References
[1]. Nijhawan T, Attigeri G, Ananthakrishna T. 2022 Stress detection using natural language processing and machine learning over social interactions. J. Big D. 9(1): 1-24
[2]. Tanana M J, Soma C S, Kuo P B, et al. 2021 How do you feel? Using natural language processing to automatically rate emotion in psychotherapy[J]. Behav. Res. Methods (13):1-14
[3]. Maulud D H, Zeebaree S R M, Jacksi K, et al. 2021 State of art for semantic analysis of natural language processing[J]. QAJ 1(2): 21-28
[4]. Darwish K, Habash N, Abbas M, et al. 2021 A panoramic survey of natural language processing in the Arab world[J]. CMR 64(4): 72-81
[5]. Wignell P, Chai K, Tan S, et al. 2021 Natural language understanding and multimodal discourse analysis for interpreting extremist communications and the re-use of these materials online[J]. TPV 33(1): 71-95
[6]. Zhang T, Schoene A M, Ji S, et al. 2022 Natural language processing applied to mental illness detection: a narrative review[J]. NPJ Digit Med 5(1): 46
[7]. Peng S, Cao L, Zhou Y, et al. 2022 A survey on deep learning for textual emotion analysis in social networks[J]. DICON 8(5): 745-762
[8]. Khyani D, Siddhartha B S, Niveditha N M, et al. 2021 An interpretation of lemmatization and stemming in natural language processing[J]. J. Uni. Shanghai. Sci. Tech. 22(10): 350-357
[9]. Murthy A R, Kumar K M A. 2021 A review of different approaches for detecting emotion from text[C]//IOP Conference Series: Materials Science and Engineering. IOP Publishing, 1110(1): 012009
[10]. Torregrosa J, Bello-Orgaz G, Martínez-Cámara E, et al. 2023 A survey on extremism analysis using natural language processing: definitions, literature review, trends and challenges[J]. J. Ambient Intell. Hum. Comput. 14(8): 9869-9905
[11]. Zad S, Heidari M, James Jr H, et al. 2021 Emotion detection of textual data: An interdisciplinary survey[C]//2021 IEEE World AI IoT Congress (AIIoT). IEEE, 0255-0261
[12]. Fan C, Yuan C, Gui L, et al. 2021 Multi-task sequence tagging for emotion-cause pair extraction via tag distribution refinement[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 29: 2339-2350
[13]. Acheampong F A, Nunoo-Mensah H, Chen W. 2021 Transformer models for text-based emotion detection: a review of BERT-based approaches[J]. ARTIF INTELL REV (09): 1-41
[14]. Chen Q, Leaman R, Allot A, et al. 2021 Artificial intelligence in action: addressing the COVID-19 pandemic with natural language processing[J]. Ann. Rev. Biomed. Da. S. (04): 313-339
[15]. Levis M, Westgate C L, Gui J, et al. 2021 Natural language processing of clinical mental health notes may add predictive value to existing suicide risk models[J]. PSYCHOL MED 51(8): 1382-1391
[16]. Khanbhai M, Anyadi P, Symons J, et al. 2021 Applying natural language processing and machine learning techniques to patient experience feedback: a systematic review[J]. BMJ HEALTH CARE INFO 28(1):112-113
[17]. Nandwani P, Verma R. 2021 A review on sentiment analysis and emotion detection from text[J]. SNAM 11(1): 81-81
[18]. Sean B. Findings of the shared task on Emotion Analysis in Tamil[C]//Proceedings of the Second Workshop on Speech and Language Technologies for Dravidian Languages. 2022,(13): 279-285
[19]. Pérez J M, Furman D A, Alemany L A, et al. 2021 Robertuito: a pre-trained language model for social media text in spanish[J]. arXiv preprint arXiv.(96):87-88
[20]. Choudrie J, Patil S, Kotecha K, et al. 2021 Applying and understanding an advanced, novel deep learning approach: A Covid 19, text based, emotions analysis study[J]. ISF (23): 1431-1465
[21]. Nandwani P, Verma R. 2021 A review on sentiment analysis and emotion detection from text[J]. SNAM 11(1): 81
[22]. Sean B. Findings of the shared task on Emotion Analysis in Tamil[C]//Proceedings of the Second Workshop on Speech and Language Technologies for Dravidian Languages. 2022(13): 279-285
[23]. Graterol W, Diaz-Amado J, Cardinale Y, et al. 2021 Emotion detection for social robots based on NLP transformers and an emotion ontology[J]. Sensors, 21(4): 1322
[24]. Bhowmik N R, Arifuzzaman M, Mondal M R H, et al. 2021 Bangla text sentiment analysis using supervised machine learning with extended lexicon dictionary[J]. NLPR 1(3-4): 34-45
[25]. Harrison C J, Sidey-Gibbons C J. 2021 Machine learning in medicine: a practical introduction to natural language processing[J]. BMC MED RES METHODOL 21(1): 1-11
Cite this article
Lin,S. (2024). Text emotional analysis in Natural Language Processing. Applied and Computational Engineering,36,163-172.
Data availability
The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.
