References
[1]. Box, G. E. P., & Jenkins, G. M. (1994). Time series analysis: Forecasting and control (3rd ed.). Prentice Hall.
[2]. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
[3]. Khashei, M., & Bijari, M. (2010). A novel hybrid ARIMA-ANN model for electricity demand forecasting. Energy Policy, 38(8), 4176–4184. https://doi.org/10.1016/j.enpol.2010.03.057
[4]. Zhang, G. P. (2003). Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing, 50, 159–175. https://doi.org/10.1016/S0925-2312(01)00702-0
[5]. Siami-Namini, S., Tavakoli, N., & Namin, A. S. (2018). A comparative analysis of forecasting financial time series using ARIMA, LSTM, and hybrid models. Journal of Risk and Financial Management, 11(4), 89. https://doi.org/10.3390/jrfm11040089
[6]. Huang, W. (1998). Forecasting exchange rates using ARIMA and neural networks. Journal of Systems Science and Complexity, 11(3), 257–266.
[7]. Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2018). Statistical and machine learning forecasting methods: Concerns and ways forward. PLOS ONE, 13(3), e0194889. https://doi.org/10.1371/journal.pone.0194889
[8]. Zhang, Y., Li, Y., Zhang, G., & Wang, J. (2020). A hybrid ARIMA-LSTM model for COVID-19 cases prediction. Scientific Reports, 10, Article 22265. https://doi.org/10.1038/s41598-020-79304-z
[9]. Qiu, J., Wang, B., & Zhou, C. (2021). Residual learning for hybrid ARIMA-LSTM in financial time series. Expert Systems with Applications, 184, 115523. https://doi.org/10.1016/j.eswa.2021.115523
[10]. Wang, Y., Zhang, S., & Zhang, H. (2022). Linear component decomposition in hybrid ARIMA-LSTM models. IEEE Access, 10, 12345–12356. https://doi.org/10.1109/ACCESS.2022.3146789
[11]. Chen, T., Yin, H., Chen, X., & Wang, L. (2021). Hybrid ARIMA-LSTM for financial time series forecasting. IEEE Transactions on Neural Networks and Learning Systems, 32(12), 5729–5741. https://doi.org/10.1109/TNNLS.2020.3027860
[12]. Oreshkin, B. N., Carpov, D., Chapados, N., & Bengio, Y. (2020). N-BEATS: Neural basis expansion analysis for interpretable time series forecasting. Proceedings of the International Conference on Learning Representations (ICLR).
[13]. Diebold, F. X., & Mariano, R. S. (1995). Comparing predictive accuracy. Journal of Business & Economic Statistics, 13(3), 253–263. https://doi.org/10.1080/07350015.1995.10524599
[14]. Cont, R. (2001). Empirical properties of asset returns: Stylized facts and statistical issues. Quantitative Finance, 1(2), 223–236. https://doi.org/10.1080/713665670
[15]. Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy. International Journal of Forecasting, 22(4), 679–688. https://doi.org/10.1016/j.ijforecast.2006.03.001
[16]. Galeshchuk, S., & Mukherjee, S. (2017). Deep networks for financial time series prediction. International Journal of Machine Learning and Computing, 7(4), 105–110. https://doi.org/10.18178/ijmlc.2017.7.4.632
[17]. Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). "Why should I trust you?": Explaining the predictions of any classifier. Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 1135–1144. https://doi.org/10.1145/2939672.2939778
[18]. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing Systems (NeurIPS), 30, 5998–6008.
[19]. Hutter, F., Kotthoff, L., & Vanschoren, J. (Eds.). (2019). Automated machine learning: Methods, systems, challenges. Springer. https://doi.org/10.1007/978-3-030-05318-5
[20]. Lim, K., Luo, W., & Schmedders, K. (2021). Implied volatility and stock return predictability. Journal of Financial Economics, 142(1), 1–22. https://doi.org/10.1016/j.jfineco.2021.05.035
[21]. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J., Winter, C., ... Amodei, D. (2020). Language models are few-shot learners. Advances in Neural Information Processing Systems (NeurIPS), 33, 1877–1901.
[22]. Howard, J., & Gugger, S. (2020). fastai: A layered API for deep learning. Journal of Machine Learning Research, 21(1), 1–6.
[23]. Zhou, Z., Li, X., & Wang, Y. (2022). Edge computing for real-time financial forecasting. IEEE Internet of Things Journal, 9(18), 17845–17856. https://doi.org/10.1109/JIOT.2022.3175190
Cite this article
Zou,Y. (2025). Forecasting Apple Inc. Stock prices: A comparative analysis of ARIMA, LSTM, and ARIMA-LSTM models . Advances in Operation Research and Production Management,4(1),66-74.
Data availability
The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.
