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Abstract. The majorana fermion represents a kind of particle which is its own antiparticle. This 

paper aims to analyze the majorana fermions from theoretical aspect and application aspect, 

including the derivation of Dirac equation and the practicality of topological quantum computer. 

This paper explores the idea of Majorana fermions from Dirac equation and the anyons which is 

an important quasi-particle to build a topological quantum computer. After that, the potentials of 

quantum computer are emphasized as well. Several current major difficulties faced by building 

a quantum computer have also been discussed, including the decoherence of qubit and the errors 

during the operation of qubit. The advantages of topological computer are mentioned as well, 

especially the high resistance to local perturbation. The important property of two-dimensional 

non-abelian anyons has been discussed as well. Finally, the important relation of majorana 

fermions with anyons are introduced and the reason why majorana fermions is important has 

also been revealed.  

Keywords: Dirac equation, majorana fermions, topological quantum computer, non-abelian 

anyons.  

1.  Introduction 

In the vast landscape of quantum mechanics, one of the most intriguing discoveries is the Majorana 

fermion. Proposed by Majorana in 1937, this particle possesses a unique quality: it is its own antiparticle 

[1]. This self-conjugate nature enables them to maintain coherence against local perturbations and 

decoherence [2]. These properties position Majorana fermions as a cornerstone for developing 

topological quantum computers, offering a pathway to fault-tolerant quantum computation [3]. 

Quantum computing stands at the technological frontier, which can revolutionize myriad fields by 

solving problems deemed insurmountable for classical computers. The potential of quantum computers 

extends across cryptography, drug discovery, optimization problems [4], artificial intelligence [5], and 

beyond. However, Quantum computers rely on maintaining the quantum states of qubits, which are 

inherently fragile and sensitive to their surroundings. Interaction with the environment can cause 

quantum decoherence, leading to the loss of quantum information. Quantum noise from the environment 

can also introduce errors in calculations [6]. Nevertheless, the integration of Majorana fermions can 

perfectly solve this problem by mitigating decoherence and enhancing fault tolerance, thereby 

contributing to the realization of scalable and practical quantum computing systems. 
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This paper explores the theoretical foundations and potential applications of Majorana fermions in 

advancing the field of quantum information science, from the derivation of Dirac equation to the 

majorana fermions in condensed matter physics.  

2.  Dirac equation and Majorana fermion 

2.1.  From Schrödinger equation to Dirac equation 

The Schrödinger equation was proposed by Erwin Schrödinger in 1926. It is fundamental to quantum 

mechanics and must be understood to further understand the derivation of the Majorana fermions. 

However, when people applying the particle with relativistic frame work, there are several problems 

emerging within the Schrödinger equation. Since the Schrödinger equation was not designed to fit with 

relativistic framework at the beginning, it is reasonable that there are some problems using the equation 

on relativistic particles. To solve these problems, there are several 20th century physicists to make the 

Schrödinger equation compatible with the special relativity. Dirac equation formulated by Paul Dirac in 

1928 perfectly solves these problems. 

From the special relativity proposed by the Albert Einstein in 1905, space and time are not 

independent but are intertwined and form a four-dimensional continuum known as spacetime. It is found 

that 

−
ℏ

2

2𝑚
∇ 2ψ  = iℏ

∂ψ  

∂ 𝑡
, (1) 

where 𝑚 is the mass, 𝑡 is time, ℏ is Planck’s constant over 2𝜋, and ψ is the wavefunction of the system. 

However, in the Schrödinger equation, the space derivative is second order on the left, while the time 

derivative is first order on the right. That is inconsistent with the spacetime concept, which means the 

Schrödinger equation cannot be used for relativistic particles.  

The Klein-Gordon equation was first introduced in the context of quantum mechanics by Oskar Klein 

and Walter Gordon in 1926-1927. It was one of the early attempts to unite quantum mechanics with 

special relativity and describes spin-0 particles, both free and interacting, in a relativistic framework. 

For a particle of mass m and energy E, the relativistic energy-momentum relation in special relativity is 

given by 

𝐸2 = (𝑚𝑐2)
2

+ (𝑝𝑐)2, (2) 

where 𝐸 is the energy, 𝑚 is the mass, 𝑝 is the momentum, and 𝑐 is the speed of light.  

In quantum mechanics, energy and momentum are represented by operators. The energy operator is 

𝐸̂ = 𝑖ℎ̅
𝜕

𝜕𝑡
 and the momentum operator is 𝑝̂ = −𝑖ℎ̅∇. By substituting the energy and momentum operator 

into the energy-momentum relation, the Klein-Gordon equation can be shown: 

1

𝑐2

𝜕2𝜓

𝜕𝑥2
− ∇2𝜓 +

𝑚2𝑐2

ℎ
2̅

= 0, (3) 

where 𝑚 is the mass, x is the displacement, 𝑐 is the speed of light, ℏ is Planck’s constant over 2𝜋, and 

ψ is the wavefunction of the system. 

