect for these combinations. 

4. Consistency: Given that the data set records the observed complications for each patient, it can 

be reasonably assumed that these outcomes are the ones that would be observed under their 

actual demographics and pre-existing conditions. This assumption is reliant on accurate data 

recording and collection. It also assumes that the complications are entirely attributable to 

COVID-19, which may not always be the case if patients have other concurrent health issues. 

Therefore, we can generally trust that these assumptions hold in real practice. It’s important to note 

that while these assumptions are reasonable, unmeasured confounding variables or unexpected 

interferences can still occur. These assumptions provide a basis for the analysis, but should be considered 

with caution. Especially, the ignorability assumption, as raised by many previous works, is often hard 

to satisfy. Even though the data we use has as many as 38 variables, it may still ignore some significant 

variables that can have huge impact on a certain complication. To deal with this, we will develop an 

unbiased model in the experiment to alleviate the error of violating this assumption in the real practice. 

Given these assumptions, we can proceed with the estimation of the average treatment effect (ATE) 

for each T on each Y. This estimates the counterfactual outcomes for each patient under different 

treatment conditions and computing the average difference in outcomes between treated and untreated 

patients. By doing so, we can isolate the causal effect of each feature T on the COVID-19 complications 

B while accounting for potential confounders X. 

3.2.  Methodology 

The major difference between causal inference analysis and statistical analysis is whether the effect of 

confounding factors is removed or had something changed in the system we are observing. ATE analyzes 

causality of each individual to each complication, which reveals the pathological mechanisms rather 

than clinical risk factors. ATE is not easily affected by any changes in the data distribution, because it 

eliminates the influence of other variables in the estimation, so the difference in risk caused by other 

variables in different populations will not show up. Statistical analysis provides us with the probability 

(risk factor) in the population that a symptom will find specific sequelae, while it can be influenced by 

other correlated variable, and is thus vulnerable to distribution shifts and does not reveal the pathological 

mechanisms. Note that using a single variable for predicting the risk factor cannot remove the influence 

of other variables, even if other variables are not inputs to the estimation model.  

Specifically, we want to estimate the ATE as accurately as possible for providing the insights of the 

cause of a certain COVID-19 complication. To provide an accurate estimation, here we develop two 

lines of models for cross-validation: the propensity score estimation line and the structural equation 

model line. Propensity Score Estimation (abbreviated as ATE directly) is commonly used in 

observational studies to estimate the effect of a treatment or intervention on an outcome, while 

accounting for confounding variables. The primary goal is to create a situation similar to a randomized 

control trial where treatment assignment is independent of potential confounders. Propensity scores 

denote the probability of a patient receiving the treatment given the observed characteristics. These 

scores are then used to balance the treated and control groups on these observed characteristics to 

calculate the causal treatment effect. Structural Equation Modeling (SEM) is a multivariate technique 

used to analyze structural relationships between measured variables and latent constructs. This technique 

is used to analyze the structural relationship between measured variables, and provide a cross validation 

whether it aligns with the ATE obtained from our propensity score estimation models. 
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Propensity score estimation is primarily used to address confounding and estimate causal effects in 

observational studies where random assignment is not feasible. It focuses on the treatment effect on an 

outcome while controlling for observed covariates. Propensity score estimation relies heavily on the 

assumption of ignorability, meaning that given the propensity score (the estimated probability of 

treatment), the assignment to the treatment group is independent of the potential outcomes. If this 

assumption holds, then propensity score methods (such as matching, weighting, or stratification) can 

provide unbiased estimates of the average treatment effect. However, if there are unobserved 

confounders—variables that affect both the treatment assignment and the outcome, but are not included 

in the propensity score model—then this assumption will be violated, leading to biased estimates. To 

tackle this, we leverage an unbiased ATE method, i.e., the doubly robust estimation. 

Let us denote Y as the outcome variable, T as the binary treatment assignment variable (1 if treated, 

0 if control), X as a vector of covariates, p(X) as the true propensity score (i.e., the probability of 

treatment given the covariates E[T|X]), p’(X) as the estimated propensity score, 𝜇1(𝑋) as the conditional 

expectation function for the treated group (E[Y|T=1, X]), 𝜇0(𝑋) as the conditional expectation function 

for the control group (E[Y|T=0, X]). Let us also denote 𝜇1′(𝑋) and 𝜇0′(𝑋) as the estimated outcome 

regression functions. A naive propensity score estimation that is misspecified would be  

 

while the unbiased doubly robust estimation would be  

 

This doubly robust estimator will be unbiased if either  (the propensity score model 

is correctly specified), or  and  (the outcome model is correctly 

specified), which alleviates the estimation errors of violating the ignorability assumption. 

