Research Article
Open access
Published on 18 October 2024
Download pdf
Li,P. (2024). Analysis of Factors Affecting Social Media Disaster Information Sharing among Young Adults: An Empirical Study Using SEM-PLS Approach. Advances in Social Behavior Research,11,50-61.
Export citation

Analysis of Factors Affecting Social Media Disaster Information Sharing among Young Adults: An Empirical Study Using SEM-PLS Approach

Peilong Li *,1,
  • 1 Henan Qimai Cultural Communication Co., Ltd.

* Author to whom correspondence should be addressed.

https://doi.org/10.54254/2753-7102/11/2024107

Abstract

The flooding crisis has raised significant public safety concerns, spotlighting the challenges and opportunities of leveraging social media in disaster management. Given the rising frequency of urban flooding in China, young adults’ social media information behaviours play a pivotal role in disaster responses. Therefore, this study explores the critical factors influencing disaster information sharing among young adults during extreme urban flood events. Using a quantitative research methodology, researcher conducted an online survey with 613 young adults from flood-prone urban areas. The structural analysis results confirmed that social media dependency significantly influences self-efficacy and perceived severity, all of which positively correlated with the intention to share urban flood information. However, no significant relationship was observed between social media dependency and urban flood information–sharing behaviour. The findings underscore the importance of prioritising consideration of individual psychological factors when formulating disaster communication strategies. Additionally, it offers distinctive insights into the prospective utilisation of social media in flood communication.

Keywords

Social media, communication, information sharing, urban floods, young adults

[1]. Zhao, X.; Li, H.; Qi, Y. Are Chinese Cities Prepared to Manage the Risks of Extreme Weather Events? Evidence from the 2021.07.20 Zhengzhou Flood in Henan Province. SSRN Journal 2022, doi:10.2139/ssrn.4043303.

[2]. Alexander, D.E. Social Media in Disaster Risk Reduction and Crisis Management. Sci Eng Ethics 2014, 20, 717–733, doi:10.1007/s11948-013-9502-z.

[3]. Chen, Y.; Liang, C.; Cai, D. Understanding WeChat Users’ Behavior of Sharing Social Crisis Information. International Journal of Human–Computer Interaction 2018, 34, 356–366, doi:10.1080/10447318.2018.1427826.

[4]. Cheng; Han; Zhao; Li Evaluating Social Media Response to Urban Flood Disaster: Case Study on an East Asian City (Wuhan, China). Sustainability 2019, 11, 5330, doi:10.3390/su11195330.

[5]. Kankanamge, N.; Yigitcanlar, T.; Goonetilleke, A.; Kamruzzaman, Md. Determining Disaster Severity through Social Media Analysis: Testing the Methodology with South East Queensland Flood Tweets. International Journal of Disaster Risk Reduction 2020, 42, 101360, doi:10.1016/j.ijdrr.2019.101360.

[6]. Kim, J.; Park, H. A Framework for Understanding Online Group Behaviors during a Catastrophic Event. International Journal of Information Management 2020, 51, 102051, doi:10.1016/j.ijinfomgt.2019.102051.

[7]. Luna, S.; Pennock, M.J. Social Media Applications and Emergency Management: A Literature Review and Research Agenda. International Journal of Disaster Risk Reduction 2018, 28, 565–577, doi:10.1016/j.ijdrr.2018.01.006.

[8]. Dong, Z.S.; Meng, L.; Christenson, L.; Fulton, L. Social Media Information Sharing for Natural Disaster Response. Nat Hazards 2021, 107, 2077–2104, doi:10.1007/s11069-021-04528-9.

[9]. Ghosh, S.; Ghosh, K.; Ganguly, D.; Chakraborty, T.; Jones, G.J.F.; Moens, M.-F.; Imran, M. Exploitation of Social Media for Emergency Relief and Preparedness: Recent Research and Trends. Inf Syst Front 2018, 20, 901–907, doi:10.1007/s10796-018-9878-z.

[10]. Kankanamge, N.; Yigitcanlar, T.; Goonetilleke, A.; Kamruzzaman, M. Can Volunteer Crowdsourcing Reduce Disaster Risk? A Systematic Review of the Literature. International Journal of Disaster Risk Reduction 2019, 35, 101097, doi:10.1016/j.ijdrr.2019.101097.

