
Optimization of basic PID control algorithm based on genetic

algorithm and Matlab

Yingjie Ma

School of Mechanical Engineering, Shanghai University of Science and Technology,

Shanghai 200093, China

2035051323@st.usst.edu.cn

Abstract. This paper investigates how to optimize the basic PID algorithm by using population

genetic forms. "In traditional PID control, the tuning of PID parameters mostly relies on the

experience of the tuner. The main purpose of this paper is to use an algorithm that can

automatically tune its parameters to self-tune a PID controller for an actual model." Based on the

principle of genetic algorithm, this paper compares the traditional PID controller tuning methods

to study the trend of the PID parameters during the iteration process as well as the trend of the

PID controller adaptability. Through the principle of the algorithm and the iterative output, as

well as in the code set the weights occupied by different performance indicators, it can not only

flexibly adjust the degree of adaptation and make the algorithm more flexible, but also prove that

the use of genetic algorithms for the rectification of the PID is more adaptable and convenient,

with promising research prospects.

Keywords: PID algorithm, genetic algorithm, Matlab simulation.

1. Introduction

The parameter tuning of PID controllers is an important step in the process of modern industry and

accounts for over 95% of modern control [1]. More precise adjustment of controller parameters can

enable the control system to output efficiently and stably. With the continuous development of the times

and the development of industry, the complexity of controllers is increasing. Traditional PID parameter

tuning methods cannot meet people's requirements, especially for complex systems with large time

delays, time variations, and nonlinearity [2, 3].

Therefore, based on the traditional tuning process of PID, trial and error, logarithmic frequency

response method, and critical proportion method, etc. are also included [4]. New algorithm models can

be used to optimize traditional PID, such as genetic algorithms. Genetic algorithms simulate the law of

survival of the fittest in natural populations on the basis of the principle of gene adaptation. The

algorithm's basic principle is to encode, cross, mutate, and replicate the gene library of the basic parent

group to generate a gene library of offspring. The gene libraries of the parent and offspring are then

merged and the fitness of their genes is discussed. Ultimately, the genes suitable for survival are retained,

and the solution to the problem is iteratively optimized. This process is similar to the tuning of PID

control and is a continuous optimization process [5-7].

In addition to genetic algorithms, other optimization algorithms such as ant colony algorithm [8],

ppaper swarm algorithm [9], deep learning, and other models can be used. This paper mainly discusses

Proceedings of the 3rd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/30/20241103

© 2023 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

178

genetic algorithms, which have advantages such as clear logic, wide applicability, easy understanding

of logic, and good iterative optimization effects [10]. It is also important to discuss and optimize the

speed of iterative optimization using genetic algorithms, whose algorithmic drawbacks include

uncertainty in the search capability, low speed of search and optimization, possible data bias or non-

convergence of data born during data processing. The algorithm needs to be used with a certain level of

data analysis. Therefore, it is worthwhile for the researcher to go into in-depth exploration and

optimization in this area [11].

2. Methods

2.1. PID controller and genetic algorithm

2.1.1. Process and principles of PID controller parameter tuning based on genetic algorithm

The formula followed by traditional PID controllers is as follows:

 𝑢(𝑡) = 𝐾𝑝 × 𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝑡)𝑑𝑡
𝑡

0
+ 𝐾𝑑

𝑑𝑒(𝑡)

𝑑𝑡
 (1)

1) Proportional link. The deviation signal e(t) is multiplied with the proportionality coefficient, when

the deviation is generated, the proportional link will immediately produce the control effect to reduce

the deviation;

2) Integral link. The integral of the deviation signal e(t) is multiplied with the integral coefficient,

which is used to eliminate the static difference after the steady state and improve the accuracy of the

system;

3) Differential link. The derivative of the deviation signal e(t) is multiplied by the differential

coefficient to react to the trend of the deviation and can introduce the correction value in the system in

advance before the error signal becomes too large, so as to speed up the control speed of the system and

achieve the purpose of reducing the regulation time.

4) PID formula. Where U(t) is the actual output, e(t) is the actual error, Kp, Ki, Kd are the

proportional, integral, and derivative gain parameters, which are also the parts that need to be tuned in

the PID controller [12].

Furthermore, it can be deduced that the transfer function of a PID controller is

 𝐺(𝑠) = 𝐾𝑝 +
𝐾𝑖

𝑠
+ 𝐾𝑑𝑆 (2)

In Matlab, it can be represented as GSpid=pid(kp,ki,kd); In traditional PID controllers, the data

obtained through conventional tuning methods often results in underdamped, slow response or large

overshoot values, which means they do not meet our performance requirements. Therefore, the so-called

optimization algorithm is used to optimize the numerical parameters of the PID controller through

dynamic and adjustable search methods, making the iterative data results of the parameters converge.

