References
[1]. Bhowmik, A., Nur, N. M., Miah, M. S. U., & Karmekar, D. (2023). Aspect-based Sentiment Analysis Model for Evaluating Teachers’ Performance from Students’ Feedback. AIUB Journal of Science and Engineering, 22(3), 287–294. https://doi.org/10.53799/AJSE.V22I3.921
[2]. Kontonatsios, G., Clive, J., Harrison, G., Metcalfe, T., Sliwiak, P., Tahir, H., &Ghose, A. (2023). FABSA: An aspect-based sentiment analysis dataset of user reviews. Neurocomputing, 562, 0–9. https://doi.org/10.1016/j.neucom.2023.126867
[3]. Meng, L., Zhao, T., & Song, D. (2024). DS-Group at SIGHAN-2024 dimABSA Task: Constructing In-context Learning Structure for Dimensional Aspect-Based Sentiment Analysis. Proceedings of the 10th SIGHAN Workshop on Chinese Language Processing, 127–132. https://aclanthology.org/2024.sighan-1.15
[4]. Aggrawal, A., & Varshney, D. (2024). Multimodal Sentiment Analysis: Perceived vs Induced Sentiments. 2024 Silicon Valley Cybersecurity Conference (SVCC). https://doi.org/10.1109/SVCC61185.2024.10637377
[5]. Feng, J., Lin, M., Shang, L., & Gao, X. (2024). Autonomous Aspect-Image Instruction A2II: Q-Former Guided Multimodal Sentiment Classification. 2024 Joint International Conference on Computational Linguistics and Language Resources Evaluation (LREC) - Main Conference Proceedings, 1996–2005.
[6]. Bianbian, J., Rajamanickam, L., Lohgheswary, N., & Nopiah, Z. M. (2023). Multimodal Sentimental Analysis Based on Deep Learning. Section A-Research Paper Eur. (12), (5), 3567–3573. 10.48047/ecb/2023.12.si5a.0249.
[7]. Zhou, R., Guo, W., Liu, X., Yu, S., Zhang, Y., & Yuan, X. (2023). AoM: Detecting Aspect-oriented Information for Multimodal Aspect-Based Sentiment Analysis. Proceedings of the Annual Meeting of the Association for Computational Linguistics, (1), 8184–8196. https://doi.org/10.18653/v1/2023.findings-acl.519
[8]. Zhou, Z., Feng, H., Qiao, B., Wu, G., & Han, D. (2023). Syntax-aware Hybrid prompt model for Few-shot multi-modal sentiment analysis. ArXiv, abs/2306.01312.
[9]. Nguyen, C. D., Nguyen, T., Vu, D. A., & Tuan, L. A. (2023). Improving Multimodal Sentiment Analysis: Supervised Angular Margin-based Contrastive Learning for Enhanced Fusion Representation. Findings of the Association for Computational Linguistics: EMNLP 2023, 14714–14724. https://doi.org/10.18653/v1/2023.findings-emnlp.980
[10]. Xiang, Y., Cai, Y., & Guo, J. (2023). MSFNet: modality smoothing fusion network for multimodal aspect-based sentiment analysis. Frontiers in Physics, 11(5), 1–10. https://doi.org/10.3389/fphy.2023.1187503
[11]. Zhu, L., Sun, H., Gao, Q., Yi, T., & He, L. (2024). Joint Multimodal Aspect Sentiment Analysis with Aspect Enhancement and Syntactic Adaptive Learning. Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (pp. 6678–6686). https://doi.org/10.24963/ijcai.2024/738
[12]. Hassan, A., & Mahmood, A. (2017). Deep Learning approach for sentiment analysis of short texts. 2017 3rd International Conference on Control, Automation and Robotics (ICCAR), 705–710. https://doi.org/10.1109/ICCAR.2017.7942788
[13]. Wu, Y., Jin, Z., Shi, C., Liang, P., & Zhan, T. (2024). Research on the application of deep learning-based BERT model in sentiment analysis. Applied Computing Engineering, 71(1), 14–20. https://doi.org/10.54254/2755-2721/71/2024ma
[14]. Wang, D., He, Y., Liang, X., Tian, Y., Li, S., & Zhao, L. (2024). TMFN: A Target-oriented Multi-grained Fusion Network for End-to-end Aspect-based Multimodal Sentiment Analysis. In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), pages 16187–16197, Torino, Italia. ELRA and ICCL.