SEM, on the other hand, is a comprehensive approach that allows for the examination of complex 

relationships among variables, both observed and unobserved (latent variables). The SEM consists of 

two parts: (1) the measurement model and (2) the structural model. The measurement model describes 

how the observed variables (indicators) measure the latent variables (factors). If we have M latent 

variables and each latent variable   is measured by J observed variables Y, then we could write: 

, where  represents the j-th observed variable within the total J variables,  is the latent 

variable,  is the factor loading of the j-th observed variable on the latent variable. It describes the 

relationship between the latent variable and its indicators, and  is the error term associated with the j-

th observed variable. The structural model describes the relationships among the latent variables, which 

are similar to the relationships examined in multiple regression. If we have M latent variables ( , for 

), we can write the structural model as:  

 

where  is the m-th latent variable,  is the regression coefficient of the i-th latent variable in the 

equation of the m-th latent variable. This matrix describes the relationships among the latent variables, 

and   is the error term associated with the m-th latent variable. The model is estimated using the 

generalized least squares (https://github.com/uber/causalml/tree/master). 

3.3.  Data analysis (setup) 

In our code, we have used the CausalML package1 developed by Uber to create a machine learning 

model which provides an accurate analysis of the tendency of COVID-19 inpatients to experience post 

COVID-19 sequelae. However, it is noteworthy that a number of data in the dataset is continuous, such 
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as Age and Duration of Death; due to the fact that the ATE estimation is not compatible with processing 

continuous data such as age, we have discretized such data into several categories in the dataset. This 

was done by separating the portion of data into several reasonable intervals which can be processed. As 

for age, the data has been separated into the following intervals: [0, 18], [18, 30], [30, 60], [60, 80], [80, 

100]. This has been done considering the different impact of prior comorbidities of different age groups 

on post COVID-19 sequelae, where [0, 18] represents adolescents, [18, 30] represents young adults, [30, 

60] represents adults, [60, 80] represents the elderly, and [80, 100] represents very old adults. And as for 

days of hospital stay, the data has been separated into the intervals as follows: [0, 7], [7, 28], [28, 200].  

Then, we created a causal inference model using the LRSRegressor (linear regression) function, an 

OLS S-Learner model from the CausalML package. This model is designed to output the causal 

relevance between prior comorbidities and post COVID sequelae. Average Treatment Effect (ATE) is 

used to represent the degree of causal relevance between prior comorbidities and post COVID sequelae 

among the entire populations, in a range between [-1, 1], where -1 represents a negative impact of prior 

comorbidities on the sequelae, and 1 representing a positive impact of prior comorbidities on the post 

COVID sequelae outcome. 

4.  Results and discussion 

4.1.  Dataset description 

In our research, we have used two datasets[1] (Tables 1&2) of inpatients from the COVID-19 pandemic 

in Wuhan. The primer contains data of 9 demographic variables and 29 different types of prior 

comorbidities and habits from a range of 36359 patients. These pre-COVID conditions are as follows: 

(0) ‘severity of COVID-19’, (1) ‘age’, (2) ‘sex’, (3) ‘smoking’, (4) ‘drinking’, (5) ‘Diabetes’, (6) 

‘Hypertension’, (7) ‘Hyperlipidemia’, (8) ‘Heart disease’, (9) ‘Cancer’, (10) ‘COPD’, (11) 

‘Tuberculosis’, (12) ‘Chronic kidney disease’, (13) ‘Liver disease’, (14) ‘Intracerebral hemorrhage’, (15) 

‘Asthma’, (16) ‘Fever’, (17) ‘Cough’, (18) ‘Hemoptysis’, (19) ‘Muscle soreness’, (20) ‘Fatigue’, (21) 

‘Running nose’, (22) ‘Pharyngalgia’, (23) ‘Shortness of breath’, (24) ‘Chest pain’, (25) ‘Anorexia’, (26) 

‘Nausea and vomiting’, (27) ‘Diarrhea’, (28) ‘Stomachache’, (29) ‘Deadache’, (30) ‘Dizziness’, (31) 

‘Disturbance of consciousness’, (32) ‘prior stroke’, (33) ‘Duration of hospital stay, days’, (34) ‘Platelets’, 

(35) ‘Albumin’, (36) ‘ALT’, (37) ‘Prothrombin time’. 