This is the process of optimization [13].

2.1.2. The optimization steps of genetic algorithm are as follows

1) Determine the mathematical model for the calculation. mathematically modeling the discussed

problem.

2) Encode gene library. Set the size of the gene library population, the length of each gene, and

determine the basic evolutionary parameters.

3) Edit population library. Perform operations such as mutation, replication, and crossover on the

gene library.

4) Decode. Decode the genetic sequence to become the parameter values for iterative transformations

in the model for discussion.

5) Calculate fitness value. Set the fitness conversion rules for genetic individuals and classify them

as good or bad.

Proceedings of the 3rd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/30/20241103

179

6)Gene selection. Eliminate gene sequences with low fitness values to improve the overall

adaptability of the population [14].

Genetic algorithm does not directly process its direct data, but searches the coded clusters of its direct

data, and is not constrained by the continuity of the function in the process of searching. Genetic

algorithm uses an algorithmic model in which multiple points are searched together, which is highly

synergistic and also allows for quick determination of the location of the optimized value. Many

operation steps in the genetic algorithm such as crossover, mutation, etc. can be set to control the

efficiency of cluster processing, and the weights can be changed according to different needs, wich

resulting in the genetic algorithm's high flexibility and adjustable ability. The goal of the genetic

algorithm is the result value of the function, in the process of operation, do not have to consider the

impact of the function, in solving a variety of problems in a wider range, practicality is strong. The basic

idea of the genetic algorithm is very simple, because based on the principle of heredity. So it is easier to

understand, there is no fixed algorithm model to comply with. In the coding process can be more into

their own understanding.

3. Simulation process and results

3.1. Selection of the objective function

In the process of optimizing the function, an objective function is needed to evaluate the merits of the

parameter values. In the PID control model, there are several commonly used evaluation indicators,

which are mainly discussed around the system error. In this paper, the sum of the absolute values of the

system error integral is used as the performance evaluation indicator of the PID controller and also as

the fitness of the experimental genome, namely the integral type of error absolute value. The formula is

as follows:

 𝐽 = ∫ |𝑒(𝑡)|
𝑡

0
𝑤1𝑑𝑡 (3)

The Matlab code implementation is: J=J+w1*abs(e)+w2*pos+w3*tr; % e is the system error w is the

numerical parameter weight [15].

3.2. Model Selection

In the process of optimizing the function, it is necessary to discuss a certain mathematical model. This

paper selects a DC motor as the ideal model for discussion, and its transfer function is:

 𝐺(𝑠) =
100

𝑠2+30𝑠+100
 (4)

The Matlab code implementation is: G=tf(100, [1,30,100])

3.3. Establishment of Gene Library and Processing of Gene Library

First, the size of the gene pool is determined, the range of PID parameter values that need to be rectified

is set, and the probabilities of the parameters underlying the genetic algorithm are set, such as the coding

length, the probability of variation, and the probability of crossover. An i*j matrix is generated for

storing the encoded gene pool as the parent population, where i represents the number of individuals in

the population and j represents the length of the gene.

The example of the representation of genetic individuals in Matlab is: [1 8 5 3 6 0 6 3 6 1]. After the

gene pool is generated, a new matrix is created for changes to the parent population.

Matrix X1 and X2 are responsible for the genetic crossover of the parent population: two random

gene strands are selected, along with a random gene breakpoint, and the gene sequences before and after

the breakpoint are exchanged.

Matlab code implementation is:

x1(i,:)=[gene(i,1:d),m(d+1:change*Long)];

Proceedings of the 3rd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/30/20241103

180

x2(i,:)=[m(1:d),gene(i,d+1:change*Long)];

Matrix X3 is responsible for replicating genes in the parent population, copying gene sequences with

higher fitness according to the probability of replication.

Matlab code implementation is:

If

 rand<popterm; %popterm: probability of gene replication

d = randi(popnum); % popnum: the number of population

x(i,:) = gene(d,:);

End

Matrix X4 is responsible for mutating the genes of the parent population, that is, randomly selecting

genes from the population according to the probability of mutation, and randomly assigning values to

the genes after a random breakpoint.

Matlab code implementation is:

gene(i,randi(change*Long))=randi([0,9]);

x(i,:)=gene(i,:);

Finally, the transformed offspring population and the parent population is merged to generate a

summary gene pool for individual optimization.

