
The recovery time complexity of a coin weighing algorithm

Hanxuan Wang

Shanghai Shibei Senior High School, shanghai, China

wanghanxuan007@163.com

Abstract. Given n identical-looking coins each with possible weight in {0, 1}, and a scale that

can measure the weight of any arbitrary set of coins, the coin weighing problem studies how to

find out the weight of every coin with as few weighing as possible. The algorithm in Lindström

takes O(n/logn) non-adaptive weighings to determine the coins, which gives an O(logn) factor

improvement compared with the naïve algorithm that measures each coin on its own. However,

it is unclear that with the O(n/logn) queries, how long it takes to retrieve x. This paper is about

establishing and further optimizing the naïve recovery time complexity of Lindström ‘s

algorithm. The recovery time complexity here is defined as the time complexity to recover x

given Dx under the RAM model, where 𝐷 ∈ {0,1}𝑚×𝑛,, each row being a weighing query, is the

Lindström query matrix. The brute force recovery algorithm has running time O(m2n), whereas

our algorithm only takes O(mn). Finally, we run experiments to verify our results with the actual

running time of the algorithm on various size of inputs.

Keywords: Group testing, Coin Weighing Problem, Quantitative Group Testing

1. Introduction

There has been a long line of work on the “coin weighing problem”. A stack of coins, each has weight

either 0 or 1. There is a scale which tells you the total weight of an arbitrary subset of coins. A natural

question: how to get the weight of each coin with as few weighing as possible? 𝑛 weighing are definitely

enough, but can we do better? The answer is positive. One can play with the problem a bit and find that

3 weighing is enough to figure out the weights of 4 coins. Due to the simplicity of the problem and its

connection to group testing, this problem was almost resolved by mathematicians in 1960s. An important

piece of work is by Lindström, in which they found a clever way to construct the queries and recovery

the weights [1].

The query complexity of an algorithm with query access is defined as the number of queries the

algorithm makes. Cantor and Mills designed the first 𝑂(𝑛/log 𝑛) query complexity algorithm for the

coin weighing problem [2]. The algorithm is recursive and elegant. Lindström argued the coin weighing

problem has query complexity Θ(𝑛/log 𝑛) [1]. The lower bound uses a combinatorial argument

involving determinant of a family of matrices, although one can see the asymptotic lower bound

Ω(𝑛/log 𝑛) nearly immediately by using some ideas from information theory: each query givens at

most log 𝑛 bits of information, yet there are 𝑛 bits of information hiding in 𝑥.

The study of coin weighing with arbitrary 𝑥 was almost closed at this point. Since then, more refined

groups of coins are conjured and studied. A notable one is the group of coins with total weights 𝑑. The

coin family now has size (
𝑛
𝑑
) , while on the other hand each weighing gives at most log 𝑑 bits of

Proceedings of the 3rd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/30/20241106

© 2023 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

195

information. The leads to a Ω
𝑑log(𝑛/𝑑)

log 𝑑
 lower bound. The same upper bound is achieved by Bshouty

with an adaptive, deterministic algorithm [3]. There are ongoing works on getting better non-adaptive

algorithms, with the current best non-adaptive deterministic algorithm of query complexity 𝑂(𝑑log 𝑛),
achieved by the BCH code, discovered separately by Raj Chandra Bose, Dwijendra Kumar

RayChaudhuri and Alexis Hocquenghem [4]. For randomized algorithms, there is an 𝑂 (𝑑log
𝑛

𝑑
) queries

non-adaptive algorithm by [5] [6].

Although the complexity of a query algorithm is defined as the number of queries it makes, we think

it is crucial to optimize the remaining operations to make the recovery process faster as well. In fact,

several work related to coin weighing provide non-constructive algorithms or randomized algorithm that

is unclear if the recovery can be done in polynomial time. Creating better recovery algorithms make the

query algorithms themselves to be more practicable. Formally, we define the recovery time complexity

to be the following.

Definition 1. (Recovery time complexity) Let TC(𝒜(𝑥)) be the time complexity of running

algorithm 𝒜 on input 𝑥 . Given a query algorithm 𝒟 , the corresponding recovery algorithm ℛ𝒟 , the

recovery time complexity of ℛ𝒟 is defined as max𝑥  TC(ℛ𝒟(𝒟(𝑥))).
In English, the recovery time complexity of the recovery algorithm ℛ𝒟, for query algorithm 𝒟, is the

worst case time complexity of reconstructing 𝒟(𝑥).

