Introduction and commercial prospect of GAAFET

Research Article
Open access

Introduction and commercial prospect of GAAFET

Yuchen Jiang 1*
  • 1 Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089-0915, USA    
  • *corresponding author yjiang79@usc.edu
Published on 31 January 2024 | https://doi.org/10.54254/2755-2721/30/20230102
ACE Vol.30
ISSN (Print): 2755-273X
ISSN (Online): 2755-2721
ISBN (Print): 978-1-83558-285-5
ISBN (Online): 978-1-83558-286-2

Abstract

As recent metal-oxide-semiconductor field-effect transistor (MOSFET) technology developed, gate length shrinks so that engineers lost control of the transistor due to short channel effect and enormous leakage power. To maintain gate-to-channel control of the device, a fin field-effect transistor (FINFET) has been introduced to replace planar MOSFET technology. The "FIN" structure allows further down-scaling of gate length compared to planar MOSFET. As process node technology progresses, gate length scaling is stalled, where a further decrease of gate length would receive undesirable results in order of power, performance, and area (PPA). To escalate the transistor density, a new MOSFET design is required to replace FINFET. Therefore, the gate-all-around Multi-Bridge-Channel MOSFET (GAAFET or MBCFET) is successfully induced to be the feasible solution.

Keywords:

GAAFET, Gate-all-around, Nanowire, Nanosheet

Jiang,Y. (2024). Introduction and commercial prospect of GAAFET . Applied and Computational Engineering,30,224-229.
Export citation

References

[1]. Jurczak, M., Collaert, N., Veloso, A., Hoffmann, T., & Biesemans, S. (2009) Review of FINFET technology. 2009 IEEE International SOI Conference, Foster City, pp. 1-4.

[2]. Jang, D., Yakimets, D., Eneman, G., Schuddinck, P., Bardon, M. G., Raghavan, P., ... & Mocuta, A. (2017) Device Exploration of NanoSheet Transistors for Sub-7-nm Technology Node. IEEE Transactions on Electron Devices, vol. 64, no. 6, pp. 2707-2713.

[3]. Lee, H., Yu, L. E., Ryu, S. W., Han, J. W., Jeon, K., Jang, D. Y., ... & Choi, Y. K. (2006) Sub-5nm All-Around Gate FinFET for Ultimate Scaling. 2006 Symposium on VLSI Technology, 2006. Digest of Technical Papers., Honolulu, pp. 58-59.

[4]. Das, U. K., & Bhattacharyya, T. K. (2020) Opportunities in Device Scaling for 3-nm Node and Beyond: FinFET Versus GAA-FET Versus UFET. IEEE Transactions on Electron Devices, vol. 67, no. 6, pp. 2633-2638

[5]. Yoon, J. S., Jeong, J., Lee, S., Lee, J., & Baek, R. H. (2020) Gate-All-Around FETs: Nanowire and Nanosheet Structure. IntechOpen.

[6]. Loubet, N., Hook, T., Montanini, P., Yeung, C. W., Kanakasabapathy, S., Guillom, M., ... & Khare, M. (2017) Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFET. 2017 Symposium on VLSI Technology, Kyoto, pp. T230-T231.

[7]. Agha, F. N. H., Naif, Y. H., & Shakib, M. N. (2021). Review of nanosheet transistors technology. Tikrit Journal of Engineering Sciences, pp. 40-48.

[8]. Semiconductor Engineering. (2023) Gate-All-Around FET. https://semiengineering.com/knowledge_centers/integrated-circuit/transistors/3d/gate-all-around-fet/.

[9]. Lin, Y. W., Chang, H. H., Huang, Y. H., Sun, C. J., Yan, S. C., Lin, S. W., ... & Hou, F. J. (2021). Tightly Stacked 3D Diamond-Shaped Ge Nanowire Gate-All-Around FETs With Superior nFET and pFET Performance. IEEE Electron Device Letters, pp. 1727-1730

[10]. Lu, W., Xie, P., & Lieber, C. M. (2008). Nanowire transistor performance limits and applications. IEEE transactions on Electron Devices, pp. 2859-2876.

[11]. Knoedler, M., Bologna, N., Schmid, H., Borg, M., Moselund, K. E., Wirths, S., ... & Riel, H. (2017). Observation of twin-free GaAs nanowire growth using template-assisted selective epitaxy. Crystal Growth & Design, pp. 6297-6302.

[12]. Huang, Y. C., Chiang, M. H., Wang, S. J., & Fossum, J. G. (2017). GAAFET versus pragmatic FinFET at the 5nm Si-based CMOS technology node. IEEE Journal of the Electron Devices Society, pp. 164-169.