The Klein-Gordon equation satisfies the requirement of relativity since it has the double derivative 

with time and space. However, there is other problems with this equation. Since the Klein-Gordon 

equation treat both space and time with secondary derivative, that means single initial condition cannot 

define the unique wavefunction in order to find the solution. That will offer the probability of negative 

energy and thus gives negative probability density since the probability density is proportional to energy, 

which is unreasonable.  

To solve the problem with Klein-Gordon equation, Dirac seek to make the differential equation into 

first order, which thus can give certain solution with one initial condition [7]. That thus can eliminate 

the solution of negative energy, which offers the negative probability density. Similar with the Klein-

Gordon equation, the relativistic energy-momentum relation in special relativity is given by 
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𝐸2 = (𝑚𝑐2)
2

+ (𝑝𝑐)2. (4) 

To make this equation into first order equation, the square root of the equation must be known. Thus, 

𝑝2𝑐2 + 𝑚2𝑐4 = (𝑐𝛼⃗𝑝 + 𝛽𝑚𝑐2)
2

= (𝑐𝛼1𝑝1 + 𝑐𝛼2𝑝2 + 𝑐𝛼3𝑝3 + 𝛽𝑚𝑐2)
2

(5) 

To satisfy this equation, there are three conditions that 𝛼⃗ and 𝑝 must satisfy. The first condition is 

that when each term is squared, there should not be any 𝛼 or 𝛽, which thus gives the first condition 

𝛼1
2 = 𝛼2

2 = 𝛼3
2 = 𝛽2 = 1. (6) 

The second and third conditions are that every cross term when expanding the square of the equation 

must also be cancelled, which gives the second and third conditions. That is, 𝛼𝑖𝛼𝑗 + 𝛼𝑗𝛼𝑖 = 0 for 𝑖 ≠ 𝑗, 

and 𝛼𝑖𝛽 + 𝛽𝛼𝑖 = 0. Since there is not any number that can satisfy the second and third condition, Dirac 

found that 𝛼⃗ and 𝛽 are four by four matrices [7] 

𝛼⃗ = (0 𝜎⃗
𝜎⃗ 0

) , 𝛽 = (
𝕚 0

0 𝕚
) . (7) 

By summarizing the equations, the square root of energy-momentum equation can be given by 𝐸2 =
(𝑐𝛼⃗𝑝 + 𝛽𝑚𝑐2)2 and 𝐸 = 𝑐𝛼⃗𝑝 + 𝛽𝑚𝑐2. By substituting the energy operator and momentum operator 

into the equation, the Dirac equation can be given by −𝑖ℎ̅
𝜕 

𝜕 𝑡
𝜓 = (𝑐𝛼⃗𝑝 + 𝛽𝑚𝑐2)𝜓. By defining the 

𝛾0 = 𝛽 and 𝛾𝑖 = 𝛽𝛼𝑖, the Dirac equation can be simplified as following: 

(𝑖𝛾𝜇𝜕𝜇 − 𝑚)𝜓 = 0. (8) 

2.2.  Majorna fermions 

In particle physics, every elementary particle has a corresponding antiparticle, which is a particle that 

has the same mass but opposite charge and other quantum numbers. These include electron and positron, 

proton and antiproton. When a particle and its antiparticle meet, they can annihilate each other, resulting 

in the release of energy according to Einstein’s mass-energy equivalence principle, 𝐸 = 𝑚𝑐2 [2]. Before 

the idea of the majorana fermions, people mostly believed that the particle is completely different with 

antiparticles. However, Ettore Majorana in 1937 suggested that there could be a real wavefunction to 

the solution of Dirac equation, which describes a fermion with only two degrees of freedom (as opposed 

to four for a Dirac fermion), which is neutral (no electric charge) and is its own antiparticle. That means 

there is a type of fermion that is its own antiparticle.  

3.  Topological quantum computer 

3.1.  Quantum computer  

Before the discussion of quantum computer, the principal difference between the conventional physics 

and quantum physics must be understand thoroughly. Consider the two-slit experiment, when electrons 

are fired one by one toward a barrier with two slits, the electron should one slit or another according to 

conventional physics. However, in quantum physics, each electron goes through both slits in a 

supperposition and interfere itself, producing the interference pattern in the detector screen. This 

interference pattern is a direct manifestation of the electron taking multiple trajectories and their 

coherent sum (interference) determining the final state. So instead of calculating one path a time in 

conventional computer, the quantum computer can take multiple path parallelly and determine its state 

by their coherent sum. That property give enormous advantages toward quantum computer comparing 

with conventional computer, including decryption and understanding of complex materials.  