1.1. Our Results

Theorem 2. Let 𝒟 be the Lindström algorithm that given 𝑥 outputs 𝐷𝑥 where 𝐷 is the Lindström matrix

in {0,1}𝑚×𝑛 and 𝑥 is an arbitrary vector in {0,1}𝑛 . There is an algorithm ℛ𝒟 with recovery time

complexity 𝑂(𝑚𝑛).
Remark: Note the trivial recovery time complexity of Lindström algorithm is 𝑂(𝑚2𝑛) . This is

because we iterate 𝑖 through 𝑚 to 1 (in a decreasing order), in each iteration we try to learn 𝛼(𝑖) new

entries of 𝑥. In each iteration, the most expensive operation is computing 𝜆𝑖𝐷. 𝜆𝑖 is a vector of carefully

chosen coefficients with dimension 1 ×𝑚 , and 𝐷 is a matrix with dimension 𝑚 × 𝑛 . computing 𝐷𝑥

takes 𝑂(𝑚𝑛) time. Hence the overall complexity is 𝑂(𝑚2𝑛).
To see why computing 𝜆𝑖𝐷 is needed, see a brief discussion of how Lindström algorithm works in

Section 2, and remarks in Section 4.

2. Preliminaries

Let’s abstract the problem into math language. Given a hidden vector 𝑣 ∈ {0,1}𝑛, we want to find a set

of queries 𝑞1, 𝑞2,⋯ , 𝑞𝑚 ∈ {0,1}𝑛 such that 𝑞1
⊤ ⋅ 𝑣, 𝑞2

⊤ ⋅ 𝑣,⋯ , 𝑞𝑚
⊤ ⋅ 𝑣 uniquely determines 𝑣 while

minimizing 𝑚. Note if 𝑞1, 𝑞2,⋯ , 𝑞𝑚 are independent, then we say the algorithm (which is the set of

queries) non-adaptive. If 𝑞1, 𝑞2,⋯ , 𝑞𝑚 are generated deterministically (without using random bits), then

the algorithm is deterministic. In this work, we focus on Lindström’s work, which is both non-adaptive

and deterministic [1]. For non-adaptive algorithm, since the queries are independent, we can treat each

query as a row, and stack them together to form the query matrix

𝐷 =

[

−𝑞1

⊤ −

−𝑞2
⊤ −
⋮

−𝑞𝑚
⊤ −]

(1)

Before we dive deeper into the construction of Lindström matrix, we introduce some notations and

definitions.

For any ordered object 𝑠 with length, we use 𝑠[𝑖] to represent the value of 𝑠 at index 𝑖 (0-based).

Definition 3. (Set definition of natural numbers) Let 𝑎 ∈ ℕ, binary(a) be its binary representation.

Proceedings of the 3rd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/30/20241106

196

Define 𝑠(𝑎) be the set that contains 2𝑖 if and only if binary (𝑎)[𝑖] = 1 . For instance, 𝑠(4) =

{4}, 𝑠(7) = {1,2,4}. When the context is clear, we might omit the function 𝑠() for brevity. With this

definition, we can use ⊆,⊈ between natural numbers.

Define 𝛼(𝑎) to be |𝑠(𝑎)|.
It’s easy to see a bijection between ℕ and 𝑠(𝑎).
Definition 4. (Distinguishing vector) Let 𝑥, 𝑦 ∈ {0,1}𝑛 and 𝑣 ∈ {0,1}𝑛 ⋅ 𝑣 is a distinguishing matrix

if 𝑣 ⋅ 𝑥 ≠ 𝑣 ⋅ 𝑦 for 𝑥 ≠ 𝑦.

One common choice of 𝑣 is 𝑑𝑛 = [2
0, 21,⋯ , 2𝑛−1].

Definition 5. (Distinguishing matrix) Let 𝑥, 𝑦 ∈ {0,1}𝑛 and 𝐷 ∈ {0,1}𝑚×𝑛. 𝐷 is a distinguishing

matrix if 𝐷𝑥 ≠ 𝐷𝑦 for 𝑥 ≠ 𝑦.