[11]. Sharp, E.N.; Carter, H. Examination of How Social Media Can Inform the Management of Volunteers during a Flood Disaster. J Flood Risk Management 2020, 13, doi:10.1111/jfr3.12665.

[12]. Cheng; Han; Zhao; Li Evaluating Social Media Response to Urban Flood Disaster: Case Study on an East Asian City (Wuhan, China). Sustainability 2019, 11, 5330, doi:10.3390/su11195330.

[13]. He, C.; Deng, Y.; Yang, W.; Li, B. “Help! Can You Hear Me?”: Understanding How Help-Seeking Posts Are Overwhelmed on Social Media during a Natural Disaster. Proc. ACM Hum.-Comput. Interact. 2022, 6, 1–25, doi:10.1145/3555147.

[14]. Coombs, W.T. Digital Naturals and the Effects of Social Media on Disaster Communication. In State, Society and National Security; WORLD SCIENTIFIC, 2016; pp. 183–191 ISBN 978-981-310-998-8.

[15]. Lovari, A.; Bowen, S.A. Social Media in Disaster Communication: A Case Study of Strategies, Barriers, and Ethical Implications. J Public Affairs 2020, 20, doi:10.1002/pa.1967.

[16]. Carley, K.M.; Malik, M.; Landwehr, P.M.; Pfeffer, J.; Kowalchuck, M. Crowd Sourcing Disaster Management: The Complex Nature of Twitter Usage in Padang Indonesia. Safety Science 2016, 90, 48–61, doi:10.1016/j.ssci.2016.04.002.

[17]. Rotondi, L.; Zuddas, M.; Marsella, P.; Rosati, P. A Facebook Page Created Soon After the Amatrice Earthquake for Deaf Adults and Children, Families, and Caregivers Provides an Easy Communication Tool and Social Satisfaction in Maxi-Emergencies. Prehospital and Disaster Medicine 2019, 34, 137–141, doi:10.1017/S1049023X19000086.

[18]. Fang, J.; Hu, J.; Shi, X.; Zhao, L. Assessing Disaster Impacts and Response Using Social Media Data in China: A Case Study of 2016 Wuhan Rainstorm. International Journal of Disaster Risk Reduction 2019, 34, 275–282, doi:10.1016/j.ijdrr.2018.11.027.

[19]. Ogie, R.I.; James, S.; Moore, A.; Dilworth, T.; Amirghasemi, M.; Whittaker, J. Social Media Use in Disaster Recovery: A Systematic Literature Review. International Journal of Disaster Risk Reduction 2022, 70, 102783, doi:10.1016/j.ijdrr.2022.102783.

[20]. DiCarlo, M.F.; Berglund, E.Z. Use of Social Media to Seek and Provide Help in Hurricanes Florence and Michael. Smart Cities 2020, 3, 1187–1218, doi:10.3390/smartcities3040059.

[21]. Hunt, K.; Agarwal, P.; Aziz, R.A.; Zhuang, D.J. Fighting Fake News during Disasters. 2020, 47.

[22]. Xi, J.Y.; Chan, W.K. EMERGENCY MANAGEMENT IN CHINA: A SURVEY OF SYSTEM, AGENT-BASED MODELING, AND RECOMMENDATION. In Proceedings of the 2018 Winter Simulation Conference (WSC); IEEE: Gothenburg, Sweden, December 2018; pp. 905–916.

[23]. Cheng, Y.; Lee, C.-J. Online Crisis Communication in a Post-Truth Chinese Society: Evidence from Interdisciplinary Literature. Public Relations Review 2019, 45, 101826, doi:10.1016/j.pubrev.2019.101826.

[24]. Luna, S.; Pennock, M.J. Social Media Applications and Emergency Management: A Literature Review and Research Agenda. International Journal of Disaster Risk Reduction 2018, 28, 565–577, doi:10.1016/j.ijdrr.2018.01.006.

[25]. Li, Y.; Hu, Y.; Yang, S. Understanding Social Media Users’ Engagement Intention toward Emergency Information: The Role of Experience and Information Usefulness in a Reciprocity Framework. ITP 2023, 36, 1459–1483, doi:10.1108/ITP-10-2021-0753.