3.4 Optimize and iterate the gene library.

After obtaining the total population of the fused parent-child gene pool, the total population of the

gene pool is decoded and the matrix is transformed to the specific values of Kp,Ki, and Kd.

The Matlab decoding process is:

for

i=1:Long

decode(i)=10^(Long-i);

end

result = gene * decode / (decode(1) - 1) / 10 * (b - a) + a;

 % a and b are parameter ranges

After decoding, the three parameter values of Kp,Ki,and Kd are substituted into the objective

function of fitness to obtain the fitness value of each gene, which is ranked, and the lower-ranked gene

sequences are eliminated for processing. Finally the processed population is iteratively updated as a new

generation of the parent population.

The Matlab control system is:

GSpid=tf([Kd,Kp,Ki],[1,0]);

Gs=feedback(GSpid*G,1,-1);

result=step(Gs,t)

4. Simulation results

4.1. Fitness Value Simulation Curve

From Figure 1 chart, it is clear that the fitness is decreasing after each iteration and then tends to

converge, indicating that after genetic algorithm processing, the population is developing towards a

more optimal direction in practice.

Proceedings of the 3rd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/30/20241103

181

Figure 1. Fitness results (photo credited: original)

4.2. Simulation results of parameters Kp, Ki, and Kd

It can be seen that the parameters of the PID controller may appear random during the initial iterations,

but after multiple iterations, they will tend to converge. The iterative transformations of Kp,Ki,Kd are

shown in Figure. 2, Figure. 3, and Figure. 4, and the trends of these parameters are all initially dispersed

and then eventually converge.

Figure 2. Kp results (photo credited: original)

Proceedings of the 3rd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/30/20241103

182

Figure 3. Ki results (photo credited: original)

Figure 4. Kd results (photo credited: original)

4.3. Comparison of Simulation Results of PID Control Curves

This is the result graph presented by the self-tuning process with genetic algorithm, with Kp=40.8597,

Ki=0.9361, and Kd=0.9959. Compared with the untuned PID control, the PID control adjusted by

genetic algorithm is significantly closer to the desired output, with very small overshoot and static error.

The system's adjustment time is also extremely small, greatly improving the stability and performance

of the PID controller, and enhancing the efficiency of its use. The variation of the output of the step

signal over time, the variation of the output of the tuned PID controller over time and the variation of

the output of the untuned PID controller over time are shown in Figure. 5, and it can be clearly seen that

the signal output of the tuned PID controller, which represented by the blue line, is more in line with the

performance requirements.

Proceedings of the 3rd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/30/20241103

183

Figure 5. Output signal versus time (photo credited: original)

4.4. Problems encountered and prospects in the process of tuning PID parameters using genetic

algorithms

In the process of simulation, if there are fewer iterations, it will cases where the parameter values do not

converge, or n converging constants are obtained. The genetic algorithm in general can quickly

determine the approximate range of the parameter values, and there will be cases in which the resultant

parameters of more iterations have similar values to those of the resultant parameters of fewer iterations.

Additionally, the efficiency of numerical optimization is higher in the early stages of iteration, while it

significantly decreases and repeats in the middle and later stages of iteration. When obtaining the

iterative result, it is also necessary to manually determine the availability of the iterative values.

Therefore, this paper believes that the development direction of genetic algorithms can start from the

second half of the iteration count, using faster algorithms to optimize the problem of efficiency decline

in the second half of the genetic algorithm, and better determine the convergence value.

In the process of simulation, it is also important to design the number of iterations and the underlying

parameters of the genetic algorithm skillfully. So many iterations may make the simulation process too

long, in the preliminary simulation often choose 8-12 iterations. After the initial simulation, it is better

to choose 20-50 iterations, more than 50 iterations of the value will find that the value has basically been

determined, and can only rely on increasing the length of the gene to get a better value.

In the process of simulation, setting the parameter range of the PID controller is also very important,

if the parameter is set too large, it may be found that the optimization model after iteration of the

deviation of the situation, it is best to initially estimate the approximate value of the results, set a good

range and then start the simulation.

In the simulation results, there may be occasional non-convergence of the situation, the probability

that the reason is because the number of iterations is too small. Sometimes the optimized parameters do

not change as the number of iterations increases. This may be related to the coding rules, or the optimal

value may be found in the first iteration. The best way to deal with this is to check the total population

coding changes in the iterations and re-do the simulation. Also try to change the objective function and

the weights of the indices to see different simulation results. Change the different coding methods and

the amount of size of the initial values to make the experiment generalizable.