Proof. First, both 𝐷𝑥 and 𝐷𝑦 are two matrices and x, y ∈ {0,1}𝐴(𝑚). We purpose 𝐷𝑥 = 𝐷𝑦 but 𝑥 ≠ 𝑦.

By selecting the last element from two vectors separately, we can obtain 𝑥𝑚 ≠ 𝑦𝑚 . Because 𝐷𝑥 =
𝐷𝑦, 𝜆𝑥 ⋅ 𝐷𝑥 = 𝜆𝑦 ⋅ 𝐷𝑦. Then 𝑑𝑥 = 𝑑𝑦 and 𝑥𝑚 = 𝑦𝑚. And this conflicts with what we purposed 𝑥𝑚 ≠ 𝑦𝑚.

So if 𝑥 ≠ 𝑦, 𝐷𝑥 ≠ 𝐷𝑦

Definition 6. (Lindström matrix) Lindström matrix is a 𝑚 ×∑𝑟=1
𝑚  𝛼(𝑎) size matrix. We describe

each 𝑚 × 𝛼(𝑟) submatrix 𝐷𝑟.

𝐷𝑟[𝑖][𝑗] =

{

 inawaysuchthat∑  𝐷𝑟[𝑖] = [2

0,21,22

… , 2𝛼(𝑟)−1]

𝑗

𝑖 ⊆ 𝑟, 𝛼(𝑖)mod2 = 1

0 𝑖 ⊆ 𝑟, 𝛼(𝑖)mod2 = 0

𝐷𝑟[𝑟 ∩ 𝑖][𝑗] 𝑖 ⊈ 𝑟

(2)

Some explanations:

(a) When 𝑖 ⊆ 𝑟, If 𝛼(𝑟) is an odd number, the summation of the rows with satisfying index 𝑟 should

be 𝑑𝛼(𝑟) = [2
0, 21, 22… , 2𝛼(𝑖)−1]. Conversely, if 𝛼(𝑟) is even, the pertinent rows will be replete with 0

s.

For example, if 𝑚 = 6, 𝑖 = 6, 𝐷6 is a 6 × 2 matrix because 𝛼(6) = 2. {2}, {4}, {2,4} ⊆ 𝑠(6) , 𝛼(2)
and 𝛼(4) are odd, but 𝛼(6) is even. So the row 6 is filled with 0 s, 𝐷6[6] = [0,0] . For rows 2 and

4, 𝐷6[2] + 𝐷6[4] = [1,2], so we can let 𝐷6[2] = [1,1], 𝐷6[4] = [0,1]. (The precise answer of 𝐷2 and

𝐷4 is flexible. 𝐷6[2] = [0,1], 𝐷6[4] = [1,1] is also fine. We only need to make sure the sum of these

rows is [1,2].
(b) When 𝑖 ⊄ 𝑟, 𝐷𝑟[𝑖][𝑗] = 𝐷𝑟[𝑟 ∩ 𝑖][𝑗] . Following with the previous example. 1,3,5 are ⊄ 6 . 5 ∩

6 = 4, So 𝐷6[5][1] = 𝐷6[5 ∩ 6][1] = 𝐷6[4][1] = 0, 𝐷6[5][2] = 𝐷6[5 ∩ 6][2] = 𝐷6[4][2] = 1. If 𝑖 ∩
𝑟 = 𝑝, then the 𝑖 th rows is exactly the 𝑝 th row. Thus, we can just use corresponding rows instead of

computing numbers one by one.

(c) Finally, 0th row is the zero row vector by default. For example, 1 ∩ 6 = 0, so 𝐷6[1] = [0,0].
Since the all zero query doesn’t give any information, we don’t include the 0th row in our query

matrix. As a result,

𝐷6 =

(

0 0

1 1

1 1

0 1

0 1

0 0)

(3)

And for completeness,

𝐷 =

[

1 0 1 1 0 1 1 0 0

0 1 0 1 0 0 0 1 1

1 1 0 0 0 1 1 1 1

0 0 0 0 1 0 1 0 1

1 0 1 1 1 0 0 0 1

0 1 0 1 1 0 1 0 0]

(4)

Proceedings of the 3rd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/30/20241106

197

Definition 7. 𝜆𝑟 is a coefficient vector designed with the purpose that 𝜆𝑟
⊤𝐷𝑟 is a distinguishing vector.