[26]. Ipe, M. Knowledge Sharing in Organizations: A Conceptual Framework. Human Resource Development Review 2003, 2, 337–359, doi:10.1177/1534484303257985.

[27]. Apuke, O.D.; Omar, B. User Motivation in Fake News Sharing during the COVID-19 Pandemic: An Application of the Uses and Gratification Theory. OIR 2020, 45, 220–239, doi:10.1108/OIR-03-2020-0116.

[28]. Yossatorn, Y.; Binali, T.; Weng, C.; Chu, R.J. Investigating the Relationships Among LINE Users’ Concerns, Motivations for Information Sharing Intention and Information Sharing Behavior. SAGE Open 2023, 13, 21582440231192950, doi:10.1177/21582440231192951.

[29]. Oh, S.; Syn, S.Y. Motivations for Sharing Information and Social Support in Social Media: A Comparative Analysis of F Acebook, T Witter, D Elicious, Y Ou T Ube, and F Lickr. Asso for Info Science & Tech 2015, 66, 2045–2060, doi:10.1002/asi.23320.

[30]. Bandura, A.; Freeman, W.H.; Lightsey, R. Self-Efficacy: The Exercise of Control. J Cogn Psychother 1999, 13, 158–166, doi:10.1891/0889-8391.13.2.158.

[31]. Liu, B.F.; Mehta, A.M. From the Periphery and toward a Centralized Model for Trust in Government Risk and Disaster Communication. Journal of Risk Research 2021, 24, 853–869, doi:10.1080/13669877.2020.1773516.

[32]. Janssen, M.; Lee, J.; Bharosa, N.; Cresswell, A. Advances in Multi-Agency Disaster Management: Key Elements in Disaster Research. Inf Syst Front 2010, 12, 1–7, doi:10.1007/s10796-009-9176-x.

[33]. Shen, H.; Shi, J.; Zhang, Y. CrowdEIM: Crowdsourcing Emergency Information Management Tasks to Mobile Social Media Users. International Journal of Disaster Risk Reduction 2021, 54, 102024, doi:10.1016/j.ijdrr.2020.102024.

[34]. Lin, X.; Lachlan, K.A.; Spence, P.R. Exploring Extreme Events on Social Media: A Comparison of User Reposting/Retweeting Behaviors on Twitter and Weibo. Computers in Human Behavior 2016, 65, 576–581, doi:10.1016/j.chb.2016.04.032.

[35]. Ding, M. Mobile Apps for Flood Emergency Management in China: Functionality, Usefulness, and Coproduction. China Media Research 2022, 1, 38.

[36]. Li, Y.; Peng, L.; Sang, Y.; Gao, H. The Characteristics and Functionalities of Citizen-Led Disaster Response through Social Media: A Case Study of the #HenanFloodsRelief on Sina Weibo. International Journal of Disaster Risk Reduction 2024, 106, 104419, doi:10.1016/j.ijdrr.2024.104419.

[37]. He, J.; Ma, M.; Zhou, Y.; Wang, M. What We Have Learned about the Characteristics and Differences of Disaster Information Behavior in Social Media—A Case Study of the 7.20 Henan Heavy Rain Flood Disaster. Sustainability 2023, 15, 4726, doi:10.3390/su15064726.

[38]. Rogers, R.W. A Protection Motivation Theory of Fear Appeals and Attitude Change1. The Journal of Psychology 1975, 91, 93–114, doi:10.1080/00223980.1975.9915803.

[39]. Rogers, D.; Baumgardner, D.; Vali, G. DETERMINATION OF SUPERCOOLED LIQUID WATER CONTENT BY MEASURING RIME RATE. Journal of Climate and Applied Meteorology 1983, 22, 153–162, doi:10.1175/1520-0450(1983)022<0153:DOSLWC>2.0.CO;2.

[40]. Babcicky, P.; Seebauer, S. Unpacking Protection Motivation Theory: Evidence for a Separate Protective and Non-Protective Route in Private Flood Mitigation Behavior. Journal of Risk Research 2019, 22, 1503–1521, doi:10.1080/13669877.2018.1485175.