[15]. Zhang, J., Wu, X., & Huang, C. (2023). AdaMoW: Multimodal Sentiment Analysis Based on Adaptive Modality-Specific Weight Fusion Network. IEEE Access, 11(April), 48410–48420. https://doi.org/10.1109/ACCESS.2023.3276932
[16]. Liu, Y., Zhou, Y., Li, Z., Zhang, J., Shang, Y., &Zhang, C. (2024). RNG: Reducing Multi-level Noise and Multi-grained Semantic Gap for Joint Multimodal Aspect-Sentiment Analysis. Proceedings - IEEE International Conference on Multimedia and Expo. https://doi.org/10.1109/ICME57554.2024.10687372
[17]. Luo, M., Fei, H., Li, B., Wu, S., Liu, Q., Poria, S., Cambria, E., Lee, M., & Hsu, Y. (2024). PanoSent: A Panoptic Sextuple Extraction Benchmark for Multimodal Conversational Aspect-based Sentiment Analysis. In Proceedings of the 32nd ACM International Conference on Multimedia (MM '24). Association for Computing Machinery, New York, NY, USA, 7667–7676. https://doi.org/10.1145/3664647.3680705
[18]. Ye, J., Zhou, J., Tian, J., Wang, R., Zhang, Q., Gui, T., & Huang, X. (2023). RethinkingTMSC: An Empirical Study for Target-Oriented Multimodal Sentiment Classification. Findings of the Association for Computational Linguistics: EMNLP 2023, 270–277. https://doi.org/10.18653/v1/2023.findings-emnlp.21
Cite this article
Chen,T. (2025). A review of multimodal aspect-based sentiment analysis. Advances in Engineering Innovation,16(6),43-51.
Data availability
The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.
Disclaimer/Publisher's Note
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
About volume
Journal:Advances in Engineering Innovation
© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and
conditions of the Creative Commons Attribution (CC BY) license. Authors who
publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons
Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this
series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published
version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial
publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and
during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See
Open access policy for details).
References
[1]. Bhowmik, A., Nur, N. M., Miah, M. S. U., & Karmekar, D. (2023). Aspect-based Sentiment Analysis Model for Evaluating Teachers’ Performance from Students’ Feedback. AIUB Journal of Science and Engineering, 22(3), 287–294. https://doi.org/10.53799/AJSE.V22I3.921
[2]. Kontonatsios, G., Clive, J., Harrison, G., Metcalfe, T., Sliwiak, P., Tahir, H., &Ghose, A. (2023). FABSA: An aspect-based sentiment analysis dataset of user reviews. Neurocomputing, 562, 0–9. https://doi.org/10.1016/j.neucom.2023.126867
[3]. Meng, L., Zhao, T., & Song, D. (2024). DS-Group at SIGHAN-2024 dimABSA Task: Constructing In-context Learning Structure for Dimensional Aspect-Based Sentiment Analysis. Proceedings of the 10th SIGHAN Workshop on Chinese Language Processing, 127–132. https://aclanthology.org/2024.sighan-1.15
[4]. Aggrawal, A., & Varshney, D. (2024). Multimodal Sentiment Analysis: Perceived vs Induced Sentiments. 2024 Silicon Valley Cybersecurity Conference (SVCC). https://doi.org/10.1109/SVCC61185.2024.10637377
[5]. Feng, J., Lin, M., Shang, L., & Gao, X. (2024). Autonomous Aspect-Image Instruction A2II: Q-Former Guided Multimodal Sentiment Classification. 2024 Joint International Conference on Computational Linguistics and Language Resources Evaluation (LREC) - Main Conference Proceedings, 1996–2005.
[6]. Bianbian, J., Rajamanickam, L., Lohgheswary, N., & Nopiah, Z. M. (2023). Multimodal Sentimental Analysis Based on Deep Learning. Section A-Research Paper Eur. (12), (5), 3567–3573. 10.48047/ecb/2023.12.si5a.0249.