𝜆𝑖[𝑗] = {
(−1)𝛼(𝑗)+1 𝑗 ⊆ 𝑖
0 𝑗 ⊄ 𝑖

(5)

Lemma 8. 𝜆𝑟
⊤𝐷𝑟 = 𝑑𝛼(𝑟).

Eg:

[𝜆6
⊤ ⋅ 𝐷6 = [0 1 0 1 0 −1]

(

0 0
1 1
1 1
0 1
0 1
0 0)

= [1 2]] (6)

Proof. Based on the definition of 𝜆𝑖, we only need to focus on those numbers that are a subset of 𝑠(𝑖).
Since we raise -1 to the power of 𝛼(𝑗) + 1, rows with odd 𝛼 will be added. When 𝛼(𝑗) is an even, its

corresponding number should be -1 in 𝜆. However, because of the definition, this rows must be filled

with 0 s in the 𝐷𝑟, which will not affect our calculation. As a result, the sum of those rows is 𝑑𝛼(𝑟).

Lemma 9. If 𝑟 < 𝑖, 𝜆𝑖
⊤𝐷𝑟 = [0, ⋯ ,0].

Eg:

[λ5
⊤ ⋅ D4 = [1 0 0 1 −1 0]

(

0
0
0
1
1
1)

= 0] (7)

Proof. Since 𝑖 ≥ 𝑟, there must be an element 𝑒 that only exists in 𝑠(𝑖) and not in 𝑠(𝑟). This implies

that we can find a bijection between the subsets of 𝑠(𝑖), where the bijection maps every set 𝑥 to 𝑦 =
𝑥 ∪ {𝑒}.
𝛼(𝑦) = 𝛼(𝑥) + 1 . Moreover, 𝐷𝑟[𝑥] = 𝐷𝑟[𝑥 ∩ 𝑟] and 𝐷𝑟[𝑦] = 𝐷𝑟[𝑟 ∩ 𝑦] = 𝐷𝑟[𝑟 ∩ (𝑥 ∪ {𝑒})] =

𝐷𝑟[𝑟 ∩ 𝑥]. We conclude that (−1)𝛼(𝑥)𝐷𝑟[𝑥] + (−1)
𝛼(𝑦)𝐷𝑟[𝑟 ∩ 𝑦] = 𝐷𝑟[𝑥] − 𝐷𝑟[𝑥] = 0.

𝜆𝑖
⊤𝐷𝑟= ∑(−1)𝛼(𝑗)+1𝐷𝑟[𝑗]

𝑗⊆𝑖

  

= ∑ (−1)𝛼(𝑗)+1𝐷𝑟[𝑗]

𝑗⊆𝑖,𝑒∈𝑗

  + ∑ (−1)𝛼(𝑗)+1𝐷𝑟[𝑗]

𝑗⊆𝑖,𝑒∉𝑗

  

= ∑ (−1)𝛼(𝑗)+1𝐷𝑟[𝑗 ∩ 𝑖]

𝑗⊆𝑖,𝑒∈𝑗

  + ∑ (−1)𝛼(𝑗)+1𝐷𝑟[𝑗 ∩ 𝑖]

𝑗⊆𝑖,𝑒∉𝑗

  

= 0(bijectionargument)

(8)

Lemma 10. Lindström matrix is a distinguishing matrix.

Proof. Following easily from the two lemmas above.

3. Recover Coin Weights by Brute Force

Let 𝑥 be a length 𝑛 vector representing the hidden coin weights, and let 𝐷 represent the 𝑚 × 𝑛

Lindström matrix. We first describe a brute force way to compute 𝑥. The high level idea:

1. In every loop 𝑟 indexed from 𝑚 to 1 we try to recover 𝛼(𝑟) elements in 𝑥

2. In loop 𝑟, we compute 𝜆𝑖, multiply it with 𝐷𝑥 and 𝐷, then use property of 𝜆𝑖𝐷 and the equation

𝜆𝑖𝐷 ⋅ 𝑥 = 𝜆𝑖𝐷𝑥 to recover 𝑥[∑𝑗=1
𝑖−1  𝛼(𝑗): ∑𝑗=1

𝑖  𝛼(𝑗)].

Note the bottleneck is computing 𝜆𝑖𝐷, with time complexity 𝑂(𝑚𝑛).