[41]. Little, G.M.; Kohl, P.A.; Wardropper, C.B. Health and Environmental Protective Behavioral Intentions for Reducing Harm from Water Pollutants. Environmental Management 2023, doi:10.1007/s00267-023-01805-0.

[42]. Gumasing, Ma.J.J.; Prasetyo, Y.T.; Ong, A.K.S.; Nadlifatin, R. Determination of Factors Affecting the Response Efficacy of Filipinos under Typhoon Conson 2021 (Jolina): An Extended Protection Motivation Theory Approach. International Journal of Disaster Risk Reduction 2022, 70, 102759, doi:10.1016/j.ijdrr.2021.102759.

[43]. Heidenreich, A.; Masson, T.; Bamberg, S. Let’s Talk about Flood Risk – Evaluating a Series of Workshops on Private Flood Protection. International Journal of Disaster Risk Reduction 2020, 50, 101880, doi:10.1016/j.ijdrr.2020.101880.

[44]. Bamberg, S.; Masson, T.; Brewitt, K.; Nemetschek, N. Threat, Coping and Flood Prevention – A Meta-Analysis. Journal of Environmental Psychology 2017, 54, 116–126, doi:10.1016/j.jenvp.2017.08.001.

[45]. Botzen, W.J.W.; Kunreuther, H.; Czajkowski, J.; Moel, H. Adoption of Individual Flood Damage Mitigation Measures in New York City: An Extension of Protection Motivation Theory. Risk Analysis 2019, 39, 2143–2159, doi:10.1111/risa.13318.

[46]. Ong, A.K.S.; Prasetyo, Y.T.; Lagura, F.C.; Ramos, R.N.; Sigua, K.M.; Villas, J.A.; Young, M.N.; Diaz, J.F.T.; Persada, S.F.; Redi, A.A.N.P. Factors Affecting Intention to Prepare for Mitigation of “the Big One” Earthquake in the Philippines: Integrating Protection Motivation Theory and Extended Theory of Planned Behavior. International Journal of Disaster Risk Reduction 2021, 63, 102467, doi:10.1016/j.ijdrr.2021.102467.

[47]. Ball-Rokeach, S.J. THE ORIGINS OF INDIVIDUAL MEDIA-SYSTEM DEPENDENCY: A Sociological Framework. Communication Research 1985, 12, 485–510, doi:10.1177/009365085012004003.

[48]. Lowrey, W. Media Dependency During a Large-Scale Social Disruption: The Case of September 11. Mass Communication and Society 2004, 7, 339–357, doi:10.1207/s15327825mcs0703_5.

[49]. Li, Y.; Yang, S.; Zhang, S.; Zhang, W. Mobile Social Media Use Intention in Emergencies among Gen Y in China: An Integrative Framework of Gratifications, Task-Technology Fit, and Media Dependency. Telematics and Informatics 2019, 42, 101244, doi:10.1016/j.tele.2019.101244.

[50]. Reuter, C.; Kaufhold, M.-A.; Schmid, S.; Spielhofer, T.; Hahne, A.S. The Impact of Risk Cultures: Citizens’ Perception of Social Media Use in Emergencies across Europe. Technological Forecasting and Social Change 2019, 148, 119724, doi:10.1016/j.techfore.2019.119724.

[51]. Boukes, M.; Damstra, A.; Vliegenthart, R. Media Effects Across Time and Subject: How News Coverage Affects Two Out of Four Attributes of Consumer Confidence. Communication Research 2021, 48, 454–476, doi:10.1177/0093650219870087.

[52]. AlQahtany, A.M.; Abubakar, I.R. Public Perception and Attitudes to Disaster Risks in a Coastal Metropolis of Saudi Arabia. International Journal of Disaster Risk Reduction 2020, 44, 101422, doi:10.1016/j.ijdrr.2019.101422.

[53]. Becker, G.; Aerts, J.C.J.H.; Huitema, D. Influence of Flood Risk Perception and Other Factors on Risk‐reducing Behaviour: A Survey of Municipalities along the R Hine. J Flood Risk Management 2014, 7, 16–30, doi:10.1111/jfr3.12025.