[7]. Zhou, R., Guo, W., Liu, X., Yu, S., Zhang, Y., & Yuan, X. (2023). AoM: Detecting Aspect-oriented Information for Multimodal Aspect-Based Sentiment Analysis. Proceedings of the Annual Meeting of the Association for Computational Linguistics, (1), 8184–8196. https://doi.org/10.18653/v1/2023.findings-acl.519
[8]. Zhou, Z., Feng, H., Qiao, B., Wu, G., & Han, D. (2023). Syntax-aware Hybrid prompt model for Few-shot multi-modal sentiment analysis. ArXiv, abs/2306.01312.
[9]. Nguyen, C. D., Nguyen, T., Vu, D. A., & Tuan, L. A. (2023). Improving Multimodal Sentiment Analysis: Supervised Angular Margin-based Contrastive Learning for Enhanced Fusion Representation. Findings of the Association for Computational Linguistics: EMNLP 2023, 14714–14724. https://doi.org/10.18653/v1/2023.findings-emnlp.980
[10]. Xiang, Y., Cai, Y., & Guo, J. (2023). MSFNet: modality smoothing fusion network for multimodal aspect-based sentiment analysis. Frontiers in Physics, 11(5), 1–10. https://doi.org/10.3389/fphy.2023.1187503
[11]. Zhu, L., Sun, H., Gao, Q., Yi, T., & He, L. (2024). Joint Multimodal Aspect Sentiment Analysis with Aspect Enhancement and Syntactic Adaptive Learning. Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (pp. 6678–6686). https://doi.org/10.24963/ijcai.2024/738
[12]. Hassan, A., & Mahmood, A. (2017). Deep Learning approach for sentiment analysis of short texts. 2017 3rd International Conference on Control, Automation and Robotics (ICCAR), 705–710. https://doi.org/10.1109/ICCAR.2017.7942788
[13]. Wu, Y., Jin, Z., Shi, C., Liang, P., & Zhan, T. (2024). Research on the application of deep learning-based BERT model in sentiment analysis. Applied Computing Engineering, 71(1), 14–20. https://doi.org/10.54254/2755-2721/71/2024ma
[14]. Wang, D., He, Y., Liang, X., Tian, Y., Li, S., & Zhao, L. (2024). TMFN: A Target-oriented Multi-grained Fusion Network for End-to-end Aspect-based Multimodal Sentiment Analysis. In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), pages 16187–16197, Torino, Italia. ELRA and ICCL.
[15]. Zhang, J., Wu, X., & Huang, C. (2023). AdaMoW: Multimodal Sentiment Analysis Based on Adaptive Modality-Specific Weight Fusion Network. IEEE Access, 11(April), 48410–48420. https://doi.org/10.1109/ACCESS.2023.3276932
[16]. Liu, Y., Zhou, Y., Li, Z., Zhang, J., Shang, Y., &Zhang, C. (2024). RNG: Reducing Multi-level Noise and Multi-grained Semantic Gap for Joint Multimodal Aspect-Sentiment Analysis. Proceedings - IEEE International Conference on Multimedia and Expo. https://doi.org/10.1109/ICME57554.2024.10687372
[17]. Luo, M., Fei, H., Li, B., Wu, S., Liu, Q., Poria, S., Cambria, E., Lee, M., & Hsu, Y. (2024). PanoSent: A Panoptic Sextuple Extraction Benchmark for Multimodal Conversational Aspect-based Sentiment Analysis. In Proceedings of the 32nd ACM International Conference on Multimedia (MM '24). Association for Computing Machinery, New York, NY, USA, 7667–7676. https://doi.org/10.1145/3664647.3680705
[18]. Ye, J., Zhou, J., Tian, J., Wang, R., Zhang, Q., Gui, T., & Huang, X. (2023). RethinkingTMSC: An Empirical Study for Target-Oriented Multimodal Sentiment Classification. Findings of the Association for Computational Linguistics: EMNLP 2023, 270–277. https://doi.org/10.18653/v1/2023.findings-emnlp.21