Proceedings of the 3rd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/30/20241106

198

3.1. Numbering

Algorithm 1 getLambdaD

Input: D: an m × n Lindstr öm matrix; λ: a length m vector.

Output: the product of λ and D.

1: n ← D.shape[0]

2: m ← D.shape[1]

3: result ← np.zeros(n)

4: for i = 0 to m do

5: for j = 0 to n do

6: result[j] ← result[j] + λ[i] ∗ D[i][j]

7: end for

8: end for

9: return result

Algorithm 2 solveX

Input: D: an m × n Lindstr öm matrix; Dx: the dot product of D and x.

Output: x ∈ {0, 1}1×m such that D · x = Dx.

1: m ← len(D), n ← len(D[0])

2: end ← n

3: sol ← [0] × n

4: for r = m to 0 do

5: λ ← getLambdar(m, r) ▷ See Defnition 7.

6: num ← getLambdaDx(λ, Dx) ▷ getLambdaDx(λ, Dx) returns the dot product of λ and

Dx.

7: v ← getLambdaD(λ, D) ▷getLambdaD(λ, D) returns dot product of λ and D.

8: start ← end − α(r)

9: if end < n then

10: for i = end to n do

11: num ← num − v[i] ∗ sol[i]

12: x ← solvePartialx(v, num, start, end) ▷ solvePartialx returns the weight of each coin in the

form of vector.

13: sol ← sol + x

14: end ← start

15: end for

16: end if

17: end for

18: return sol

3.2. Analysis of the time complexity in the original algorithm

One can easily check the correctness of Algorithm 2.

Complexity: We first observe that the bottleneck in the for loop in Line 4 is getLambdaD which takes

𝑂(𝑚𝑛) time. The details of getLambdaD, which is essentially a matrix product between 𝜆 ∈ {0,1}1×𝑚

and 𝐷 ∈ {0,1}𝑚×𝑛, takes 𝑂(𝑚𝑛) time.

Line 4 is a for loop that iterates 𝑚 times, implying that getLambdaD (𝜆, D) must run 𝑚 times,

resulting in a time complexity of 𝑂(𝑚2𝑛). For larger values of 𝑚, the program’s running time will be

considerably slow. However, there is potential for improvement in the method of calculating 𝑥 owing to

the properties of this method to get 𝑥 . Therefore, we aim to make some alterations to decrease the

algorithm’s time complexity.

Proceedings of the 3rd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/30/20241106

199

4. Improved Algorithm to Recover

The use of sections to divide the text of the paper is optional and left as a decision for the author. Where

the author wishes to divide the paper into sections the formatting shown in table 2 should be used.

4.1. Algorithm

Algorithm 3 getX

Input: Both r and s are a list of numbers that get from definition 3; res is a list of coefficient improved

from initial numbers satisfy s(num) ⊆ s(r) and α(num) equals an odd that build on the basic of definition

13

Output: a list partly same as list res, but filling with 0s in the position of missing number compared

with s.

1: for i = 0 to len(s) do

2: if i < len(r) then

3: if s[i] = r[i] then

4: continue

5: else

6: r.insert(i, 0) ▷ Keep the lists r and s the same length

7: res.insert(i, 0)

8: end if

9: else

10: r.append(0)

11: res.append(0)▷ Fill the vacant position with 0s to facilitate subsequent calculations

12: end if

13: end for

14: return res

Algorithm 4 getLambdaDr

Input: l is a list of numbers in the s(num); x is the modified coefficient for each row. (Rows don’t need

to add, their coefficient will be zeroes.)

Output: result is a part that i ≤ r of λ ∗ D

1: total ← []▷ total keeps track of the number formation of different rows

2: result = np.zeros(len(l))

3: for i in l do

4: index = bisect.bisect right(l, i) − 1▷ Through binary search to certificate the amount of 0s

5: vector = [0] ∗ index + [1] ∗ (len(l) − index) ▷ See Definition 13, Forming rows in new definition

6: total.append(vector)

7: end for

8: for j = 0 to len(l) do

9: if x[j] = 0 then

10: continue

11: else

12: result = result + int(x[j]) ∗ np.array(total[j]) ▷ result, a vector of length α(s) that equals to λi ∗ Dr

13: end if

14: end for

15: return result

Proceedings of the 3rd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/30/20241106

200

Algorithm 5 getModifiedLambdaD

Input: m:is the number of rows in D; r: selects from 1 to m in order;

Output: a vector of length n that equals to λ · D.