Proceedings of the 3rd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/30/20241103

184

5. Conclusion

As the most commonly used control model in the present era, the PID controller requires a significant

amount of time and effort to adjust its parameter values during product manufacturing or model control

processes. Not only does it require the adjuster to invest a certain amount of time cost to understand and

learn, but it also cannot guarantee the superiority of the parameter values. The control results of manually

adjusted PID controllers are often unsatisfactory, while the advantages of using the Ga algorithm for

parameter adjustment proposed in this paper are obvious. This paper starts from the actual second-order

motor system model, and introduces the practical steps, algorithm flow, selection of objective function,

and Matlab implementation method for tuning PID parameters using genetic algorithms. From the

simulation results, it can be seen that the parameter optimization process has better performance

indicators, better curve forms, smaller overshoot, faster convergence speed, and better stability using

the Ga algorithm optimized PID algorithm, which is also easier to understand. It is possible to optimize

this algorithmic model in many other aspects, such as mutation, crossover, replication of the algorithm

for speed improvement, handling of populations, etc. It is believed that this basic optimization model of

the algorithm in the process of uninterrupted optimization and questioning will eventually bring great

convenience to the modern computer as well as engineering fields.

References

[1] Li G L. Research and Optimization Design of PID Controller Parameter Tuning [D]. Dalian:

Dalian University of Technology, 2010: 1-3. Li Guolin. PID controller parameter tuning and

optimization technology[D]. Dalian: Dalian University of Technology, 2010:1-3.

[2] Wang Y W. Research on Fuzzy PID Intelligent Vehicle Control Algorithm Based on Simulink

Simulation[J]. Information Technology and Informatization, 2020, (11): 229-232.

[3] Han Z X, Yan C H, Zhang Z. Transform and stability analysis of nonlinear time-varying control

system[C]//Proceedings of the 2009 Second International Conference on Computer and

Electrical Engineering.New York:ACM, 2009:391-397.

[4] Dai Y X. Analysis of PID parameter tuning methods[J]. Soda Industry, 2009, (6):15-17. Analysis

on PID parameter tuning method[J]. Soda Industry, 2009, (6): 15-17.

[5] Liu J K. Advanced PID Control and Its MATLAB Simulation [M]. Beijing: Electronic Industry

Press, 2003.

[6] Ge J K, Qiu Y H, Wu Ch M, Pu G L. A Review of Genetic Algorithm Research [M]. Journal of

Computer Applications Research, 2008(10): 249-252.

[7] Yang W, Li Q Q. A comprehensive review of ppaper swarm optimization algorithm [J]. Chinese

Engineering Science, 2004(05): 87-94.

[8] Duan H B, Wang D B, Zhu J Q, et al. (2004). Advances in research on ant colony algorithm theory

and applications. Control and Decision, 12, 1321-1326+1340. DOI:

10.13195/j.cd.2004.12.1.duanhb.001.

[9] Wu H X, Shen Sh P. Application and theoretical basis of PID control[J]. Control Engineering,

2003(01):37-42.

[10] Fu Zh Y, Zhuan X T. PID parameter self-tuning algorithm based on neural network and genetic

algorithm [J]. Journal of Wuhan University (Engineering Edition), 2023, 56(03): 379-386.

[11] Chen G L, Wang X F. Genetic Algorithms and Their Applications [M]. Beijing: People's Posts

and Telecommunications Press, 1996.

[12] Bian X, Mi L. Research progress on genetic algorithm theory and its applications[J]. Journal of

Computer Applications Research, 2010, 27(07): 2425-2429+2434.

[13] Hee-Jin Kim, Guen-Han Dong, Dong-Ho Kim, Gi-Won Jang, Sung-Hyun Han. A Study on Track

Record and Trajectory Control of Articulated Robot Based on Monitoring Simulator for Smart

Factory[J]. Journal of The Korean Society of Industry Convergence, 2020, 23(2).

[14] Nieves P-P, Juan A L-R, Jorge J. IoT Architecture for Smart Control of an Exoskeleton Robot in

Rehabilitation by Using a Natural User Interface Based on Gestures. Journal of Medical

Systems, 2020, 44(9).

Proceedings of the 3rd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/30/20241103

185

[15] Rajarathinam K, Gomm J B, Yu D L, et al. PID controller tuning for a multivariable glass furnace

process by genetic algorithm[J]. International Journal of Automation and Computing, 2016,

13(1):64-72.

[16] Silva G J, Datta A, Bhattacharyya S P. New Results on the Synthesis of PID Controllers [J]. IEEE

Transactions on Automatic Control, 2002, 47(2): 241-252.

Proceedings of the 3rd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/30/20241103

186