The basic computation model for quantum computer can be simplified as three step: initialization, 

unitary evolution, and measurement [6]. Suppose that there is a system in Hilbert space 𝐻, the initial 

state of the system can be demonstrated by |𝜓0 >.  The system then will evolve to some final state 
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𝑈(𝑡) |𝜓0 > , according to the the Schrödinger equation. The Hamiltonian of this evolution must be 

controlled so that the final state 𝑈(𝑡) can be obtained by any unitary transformation. The last step is to 

make measurement [6]. The initialization correspond to the input, while the measurement is the output. 

The unitary evolution is the software program to run.  

Corresponding to the bit in conventional computer, which represent 0 or 1,  qubit is the fundamental 

part of quantum computer, which is a quantum two-state system. According to the superposition 

principle, the qubit ( two-state quantum system) can be a infinitely many superposition of 0 and 1 

( 𝑎|0 > +𝑏 |1 > ) [6]. 

The errors is the major problem to build a quantum computer. In conventional computer, the errors 

can always be corrected through keeping the copies of data and checking it with the copies in the 

intermediate stage. However, checking the information in the intermediate stage of calculation in 

quantum computer cannot work. The measurement in the quantum computer in the intermediate stage 

will collapse the quantum system, which will cause the loss of information [6]. To solve that, the error 

correction is proposed in 1995. The basic idea is that instead of direct observation toward the quantum 

state, the error can be detected by representing information redundantly. However, during the error 

corrections protocols, there will be more errors occurring, which make the error correction protocol 

unclear to be the solution toward the problem of quantum computer [6]. 

3.2.  Non-Abelian anyons 

In condensed matter physics, quasi-particles are emergent phenomena that arise from the collective 

behavior of interacting particles in a material.[8] Anyons are theoretical quasiparticles that exist in two-

dimensional systems and have properties distinct from the familiar fermions and bosons [9]. To 

understand the special property of anyons, the property of fermions and boson must be understand first. 

The wavefunction for a system of identical fermions is anti-symmetric, which means that exchanging 

the quantum states of two fermions, the wavefunction changes sign, |𝜓 >→ 𝑒𝑖𝜋|𝜓 >. The wavefunction 

for a system of identical bosons is symmetric, which means that exchanging the quantum states of two 

bosons does not change the wavefunction, |𝜓 >→ |𝜓 >.  

However, the swapping of identical anyons can lead to a phase factor that is neither 0 (as for bosons) 

nor 𝜋  (as for fermions), but can take any value in between, |𝜓 >→ 𝑒𝑖𝜃|𝜓 >  (0 ≤ 𝜃 ≤ 𝜋) . Abelian 

means the order of swapping operation doesn’t matter. For the non-Abelian anyons, they have a special 

property that when braiding the anyons (moving one anyon around another in two-dimensional space), 

the system’s quantum state undergoes a transformation. That means the information is no longer stored 

in the local properties, such as spin orientation of electron, but stored in the system [6]. 

3.3.  Anyons in topological quantum computer 

Process of braiding non-Abelian anyons can be thought of as enacting quantum gates on the system [10]. 

Each distinct braiding sequence corresponds to a different quantum gate. Since the information is stored 

in the global properties of the system (its topology) and not in local properties, it is highly resistant to 

local errors. The main advantage of using non-Abelian anyons for quantum computation is the inherent 

error resistance provided by their topological nature. In a topological quantum computer, errors that 

typically afflict quantum systems (like phase errors or bit flips) need to act in a coordinated, non-local 

manner to cause a logical error, which is highly improbable. After all, Majorana fermions are the 

simplest non-abelian anyons that exhibit the unique braiding statistics. To actually create practical 

quantum computer, the majorana fermions is the key.   

4.  Conclusion 

In conclusion, quantum computer has been developed rapidly in recent decades. However, several 

engineering problems has also been found in this process. The practicality of quantum computer has 

been questioned during last decades. However, with the deeper understanding of quantum physics, 

topological quantum computer, which can resist the local perturbations, has been proposed. In 

conventional quantum computer, the errors caused by the local perturbation is extremely difficult to 
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correct because the direction observation of qubit will make the wavefunction collapse, which will cause 

the loss of information. However, by braiding the non-abelian anyons, topological quantum computer 

can store the information in the global property of quantum system, instead of local property, which can 

give it high resistant to local error. Eventually, the problem of topological quantum computer becomes 

finding the non-abelian anyons. Majorana fermions, the particle that is the antiparticle of itself, is 

actually one of non-abelian anyons. That makes finding the majorana fermions extremely important to 

topological quantum computer.  
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