1: result ← []▷ result keeps track of the formation of λD

2: for i = 1 to m + 1 do

3: if i < r then

4: Di ← [0] ∗ α(i)▷ See definition 3 α(i) is the length of s(i)

5: result = np.concatenate((result, Di), axis = 0)▷ Put numbers in Di into result in order

6: end if

7: if i ≥ r then

8: if set(IntegerToList(r)) ⊆ set(IntegerToList(i)) then▷ See definition 3, convert r to a list similarly,

sorted

9: x ← getX() ▷ x returns modified list to directly calculate 10:Di = lambdaiDr(l, x)▷ See definition

3,l can get from IntegerToList() 11:result = np.concatenate((result, Di), axis = 0)

12: else

13: Di = [0] ∗ α(i)

14: result = np.concatenate((result, Di), axis = 0)

15: end if

16: end if

17: end for

18: return result

4.2. Analysis about modification in the algorithm

Lemma 11. When 𝑟 > 𝑖 and 𝑖 ⊄ 𝑟, 𝜆𝑖 ⋅ 𝐷𝑟 = [0] ∗ 𝛼(𝑟).
Proof. Same as the proof of lemma 9.

Lemma 12. When 𝑖 ⊂ 𝑟, only need to calculate those 𝜆𝑖[𝑗] = 1 (j means the position of number in

𝜆)

Proof. In 𝜆𝑖 , only 𝑗 ⊆ 𝑖 will have a value of either 1 or -1 . According to definition 7 , we can

determine that when 𝛼(𝑗) = 2𝑘(𝑘 ∈ ℕ), in 𝜆𝑖[𝑗] will have a value of -1 . However, in the matrix 𝐷𝑟,
these rows will equal to [0] ∗ 𝛼(𝑟) which means it will not affect our calculation.

This can directly decrease half of the numbers that need to be calculated. Because each set will get

2𝑡 subsets, 𝑡 is related to the numbers in the set. Then in those sets which include even numbers in the

set occupy half of the all subsets. According to lemma 12, we only need to calculate the another half of

the subsets that include odd numbers in the set.

Definition 13. We define the free rows in 𝐷𝑟 as below. (𝑗 is the position of 𝑖 in 𝑠(𝑟))

𝐷𝑟[𝑖] = {
[0] ∗ 𝑠(𝑖)[𝑗] + [1] ∗ (𝛼(𝑟) − 𝑠(𝑖)[𝑗]) 𝑖 ⊆ 𝑟 and 𝛼(𝑖) = 1

𝐷𝑟[⌊log2 𝑖⌋] 𝑖 ⊆ 𝑟 and 𝛼(𝑖) = 2𝑘 + 1(𝑘 > 1)
 (9)

For example, if 𝑚 = 15,𝐷1 = [1,1,1,1]𝐷2 = [0,1,1,1]𝐷4 = [0,0,1,1]𝐷7 = [0,0,1,1] 𝐷8 =
[0,0,0,1]𝐷11 = [0,0,0,1]𝐷13 = [0,0,0,1]𝐷14 = [0,0,0,1]

Proof. With the property of 2𝑘, we know that the sum of front numbers must smaller than the next

number(These numbers specifically refer to 2𝑘(𝑘 ∈ ℕ)). For example, 1 + 2 + 4 + 8 < 16. Because

20 + 21 +⋯2𝑘 =
1−2𝑘+1

1−2
= 2𝑘+1 − 1 < 2𝑘+1(10)

The way the algorithm works: To understand how the algorithm works, we first need to turn numbers

into sets as definition 3. Once this is done, we can list the subset of 𝑠(𝑖) that satisfy 𝛼(subsets) = 2𝑘 +
1(𝑘 ∈ ℕ), which are the ones we will be working with. Next, we convert these numbers into coefficients

that can be directly multiplied with their corresponding rows in the 𝐷𝑟. We create a new list called

coefficient and store the numbers in satisfiedNumber that were originally 2𝑘(𝑘 ∈ ℕ) as 1𝑠. Continuing

with definition 13 , if any number in the list meets the condition 2𝑘 < num < 2𝑘+1, we add 1 to its

corresponding number in coefficient. We then compare 𝑠(𝑖) with the 𝑠(𝑟) and append a 0 in the