[54]. Seebauer, S.; Babcicky, P. The Sources of Belief in Personal Capability: Antecedents of Self‐Efficacy in Private Adaptation to Flood Risk. Risk Analysis 2020, 40, 1967–1982, doi:10.1111/risa.13531.

[55]. BALL-ROKEACH, S.J. THE ORIGINS OF INDIVIDUAL MEDIA-SYSTEM DEPENDENCY: A Sociological Framework. Communication Research 1985, 12, 485–510, doi:10.1177/009365085012004003.

[56]. Gong, J.; Zanuddin, H.; Hou, W.; Xu, J. Media Attention, Dependency, Self-Efficacy, and Prosocial Behaviours during the Outbreak of COVID-19: A Constructive Journalism Perspective. Global Media and China 2022, 7, 81–98, doi:10.1177/20594364211021331.

[57]. Ball-Rokeach, S.J.; DeFleur, M.L. A Dependency Model of Mass-Media Effects. Communication Research 1976, 3, 3–21, doi:10.1177/009365027600300101.

[58]. Ho, S.S.; Liao, Y.; Rosenthal, S. Applying the Theory of Planned Behavior and Media Dependency Theory: Predictors of Public Pro-Environmental Behavioral Intentions in Singapore. Environmental Communication 2015, 9, 77–99, doi:10.1080/17524032.2014.932819.

[59]. Hansen, A. Communication, Media and Environment: Towards Reconnecting Research on the Production, Content and Social Implications of Environmental Communication. International Communication Gazette 2011, 73, 7–25, doi:10.1177/1748048510386739.

[60]. Wang, H.; Xiong, L. Understanding the Antecedents of Mobile Social Media Acceptance during the Public Health Crisis Maintenance Stage. International Journal of Disaster Risk Reduction 2022, 74, 102925, doi:10.1016/j.ijdrr.2022.102925.

[61]. Milne, S.; Sheeran, P.; Orbell, S. Prediction and Intervention in Health-Related Behavior: A Meta-Analytic Review of Protection Motivation Theory. J Appl Social Pyschol 2000, 30, 106–143, doi:10.1111/j.1559-1816.2000.tb02308.x.

[62]. Bubeck, P.; Botzen, W.J.W.; Aerts, J.C.J.H. A Review of Risk Perceptions and Other Factors That Influence Flood Mitigation Behavior. Risk Analysis 2012, 32, 1481–1495, doi:10.1111/j.1539-6924.2011.01783.x.

[63]. Wright, C.R.; Ball-Rokeach, S.J. The Great American Values Test: Influencing Behavior and Belief Through Television. Social Forces 1986, 65, 571, doi:10.2307/2578692.

[64]. Jr, J.F.H. PLS-SEM or CB-SEM: Updated Guidelines on Which Method to Use.

[65]. Hair, J.F.; Ringle, C.M.; Sarstedt, M. Partial Least Squares Structural Equation Modeling: Rigorous Applications, Better Results and Higher Acceptance. Long Range Planning 2013, 46, 1–12, doi:10.1016/j.lrp.2013.01.001.

[66]. Hair, J.F.; Howard, M.C.; Nitzl, C. Assessing Measurement Model Quality in PLS-SEM Using Confirmatory Composite Analysis. Journal of Business Research 2020, 109, 101–110, doi:10.1016/j.jbusres.2019.11.069.

[67]. Henseler, J.; Ringle, C.M.; Sarstedt, M. A New Criterion for Assessing Discriminant Validity in Variance-Based Structural Equation Modeling. J. of the Acad. Mark. Sci. 2015, 43, 115–135, doi:10.1007/s11747-014-0403-8.

[68]. Henseler, J.; Hubona, G.; Ray, P.A. Using PLS Path Modeling in New Technology Research: Updated Guidelines. Industrial Management & Data Systems 2016, 116, 2–20, doi:10.1108/IMDS-09-2015-0382.

[69]. Leguina, A. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). International Journal of Research & Method in Education 2015, 38, 220–221, doi:10.1080/1743727X.2015.1005806.