Disclaimer/Publisher's Note
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
About volume
Journal:Advances in Operation Research and Production Management
© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and
conditions of the Creative Commons Attribution (CC BY) license. Authors who
publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons
Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this
series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published
version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial
publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and
during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See
Open access policy for details).
References
[1]. Box, G. E. P., & Jenkins, G. M. (1994). Time series analysis: Forecasting and control (3rd ed.). Prentice Hall.
[2]. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
[3]. Khashei, M., & Bijari, M. (2010). A novel hybrid ARIMA-ANN model for electricity demand forecasting. Energy Policy, 38(8), 4176–4184. https://doi.org/10.1016/j.enpol.2010.03.057
[4]. Zhang, G. P. (2003). Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing, 50, 159–175. https://doi.org/10.1016/S0925-2312(01)00702-0
[5]. Siami-Namini, S., Tavakoli, N., & Namin, A. S. (2018). A comparative analysis of forecasting financial time series using ARIMA, LSTM, and hybrid models. Journal of Risk and Financial Management, 11(4), 89. https://doi.org/10.3390/jrfm11040089
[6]. Huang, W. (1998). Forecasting exchange rates using ARIMA and neural networks. Journal of Systems Science and Complexity, 11(3), 257–266.
[7]. Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2018). Statistical and machine learning forecasting methods: Concerns and ways forward. PLOS ONE, 13(3), e0194889. https://doi.org/10.1371/journal.pone.0194889
[8]. Zhang, Y., Li, Y., Zhang, G., & Wang, J. (2020). A hybrid ARIMA-LSTM model for COVID-19 cases prediction. Scientific Reports, 10, Article 22265. https://doi.org/10.1038/s41598-020-79304-z
[9]. Qiu, J., Wang, B., & Zhou, C. (2021). Residual learning for hybrid ARIMA-LSTM in financial time series. Expert Systems with Applications, 184, 115523. https://doi.org/10.1016/j.eswa.2021.115523
[10]. Wang, Y., Zhang, S., & Zhang, H. (2022). Linear component decomposition in hybrid ARIMA-LSTM models. IEEE Access, 10, 12345–12356. https://doi.org/10.1109/ACCESS.2022.3146789
[11]. Chen, T., Yin, H., Chen, X., & Wang, L. (2021). Hybrid ARIMA-LSTM for financial time series forecasting. IEEE Transactions on Neural Networks and Learning Systems, 32(12), 5729–5741. https://doi.org/10.1109/TNNLS.2020.3027860
[12]. Oreshkin, B. N., Carpov, D., Chapados, N., & Bengio, Y. (2020). N-BEATS: Neural basis expansion analysis for interpretable time series forecasting. Proceedings of the International Conference on Learning Representations (ICLR).
[13]. Diebold, F. X., & Mariano, R. S. (1995). Comparing predictive accuracy. Journal of Business & Economic Statistics, 13(3), 253–263. https://doi.org/10.1080/07350015.1995.10524599
[14]. Cont, R. (2001). Empirical properties of asset returns: Stylized facts and statistical issues. Quantitative Finance, 1(2), 223–236. https://doi.org/10.1080/713665670
[15]. Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy. International Journal of Forecasting, 22(4), 679–688. https://doi.org/10.1016/j.ijforecast.2006.03.001
[16]. Galeshchuk, S., & Mukherjee, S. (2017). Deep networks for financial time series prediction. International Journal of Machine Learning and Computing, 7(4), 105–110. https://doi.org/10.18178/ijmlc.2017.7.4.632
[17]. Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). "Why should I trust you?": Explaining the predictions of any classifier. Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 1135–1144. https://doi.org/10.1145/2939672.2939778
[18]. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing Systems (NeurIPS), 30, 5998–6008.
[19]. Hutter, F., Kotthoff, L., & Vanschoren, J. (Eds.). (2019). Automated machine learning: Methods, systems, challenges. Springer. https://doi.org/10.1007/978-3-030-05318-5
[20]. Lim, K., Luo, W., & Schmedders, K. (2021). Implied volatility and stock return predictability. Journal of Financial Economics, 142(1), 1–22. https://doi.org/10.1016/j.jfineco.2021.05.035
[21]. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J., Winter, C., ... Amodei, D. (2020). Language models are few-shot learners. Advances in Neural Information Processing Systems (NeurIPS), 33, 1877–1901.
[22]. Howard, J., & Gugger, S. (2020). fastai: A layered API for deep learning. Journal of Machine Learning Research, 21(1), 1–6.
[23]. Zhou, Z., Li, X., & Wang, Y. (2022). Edge computing for real-time financial forecasting. IEEE Internet of Things Journal, 9(18), 17845–17856. https://doi.org/10.1109/JIOT.2022.3175190