Proceedings of the 3rd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/30/20241106

201

corresponding position of any number that exists in 𝑟 but not in 𝑖. This completes the process of forming

the modified coefficient of 𝜆 ∗ 𝐷𝑟 Moving on, we need to describe part of the 𝐷𝑟. We generate lines

using the numbers in the 𝑠(𝑟) list and arrange them according to definition 13. We then multiply the

coefficients with their corresponding rows. If a number in the coefficient list is 0 , it is skipped. Finally,

the various steps are consolidated to obtain the answer of 𝜆𝑖𝐷𝑟.
Lemma 14. Computing 𝜆𝑖𝐷𝑟 with 𝑖 < 𝑟, 𝑖 ⊆ 𝑟 takes 𝑂(𝛼(𝑟) ⋅ log𝑚) time.

For example, 𝑖 = 15, 𝑟 = 31, 𝑠(𝑖) = {1,2,4,8}, 𝑠(𝑟)[𝑟 is a number selected from 1 to 𝑚] =

{1,2,4,8,16},
satisfiedNumber = [1,2,4,7,8,11,13,14] , coefficient = [1,1,2,4] . Due to 𝑠(𝑖) without 16 , so

modifiedCoefficient = [1,1,2,4,0]. The final answer is 1 ∗ 𝐷1 + 1 ∗ 𝐷2 + 2 ∗ 𝐷4 + 4 ∗ 𝐷8 = [1,2,4,8,8].
Proof. First, 𝑟 should be divided into sets such as 𝑟 = {2𝑥1 , 2𝑥2 … , 2𝛼(𝑟)−1}. According to lemma 11

and lemma 12, The computation of 𝜆𝐷𝑟 can be simplified by focusing solely on the subset of 𝑟 whose

length is an odd number. By summing these rows, the time complexity can be reduced to 𝑂(𝑚 ∗ 𝛼(𝑟)),
where 𝑚 is the largest number of subsets whose length equals an odd number. For example, when 𝑚 =

𝑟 = 2𝑘−1, 𝛼(𝑟) = 𝑘 − 1 and the number of subsets whose length is odd number should be
2𝑘−1

2
. Thus,

its time complexity equals 𝑂(𝑚). The value of 𝛼(𝑟) represents the length of each row that needs to be

added. However, there is a more efficient way. We count the numbers satisfied the condition mentioned

above and lie between two numbers like 2𝑘 . Then adding it to the coefficient of its related vector.

Therefore, the actual rows we need to calculate are those 𝛼(num) = 1 and the final time complexity

should be log𝑚 ∗ 𝛼(𝑟). (num refers to row numbers in matrix 𝐷)

Remark: Why do we have to calculate 𝜆𝐷 first? Why not just calculate 𝜆𝐷𝑥 which saves a lot of

time? Indeed, calculate 𝜆 × 𝐷𝑥 only takes 𝑂(𝑚) time. However, 𝜆 × 𝐷𝑥 will only get us a number, but

our goal is to know the weight of each coin. Thus, we still have to know the coefficient of each variable

coin in the equation. Because of the way to know the weight of coin depends on the special property

that the specific coefficient brings, it is not clear how to avoid calculating the coefficient of those number

to get their weight.

4.3. Analysis of the time complexity in the modified algorithm

We want to analyze the total running time of computing 𝜆𝑖𝐷, where 𝑖 ranges from 1 to m. To compute

𝜆𝑖𝐷, we break it down to computing 𝜆𝑖𝐷𝑟 where 𝑟 ranges from 1 to 𝑚.

Now according to Algorithm 5, we break it down into 4 cases:

1. (𝑖 > 𝑟)𝜆𝑖𝐷𝑟 = 𝟎. The zero vector 𝟎 has length 𝛼(𝑟), so the number of unit operations is 𝛼(𝑟).
2. (𝑖 = 𝑟)𝜆𝑖𝐷𝑟 = 𝑑𝛼(𝑟). Similarly, the number of unit operations is 𝛼(𝑟).

3. (𝑖 < 𝑟, 𝑖 ⊈ 𝑟)𝜆𝑖𝐷𝑟 = 𝟎. The number of unit operations is 𝛼(𝑟).
4. (𝑖 < 𝑟, 𝑖 ⊆ 𝑟) As discussed above, the number of unit operations is 𝛼(𝑟) ⋅ log𝑚.

