References
[1]. Cancer facts & figures 2022 (no date) American Cancer Society. Available at: https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2022.html (Accessed: January 1, 2023).
[2]. François, C. Deep learning with python. Shelter Island: Manning (2021).
[3]. Munir, K. et al. Cancer diagnosis using Deep Learning: A bibliographic review, MDPI. Multidisciplinary Digital Publishing Institute (2019). Available at: https://www.mdpi.com/2072-6694/11/9/1235#metrics (Accessed: November 5, 2022).
[4]. Pinto, A., Pereira, S., Correia, H., Oliveira, J., Rasteiro, D. M. L. D. and Silva, C. A. "Brain Tumour Segmentation based on Extremely Randomized Forest with high-level features," 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 3037-3040 (2015). DOI: 10.1109/EMBC.2015.7319032.
[5]. Tustison, N. J., Shrinidhi, K., Wintermark, M., Durst, C. R., Kandel, B. M., Gee, J. C., Grossman, M. C., Avants, B. B. Optimal symmetric multimodal templates and concatenated random forests for supervised brain tumor segmentation (simplified) with ANTsR. Neuroinformatics 13, 209-225 (2015). Available at: [Google Scholar] (Accessed: November 20, 2022).
[6]. Munir, K. et al. Cancer diagnosis using Deep Learning: A bibliographic review, MDPI. Multidisciplinary Digital Publishing Institute (2019). Available at: https://www.mdpi.com/2072-6694/11/9/1235 (Accessed: November 20, 2022).
[7]. Xu, B. et al. Empirical evaluation of rectified activations in the convolutional network, arXiv.org. (2015). Available at: https://arxiv.org/abs/1505.00853 (Accessed: October 23, 2022).
[8]. Echle, A. et al. Deep learning in cancer pathology: A new generation of clinical biomarkers, Nature News. Nature Publishing Group (2020). Available at: https://www.nature.com/articles/s41416-020-01122-x (Accessed: 2022).
[9]. Using deep learning to enhance cancer diagnosis and classification (no date). Available at: https://www.researchgate.net/publication/281857285_Using_deep_learning_to_enhance_cancer_diagnosis_and_classification (Accessed: January 8, 2023).
[10]. Wang, D. et al. Deep learning for identifying metastatic breast cancer, arXiv.org. (2016). Available at: https://arxiv.org/abs/1606.05718.
[11]. Hu, Z. L., Tang, J. S., Wang, Z. M., Zhang, K., Zhang, L. and Sun, Q. L. Deep learning for image-based cancer detection and diagnosis − A survey, Pattern Recognition 83, 134-149 (2018). ISSN 0031-3203. https://doi.org/10.1016/j.patcog.2018.05.014.
[12]. LeCun, Y., Bengio, Y. and Hinton, G. Deep learning, Nature News. Nature Publishing Group (2015). Available at: https://www.nature.com/articles/nature14539 (Accessed: November 5, 2022).
[13]. Stevens, E. et al. Deep learning with PyTorch. Shelter Island: Manning Publications (2020).
[14]. U-Net: Convolutional Networks for Biomedical Image Segmentation (no date). Available at: https://arxiv-export-lb.library.cornell.edu/pdf/1505.04597 (Accessed: December 12, 2023).
[15]. Mahimkar, A. IQ-oth/NCCD-lung cancer dataset, Kaggle (2021). Available at: https://www.kaggle.com/datasets/adityamahimkar/iqothnccd-lung-cancer-dataset (Accessed: November 5, 2022).
Cite this article
Zuo,W. (2023). Deep learning for enhancing cancer identification and diagnosis. Applied and Computational Engineering,27,199-205.
Data availability
The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.
Disclaimer/Publisher's Note
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
About volume
Volume title: Proceedings of the 2023 International Conference on Software Engineering and Machine Learning
© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and
conditions of the Creative Commons Attribution (CC BY) license. Authors who
publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons
Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this
series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published
version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial
publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and
during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See
Open access policy for details).
References
[1]. Cancer facts & figures 2022 (no date) American Cancer Society. Available at: https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2022.html (Accessed: January 1, 2023).
[2]. François, C. Deep learning with python. Shelter Island: Manning (2021).
[3]. Munir, K. et al. Cancer diagnosis using Deep Learning: A bibliographic review, MDPI. Multidisciplinary Digital Publishing Institute (2019). Available at: https://www.mdpi.com/2072-6694/11/9/1235#metrics (Accessed: November 5, 2022).
[4]. Pinto, A., Pereira, S., Correia, H., Oliveira, J., Rasteiro, D. M. L. D. and Silva, C. A. "Brain Tumour Segmentation based on Extremely Randomized Forest with high-level features," 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 3037-3040 (2015). DOI: 10.1109/EMBC.2015.7319032.
[5]. Tustison, N. J., Shrinidhi, K., Wintermark, M., Durst, C. R., Kandel, B. M., Gee, J. C., Grossman, M. C., Avants, B. B. Optimal symmetric multimodal templates and concatenated random forests for supervised brain tumor segmentation (simplified) with ANTsR. Neuroinformatics 13, 209-225 (2015). Available at: [Google Scholar] (Accessed: November 20, 2022).
[6]. Munir, K. et al. Cancer diagnosis using Deep Learning: A bibliographic review, MDPI. Multidisciplinary Digital Publishing Institute (2019). Available at: https://www.mdpi.com/2072-6694/11/9/1235 (Accessed: November 20, 2022).
[7]. Xu, B. et al. Empirical evaluation of rectified activations in the convolutional network, arXiv.org. (2015). Available at: https://arxiv.org/abs/1505.00853 (Accessed: October 23, 2022).
[8]. Echle, A. et al. Deep learning in cancer pathology: A new generation of clinical biomarkers, Nature News. Nature Publishing Group (2020). Available at: https://www.nature.com/articles/s41416-020-01122-x (Accessed: 2022).
[9]. Using deep learning to enhance cancer diagnosis and classification (no date). Available at: https://www.researchgate.net/publication/281857285_Using_deep_learning_to_enhance_cancer_diagnosis_and_classification (Accessed: January 8, 2023).
[10]. Wang, D. et al. Deep learning for identifying metastatic breast cancer, arXiv.org. (2016). Available at: https://arxiv.org/abs/1606.05718.
[11]. Hu, Z. L., Tang, J. S., Wang, Z. M., Zhang, K., Zhang, L. and Sun, Q. L. Deep learning for image-based cancer detection and diagnosis − A survey, Pattern Recognition 83, 134-149 (2018). ISSN 0031-3203. https://doi.org/10.1016/j.patcog.2018.05.014.
[12]. LeCun, Y., Bengio, Y. and Hinton, G. Deep learning, Nature News. Nature Publishing Group (2015). Available at: https://www.nature.com/articles/nature14539 (Accessed: November 5, 2022).
[13]. Stevens, E. et al. Deep learning with PyTorch. Shelter Island: Manning Publications (2020).
[14]. U-Net: Convolutional Networks for Biomedical Image Segmentation (no date). Available at: https://arxiv-export-lb.library.cornell.edu/pdf/1505.04597 (Accessed: December 12, 2023).
[15]. Mahimkar, A. IQ-oth/NCCD-lung cancer dataset, Kaggle (2021). Available at: https://www.kaggle.com/datasets/adityamahimkar/iqothnccd-lung-cancer-dataset (Accessed: November 5, 2022).