The second dataset contains information of 12 different post COVID-19 conditions from a range of 

2493 patients. These post COVID-19 conditions are as follows: (0) ‘ARDS’, (1) ‘Respiratory_failure’, 

(2) ‘Acute_myocardial_infarction’, (3) ‘Acute_myocardial_injury’, (4) ‘Arrhythmia’, (5) 

‘Acute_cardiac_insufficiency’,  (6) ‘Acute_kidney_injury’, (7) ‘Acute_liver_injury’, (8) 

‘Gastrointestinal_bleeding’, (9) ‘Acute_ischemic_stroke’, (10) ‘Sepsis’, (11) ‘Coagulopathy’. 

4.2.  Model description 

For comparison, we first develop a Pearson statistical analysis based on linear regression on the 

combination of each pre-COVID condition and each complication, which represents the risk factor as 

done by many previous works. Then, we develop the doubly robust propensity score estimator and 

unbiased Structural Equation Model (SEM) for ATE. We also provide a naive propensity score estimator 

for ATE estimation, which could very well contain biases introduced by inevitably violating the 

ignorability assumption. We visualize the results of all three models in heat maps and compare the results. 
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4.3.  Result analysis 

 

Figure 1. Heatmaps of Pearson statistical correlation.  

 

Figure 2. Heatmaps of Doubly Robust ATE estimation with linear regression learner.  
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Figure 3. Heatmaps of treatment effect based on unbiased structural equation model.  

 

Figure 4. Heatmaps of ATE estimation without bias correction.  

4.3.1.  Similarity in the heatmaps of ATE and statistical correlation. When comparing the two Heatmaps 

of correlation and causation (Figure 1 and Figure 2), there are various aspects that we considered despite 
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the absence of clear clusters. First, the two heatmaps display a prevalent similarity in their overall 

patterns and distribution, while the ATE heatmap has a higher overall intensity than the correlation 

heatmap. Considering the fact that these two separate models are coming from the same data, this 

consistency indicates an appreciable degree of reliability of the methodology of our ATE estimation, 

providing confidence that the results are not a model specific artifact nor a product of chance. To 

exemplify, row 36 column 7 (Alanine transaminase & Acute liver injury) shows a consistent similarity 

between the two models where ATE values of 0.17 and 0.19 have been outputted. The value of 0.17 and 

0.19 indicates a strong and robust relationship between Alanine transaminase level and Acute liver injury. 

This also resembles the statistical correlation value of 0.21, which again proves the credibility of the 

method of ATE estimation. This is because, even though risk factors and causation reflect different 

aspects of understanding the COVID-19 complication, it is likely that pure statistical analysis is 

sufficient for most cases. Otherwise, all the previous works based on statistical analysis methods will all 

be invalid and lead to mismatch to clinical experiences of physicians, which should have been reported 

by the physicians long before our research and is thus highly improbable. However, due to the difference 

between the methodologies of ATE and correlation, there will be some interesting cases we would find 

insightful where ATE differentiates a lot from the correlation results, for which we will analyze in the 

following. 

4.3.2.  The differences in certain factors between ATE and statistical correlation. We observe 

mismatched results in some underlying factors in the data. For instance, row 18 and column 10 in Figs. 

1 and 2 representing the correlation between Hemoptysis and Sepsis in the form of post COVID sequelae 

has generated rather contrary values of -0.016 from statistical correlation and 0.2 from ATE correlation 

estimation. Because it is impossible to know the “ground truth” causal treatment effect or correlation, 

as both results are solely based on analysis of the data, we look for medical literature for references and 

judgment. 

To address this contrast, we took reference from the HOPE Sepsis score [9], which is a scale 

involving 9 parameters which effectively identifies the risk for COVID-19 patients to develop Sepsis. 