[13]. Samsung Semiconductor Global (2023) Samsung Opens the Gate to Transistor Performance, Power, and Area Improvements with MBCFET. semiconductor.samsung.com/newsroom/tech-blog/samsung-opens-the-gate-to-transistor-performance-power-and-area-improvements-with-mbcfet/.

[14]. Strategic Market Research. (2022) Gate-All-Around FET Technology Market 2021-2030. https://www.strategicmarketresearch.com/market-report/-gaafet-technology-market.


Cite this article

Jiang,Y. (2024). Introduction and commercial prospect of GAAFET . Applied and Computational Engineering,30,224-229.

Data availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

Disclaimer/Publisher's Note

The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

About volume

Volume title: Proceedings of the 2023 International Conference on Machine Learning and Automation

ISBN:978-1-83558-285-5(Print) / 978-1-83558-286-2(Online)
Editor:Mustafa İSTANBULLU
Conference website: https://2023.confmla.org/
Conference date: 18 October 2023
Series: Applied and Computational Engineering
Volume number: Vol.30
ISSN:2755-2721(Print) / 2755-273X(Online)

© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license. Authors who publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See Open access policy for details).

References

[1]. Jurczak, M., Collaert, N., Veloso, A., Hoffmann, T., & Biesemans, S. (2009) Review of FINFET technology. 2009 IEEE International SOI Conference, Foster City, pp. 1-4.

[2]. Jang, D., Yakimets, D., Eneman, G., Schuddinck, P., Bardon, M. G., Raghavan, P., ... & Mocuta, A. (2017) Device Exploration of NanoSheet Transistors for Sub-7-nm Technology Node. IEEE Transactions on Electron Devices, vol. 64, no. 6, pp. 2707-2713.

[3]. Lee, H., Yu, L. E., Ryu, S. W., Han, J. W., Jeon, K., Jang, D. Y., ... & Choi, Y. K. (2006) Sub-5nm All-Around Gate FinFET for Ultimate Scaling. 2006 Symposium on VLSI Technology, 2006. Digest of Technical Papers., Honolulu, pp. 58-59.

[4]. Das, U. K., & Bhattacharyya, T. K. (2020) Opportunities in Device Scaling for 3-nm Node and Beyond: FinFET Versus GAA-FET Versus UFET. IEEE Transactions on Electron Devices, vol. 67, no. 6, pp. 2633-2638

[5]. Yoon, J. S., Jeong, J., Lee, S., Lee, J., & Baek, R. H. (2020) Gate-All-Around FETs: Nanowire and Nanosheet Structure. IntechOpen.

[6]. Loubet, N., Hook, T., Montanini, P., Yeung, C. W., Kanakasabapathy, S., Guillom, M., ... & Khare, M. (2017) Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFET. 2017 Symposium on VLSI Technology, Kyoto, pp. T230-T231.

[7]. Agha, F. N. H., Naif, Y. H., & Shakib, M. N. (2021). Review of nanosheet transistors technology. Tikrit Journal of Engineering Sciences, pp. 40-48.

[8]. Semiconductor Engineering. (2023) Gate-All-Around FET. https://semiengineering.com/knowledge_centers/integrated-circuit/transistors/3d/gate-all-around-fet/.

[9]. Lin, Y. W., Chang, H. H., Huang, Y. H., Sun, C. J., Yan, S. C., Lin, S. W., ... & Hou, F. J. (2021). Tightly Stacked 3D Diamond-Shaped Ge Nanowire Gate-All-Around FETs With Superior nFET and pFET Performance. IEEE Electron Device Letters, pp. 1727-1730

[10]. Lu, W., Xie, P., & Lieber, C. M. (2008). Nanowire transistor performance limits and applications. IEEE transactions on Electron Devices, pp. 2859-2876.

[11]. Knoedler, M., Bologna, N., Schmid, H., Borg, M., Moselund, K. E., Wirths, S., ... & Riel, H. (2017). Observation of twin-free GaAs nanowire growth using template-assisted selective epitaxy. Crystal Growth & Design, pp. 6297-6302.

[12]. Huang, Y. C., Chiang, M. H., Wang, S. J., & Fossum, J. G. (2017). GAAFET versus pragmatic FinFET at the 5nm Si-based CMOS technology node. IEEE Journal of the Electron Devices Society, pp. 164-169.

[13]. Samsung Semiconductor Global (2023) Samsung Opens the Gate to Transistor Performance, Power, and Area Improvements with MBCFET. semiconductor.samsung.com/newsroom/tech-blog/samsung-opens-the-gate-to-transistor-performance-power-and-area-improvements-with-mbcfet/.

[14]. Strategic Market Research. (2022) Gate-All-Around FET Technology Market 2021-2030. https://www.strategicmarketresearch.com/market-report/-gaafet-technology-market.