Disclaimer/Publisher's Note
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
About volume
Volume title: Proceedings of the 2023 International Conference on Machine Learning and Automation
© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and
conditions of the Creative Commons Attribution (CC BY) license. Authors who
publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons
Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this
series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published
version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial
publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and
during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See
Open access policy for details).
References
[1]. Nijhawan T, Attigeri G, Ananthakrishna T. 2022 Stress detection using natural language processing and machine learning over social interactions. J. Big D. 9(1): 1-24
[2]. Tanana M J, Soma C S, Kuo P B, et al. 2021 How do you feel? Using natural language processing to automatically rate emotion in psychotherapy[J]. Behav. Res. Methods (13):1-14
[3]. Maulud D H, Zeebaree S R M, Jacksi K, et al. 2021 State of art for semantic analysis of natural language processing[J]. QAJ 1(2): 21-28
[4]. Darwish K, Habash N, Abbas M, et al. 2021 A panoramic survey of natural language processing in the Arab world[J]. CMR 64(4): 72-81
[5]. Wignell P, Chai K, Tan S, et al. 2021 Natural language understanding and multimodal discourse analysis for interpreting extremist communications and the re-use of these materials online[J]. TPV 33(1): 71-95
[6]. Zhang T, Schoene A M, Ji S, et al. 2022 Natural language processing applied to mental illness detection: a narrative review[J]. NPJ Digit Med 5(1): 46
[7]. Peng S, Cao L, Zhou Y, et al. 2022 A survey on deep learning for textual emotion analysis in social networks[J]. DICON 8(5): 745-762
[8]. Khyani D, Siddhartha B S, Niveditha N M, et al. 2021 An interpretation of lemmatization and stemming in natural language processing[J]. J. Uni. Shanghai. Sci. Tech. 22(10): 350-357
[9]. Murthy A R, Kumar K M A. 2021 A review of different approaches for detecting emotion from text[C]//IOP Conference Series: Materials Science and Engineering. IOP Publishing, 1110(1): 012009
[10]. Torregrosa J, Bello-Orgaz G, Martínez-Cámara E, et al. 2023 A survey on extremism analysis using natural language processing: definitions, literature review, trends and challenges[J]. J. Ambient Intell. Hum. Comput. 14(8): 9869-9905
[11]. Zad S, Heidari M, James Jr H, et al. 2021 Emotion detection of textual data: An interdisciplinary survey[C]//2021 IEEE World AI IoT Congress (AIIoT). IEEE, 0255-0261
[12]. Fan C, Yuan C, Gui L, et al. 2021 Multi-task sequence tagging for emotion-cause pair extraction via tag distribution refinement[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 29: 2339-2350
[13]. Acheampong F A, Nunoo-Mensah H, Chen W. 2021 Transformer models for text-based emotion detection: a review of BERT-based approaches[J]. ARTIF INTELL REV (09): 1-41
[14]. Chen Q, Leaman R, Allot A, et al. 2021 Artificial intelligence in action: addressing the COVID-19 pandemic with natural language processing[J]. Ann. Rev. Biomed. Da. S. (04): 313-339
[15]. Levis M, Westgate C L, Gui J, et al. 2021 Natural language processing of clinical mental health notes may add predictive value to existing suicide risk models[J]. PSYCHOL MED 51(8): 1382-1391
[16]. Khanbhai M, Anyadi P, Symons J, et al. 2021 Applying natural language processing and machine learning techniques to patient experience feedback: a systematic review[J]. BMJ HEALTH CARE INFO 28(1):112-113
[17]. Nandwani P, Verma R. 2021 A review on sentiment analysis and emotion detection from text[J]. SNAM 11(1): 81-81
[18]. Sean B. Findings of the shared task on Emotion Analysis in Tamil[C]//Proceedings of the Second Workshop on Speech and Language Technologies for Dravidian Languages. 2022,(13): 279-285
[19]. Pérez J M, Furman D A, Alemany L A, et al. 2021 Robertuito: a pre-trained language model for social media text in spanish[J]. arXiv preprint arXiv.(96):87-88
[20]. Choudrie J, Patil S, Kotecha K, et al. 2021 Applying and understanding an advanced, novel deep learning approach: A Covid 19, text based, emotions analysis study[J]. ISF (23): 1431-1465
[21]. Nandwani P, Verma R. 2021 A review on sentiment analysis and emotion detection from text[J]. SNAM 11(1): 81
[22]. Sean B. Findings of the shared task on Emotion Analysis in Tamil[C]//Proceedings of the Second Workshop on Speech and Language Technologies for Dravidian Languages. 2022(13): 279-285
[23]. Graterol W, Diaz-Amado J, Cardinale Y, et al. 2021 Emotion detection for social robots based on NLP transformers and an emotion ontology[J]. Sensors, 21(4): 1322
[24]. Bhowmik N R, Arifuzzaman M, Mondal M R H, et al. 2021 Bangla text sentiment analysis using supervised machine learning with extended lexicon dictionary[J]. NLPR 1(3-4): 34-45
[25]. Harrison C J, Sidey-Gibbons C J. 2021 Machine learning in medicine: a practical introduction to natural language processing[J]. BMC MED RES METHODOL 21(1): 1-11