For the first two cases, the total number of operations is ∑𝑟=1
𝑚  𝛼(𝑟) ⋅ (𝑚 + 1 − 𝑟).

For the last two cases, the number of operations is ∑𝑟=1
𝑚  (𝑟 − 2𝛼(𝑟))𝛼(𝑟) and ∑𝑟=1

𝑚  2𝛼(𝑟)𝛼(𝑟)log𝑚,

respectively.

Adding those together, the overall complexity is

∑𝛼(𝑟)

𝑚

𝑟=1

⋅ (𝑚 + 1 − 𝑟) + (𝑟 − 2𝛼(𝑟))𝛼(𝑟) + 2𝛼(𝑟)𝛼(𝑟) log𝑚

=∑𝛼(𝑟)

𝑚

𝑟=1

⋅ (𝑚 + 1 + 2𝛼(𝑟)(log𝑚 − 1)) (11)

To simplify ∑𝑟=1
𝑚  𝛼(𝑟)2𝛼(𝑟)log𝑚, we assume 𝑚 = 2𝑘 for some 𝑘 ∈ ℕ.

Proceedings of the 3rd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/30/20241106

202

∑𝛼(𝑟)2𝛼(𝑟) log𝑚

𝑚

𝑟=1

  = ∑𝛼(𝑟)2𝛼(𝑟)𝑘

2𝑘

𝑟=1

  

= ∑(
𝑘
𝑖
) 𝑖2𝑖𝑘

𝑘

𝑖=1

  

= 2𝑘23𝑘−1

=
2

3(log𝑚)2𝑚log3

(12)

Hence the sum∑𝑟=1
𝑚  𝛼(𝑟) ⋅ (𝑚 + 1 + 2𝛼(𝑟)(log𝑚 − 1)) is dominated by ∑𝑟=1

𝑚  𝛼(𝑟) ⋅ 𝑚 =

𝑂(𝑚𝑛) = 𝑂(𝑚2log𝑚).

5. Experiments

We run the brute force method and our method on the same set of 𝑄,𝑄𝑥 and plot the time required to

recover 𝑥.

Figure 1. 𝑛 v.s. time with the brute force and our approach

Note the brute force approach uses for loop instead of built-in @ operator when computing vector

matrix multiplication. We did this on purpose since @ operation is optimized and does not reflect the

underlying time complexity of matrix multiplication. Of course, we avoid using @ operator in our

optimized algorithm for fairness.

We then plot the running time of our method against the recovery time complexity.

Figure 2. 𝑛 v.s. time with the time complexity and our approach

Proceedings of the 3rd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/30/20241106

203

6. Conclusion and Future Works

We proposed an efficient recovery algorithm that utilizes the math property of Lindström’s construction.

The algorithm is much faster than the brute force approach, and its running time with our implementation

is on par with what we conclude in theory.

For open problems, we note that we haven’t explored any lower bounds yet - it would be an

interesting question to see if there is any non-trivial lower bound and how large the gap is with our

current upper bound. One concrete question is, is Ω(𝑚𝑛) the lower bound? Do we have to compute most

of 𝜆𝑟𝐷 for every 𝑟 ? Can we possibly do better?

References

[1] Lindström, B. (1971). On Möbius functions and a problem in combinatorial number theory.

Canadian Mathematical Bulletin, 14(4):513-516.

[2] Cantor, D. G. and Mills, W. H. (1964). Determination of a subset from certain combinatorial

properties.

[3] Bshouty, N. H. (2009). Optimal algorithms for the coin weighing problem with a spring scale. In

COLT, volume 2009, page 82.

[4] Bose, R. C. and Ray-Chaudhuri, D. K. (1960). On A class of error correcting binary group codes.

Inf. Control., 3(1):68-79.

[5] Gebhard, O., Hahn-Klimroth, M., Kaaser, D., and Loick, P. (2019). Quantitative group testing in

the sublinear regime. CoRR, abs/1905.01458.

[6] Karimi, E., Kazemi, F., Heidarzadeh, A., Narayanan, K. R., and Sprintson, A. (2019).

Proceedings of the 3rd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/30/20241106

204