[70]. Cohen, J. Statistical Power Analysis for the Behavioral Sciences; 2nd ed.; L. Erlbaum Associates: Hillsdale, N.J, 1988; ISBN 978-0-8058-0283-2.

[71]. De Groot, J.; Steg, L. General Beliefs and the Theory of Planned Behavior: The Role of Environmental Concerns in the TPB. Journal of Applied Social Psychology 2007, 37, 1817–1836, doi:10.1111/j.1559-1816.2007.00239.x.

[72]. Lin, C.A.; Xu, X.; Dam, L. Information Source Dependence, Presumed Media Influence, Risk Knowledge, and Vaccination Intention. Atlantic Journal of Communication 2021, 29, 53–64, doi:10.1080/15456870.2020.1720022.

[73]. Bargh, J.A.; Schwader, K.L.; Hailey, S.E.; Dyer, R.L.; Boothby, E.J. Automaticity in Social-Cognitive Processes. Trends in Cognitive Sciences 2012, 16, 593–605, doi:10.1016/j.tics.2012.10.002.

[74]. Boas, I.; Chen, C.; Wiegel, H.; He, G. The Role of Social Media-Led and Governmental Information in China’s Urban Disaster Risk Response: The Case of Xiamen. International Journal of Disaster Risk Reduction 2020, 51, 101905, doi:10.1016/j.ijdrr.2020.101905.

[75]. Jin, X.; Spence, P.R. Check Crisis Information on Twitter: Information Flow and Crisis Communication Patterns of Hurricane Ida. Communication Studies 2023, 74, 337–355, doi:10.1080/10510974.2023.2202872.

[76]. Lachlan, K.A.; Spence, P.R.; Lin, X.; Najarian, K.; Del Greco, M. Social Media and Crisis Management: CERC, Search Strategies, and Twitter Content. Computers in Human Behavior 2016, 54, 647–652, doi:10.1016/j.chb.2015.05.027.

[77]. White, J.D.; Fu, K.-W. Who Do You Trust? Comparing People-Centered Communications in Disaster Situations in the United States and China. Journal of Comparative Policy Analysis: Research and Practice 2012, 14, 126–142, doi:10.1080/13876988.2012.664688.

[78]. Chen, Z.; Kong, F.; Zhang, M. A Case Study of the “7-20” Extreme Rainfall and Flooding Event in Zhengzhou, Henan Province, China from the Perspective of Fragmentation. Water 2022, 14, 2970, doi:10.3390/w14192970.

[79]. Zhao, X.; Li, H.; Cai, Q.; Pan, Y.; Qi, Y. Managing Extreme Rainfall and Flooding Events: A Case Study of the 20 July 2021 Zhengzhou Flood in China. Climate 2023, 11, 228, doi:10.3390/cli11110228.

[80]. Martens, T.; Garrelts, H.; Grunenberg, H.; Lange, H. Taking the Heterogeneity of Citizens into Account: Flood Risk Communication in Coastal Cities – a Case Study of Bremen. Nat. Hazards Earth Syst. Sci. 2009, 9, 1931–1940, doi:10.5194/nhess-9-1931-2009.

[81]. Horwath, C.C. Applying the Transtheoretical Model to Eating Behaviour Change: Challenges and Opportunities. Nutr. Res. Rev. 1999, 12, 281–317, doi:10.1079/095442299108728965.

[82]. Martin, I.M.; Bender, H.; Raish, C. What Motivates Individuals to Protect Themselves from Risks: The Case of Wildland Fires. Risk Analysis 2007, 27, 887–900, doi:10.1111/j.1539-6924.2007.00930.x.

[83]. Andrade, C. The Limitations of Online Surveys. Indian Journal of Psychological Medicine 2020, 42, 575–576, doi:10.1177/0253717620957496.

Cite this article

Li,P. (2024). Analysis of Factors Affecting Social Media Disaster Information Sharing among Young Adults: An Empirical Study Using SEM-PLS Approach. Advances in Social Behavior Research,11,50-61.

Data availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

Disclaimer/Publisher's Note

The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

About volume

Journal:Advances in Social Behavior Research

Volume number: Vol.11
ISSN:2753-7102(Print) / 2753-7110(Online)

© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license. Authors who publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See Open access policy for details).