In the scale, Hemoptysis possesses the highest score amongst various other comorbidities such as 

smoking, creatinine, decreased BP and decreased SpO2. Considering that the different data sets involved 

in research will significantly influence the results obtained, statistical correlation will be prone to 

influences from distribution shift; this explains the inaccurate results generated by statistical correlation 

on our data in this example that contradicts the HOPE score. Since the research for HOPE Sepsis score 

was conducted exclusively to investigate Sepsis as a post COVID sequelae, we can reasonably assume 

that it generates more accurate results than the correlation value of -0.016, given that their dataset has a 

more balanced ratio of Septic/Non-septic patients and their study is specifically designed for 

understanding the complication of Sepsis. The similar results between the ATE obtained based on our 

data and the HOPE score have proven the accuracy of the ATE estimation in this paper. Because ATE 

removes the confounders of other correlated variables, the result is consistent across different data 

environments and distributions [10]. 

There are other examples, such as the pair of Asthma as the pre-COVID condition to ARDS as the 

complication in row 15 and column 0. Here, the Correlation value = 0.034 and ATE estimation = 0.14. 

We can also find references that support the validity of our ATE result. In a study for understanding 

ARDS clinically and statistically from COVID-19 hospitalized patients [11], the authors point out and I 

quote, “Other viral respiratory diseases, and in particular influenza, are well known for their ability to 

induce severe respiratory complications, including ARDS, mainly in frail elderly people and in patients 

with severe comorbidities (obesity, diabetes, or heart or respiratory failure)”. This shows that the effect 

of respiratory problems such as Asthma should have more influence on the ARDS than the correlation 

value of 0.034. Moreover, it is found that in row 11 and column 11, the statistical correlation coefficient 

between Tuberculosis and Coagulopathy is only 0.035, while the ATE is as large as 0.18. This gap 

between ATE and Pearson correlation is again insightful and verifies the importance of ATE estimation. 

As pointed out by an existing medical literature [12], quoted “Tuberculosis (TB) affects the production 
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and life span of all hematologic cellular components” in the paper’s abstract, TB indeed has a mechanism 

that might lead to complications like Coagulopathy, which is largely ignored in Pearson correlation in 

Fig. 1. 

4.3.3.  The accuracy of different treatment effect estimation method. We analyze the results from Figures 

2, 3 and 4. In order to find the most accurate method of ATE estimation, we assumed that the average of 

values of all methods should not be biased. However, the nature of methods such as the naive ATE 

estimation without biased correction is extremely likely to generate inaccurate results, which makes it 

less reliable. Both SEM and doubly robust estimators attempts to remove biases from different 

perspectives, therefore, should they be both effective in removing the biases, their results should be 

similar. As per experimental result shown above, Figure 2 and Figure 3 are more similar to each other 

while Figure 4 has some anomaly values (colored as yellow in the heatmap) such as the effect of (1) age 

to complications like (6) Acute_kidney_injury, (7) Acute_liver_injury and (10) Sepsis. Through cross-

validation using multiple models to generate correlation values, the overall similarity in patterns and 

individual values have validated the accuracy and credibility of ATE estimation when applying to post 

COVID-19 sequelae.  

5.  Conclusions 

Our research has demonstrated the potential of causal inference models in predicting post-COVID-19 

complications. By analyzing the causal relationships between patient demographics, pre-existing 

conditions and post-COVID complications, we have been able to provide a more comprehensive 

understanding of the risk factors involved. This approach has allowed us to isolate the causal impact of 

each risk factor while accounting for potential confounders, leading to a more accurate understanding 

of the underlying mechanisms driving these relationships. The experimental results have shown that, 

based on the unbiased average treatment effect estimation, we identify specific demographics and pre-

existing conditions that are causally related to certain complications. For example, our model identified 

a strong causal relationship between Hemoptysis and Sepsis and between Asthma and ARDS, which 

align well with the findings of existing clinical studies. Such strong causal relationships are not able to 

be discovered by statistical correlation methods such as Pearson correlation in our study, which 

highlights the insights we get from the developed causal inference models.  

However, it is important to note that while our model provides valuable insights, it is not without 

limitations. The assumptions made in our causal inference setup, while generally reasonable, should be 

considered with caution. Future work should aim to further validate these assumptions and explore the 

potential of incorporating additional variables that may impact post-COVID-19 complications. By 

continuing to refine and build upon this approach, we believe that causal inference models can play a 

crucial role in the development of effective prevention and treatment strategies for post-COVID-19 

complications. As we continue to grapple with the impacts of the pandemic, such research will be vital 

in informing public health policies and interventions. 
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