Research Article
Open access
Published on 18 November 2024
Download pdf
Li,J. (2024). Advances and applications of prodrug strategies in drug design. Journal of Food Science, Nutrition and Health,3,12-22.
Export citation

Advances and applications of prodrug strategies in drug design

Jiaqi Li *,1,
  • 1 Henan University of Technology

* Author to whom correspondence should be addressed.

https://doi.org/10.54254/3029-0821/3/2024023

Abstract

Of all the drugs launched on the market over the past decade, a substantial number of approved prodrugs have been significant, underscoring the importance of this prodrug to drug design. It is reported that 10% of all marketed drugs globally can be classified as prodrugs. The core goal of the prodrug strategy is to improve the undesirable properties of the drug molecule, including but not limited to insufficient solubility, low selectivity, poor chemical stability, poor taste, strong local irritation, significant pain, and possible systemic toxicity during metabolism in vivo. This review article includes the discussion of the phosphate prodrugs, ketone prodrugs, ester prodrugs, amide prodrugs, pH-responsive prodrugs, enzyme-activated prodrugs, carbamate prodrugs, liposomal prodrugs, and pleiotropic prodrugs. The latest research on prodrugs in the field of cancer, nano and antibacterial in recent years are also discussed. Through the research and application of the above chemical modification methods and the clinical application of prodrug technology in the fields of cancer treatment, nanotechnology, antimicrobial drugs, etc., researchers can design safer and more effective treatments to meet clinical needs and optimize the treatment experience of patients. At the same time, these studies not only confirm the importance of prodrug design in drug development, but also provide new ideas and methods for future drug design.

Keywords

prodrug, solubility, cancer, clinical application

[1]. Rautio, J., Kumpulainen, H., Heimbach, T., Oliyai, R., Oh, D., Järvinen, T., & Savolainen, J. (2008). Prodrugs: Design and clinical applications. Nature Reviews Drug Discovery, 7(4), 255–270. https://doi.org/10.1038/nrd2468

[2]. Huttunen, K. M., Raunio, H., & Rautio, J. (2011). Prodrugs: Design and clinical applications. Pharmacological Reviews, 63(3), 750–771. https://doi.org/10.1124/pr.110.003459

[3]. Fralish, Z., Chen, A., Khan, S., Zhou, P., & Reker, D. (2024). Machine learning in drug discovery. Nature Reviews Drug Discovery, 23(4), 365–380. https://doi.org/10.1038/s41573-023-00273-9

[4]. Alanazi, A. S., Miccoli, A., & Mehellou, Y. (2021). Advances in prodrug strategies. Journal of Medicinal Chemistry, 64(24), 16703–16710. https://doi.org/10.1021/acs.jmedchem.1c01176

[5]. Chang, Y., Yao, S., Chen, Y., Huang, J., Wu, A., Zhang, M., Xu, F., Li, F., & Huang, Y. (2019). Nanoplatforms for cancer therapy. Nanoscale, 11(2), 611–621. https://doi.org/10.1039/C8NR08510K

[6]. Chen, W. H., Lei, Q., Yang, C. X., Jia, H. Z., Luo, G. F., Wang, X. Y., Liu, G., Cheng, S. X., & Zhang, X. Z. (2015). Functional mesoporous silica nanoparticles for imaging and drug delivery. Small, 11(42), 5230–5242. https://doi.org/10.1002/smll.201500540

[7]. Kavanaugh, W. M. (2020). Recent advances in biological therapy. Expert Opinion on Biological Therapy, 20(2), 163–171. https://doi.org/10.1080/14712598.2020.1698701

[8]. Kong, F., Liang, Z., Luan, D., Liu, X., Xu, K., & Tang, B. (2016). Fluorescence spectroscopy for biomolecule detection. Analytical Chemistry, 88(11), 6450–6456. https://doi.org/10.1021/acs.analchem.6b01002

[9]. Wang, P., Gong, Q., Hu, J., Li, X., & Zhang, X. (2021). Targeted cancer therapy with prodrugs. Journal of Medicinal Chemistry, 64(1), 298–325. https://doi.org/10.1021/acs.jmedchem.0c01234

[10]. Xie, A., Hanif, S., Ouyang, J., Tang, Z., Kong, N., Kim, N. Y., Qi, B., Patel, D., Shi, B., & Tao, W. (2020). Precision nanomedicine for cancer immunotherapy. EBioMedicine, 56, 102821. https://doi.org/10.1016/j.ebiom.2020.102821

[11]. Song, H., Li, W., Qi, R., Yan, L., Jing, X., Zheng, M., & Xiao, H. (2015). Multi-responsive nanocarriers for drug delivery. Chemical Communications, 51(68), 11493–11495. https://doi.org/10.1039/C5CC03817G

[12]. Kleeb, S., Jiang, X., Frei, P., Sigl, A., Bezençon, J., Bamberger, K., Schwardt, O., & Ernst, B. (2016). Targeted drug delivery with glycomimetics. Journal of Medicinal Chemistry, 59(7), 3163–3182. https://doi.org/10.1021/acs.jmedchem.6b00045

[13]. Mehellou, Y., Rattan, H. S., & Balzarini, J. (2018). Prodrugs in antiviral therapy. Journal of Medicinal Chemistry, 61(6), 2211–2226. https://doi.org/10.1021/acs.jmedchem.7b00754

[14]. Ji, X., Wang, J., Zhang, L., Zhao, L., Jiang, H., & Liu, H. (2013). Exploring novel therapeutic agents. Journal Name Missing, 48(X), 621–634.

[15]. Zhang, L., Qi, K., Xu, J., Xing, Y., Wang, X., Tong, L., He, Z., Xu, W., Li, X., & Jiang, Y. (2023). Advances in medicinal chemistry research. Journal of Medicinal Chemistry, 66(X), 4150–4166. https://doi.org/10.1021/acs.jmedchem.3c00045

[16]. Dettori, M. A., Pisano, M., Rozzo, C., Delogu, G., & Fabbri, D. (2021). New chemical entities in cancer therapy. ChemMedChem, 16(7), 1022–1033. https://doi.org/10.1002/cmdc.202100056

[17]. Pillinger, M. H., Dinsell, V., Apsel, B., Tolani, S. N., Marjanovic, N., Chan, E. S., Gomez, P., Clancy, R., Chang, L. F., & Abramson, S. B. (2004). Inflammation pathways in rheumatoid arthritis. British Journal of Pharmacology, 142(5), 973–982. https://doi.org/10.1038/sj.bjp.0705840

[18]. Lavis, L. D. (2008). Fluorescent probes for biological imaging. ACS Chemical Biology, 3(4), 203–206. https://doi.org/10.1021/cb800025k

[19]. Ma, L., Wang, N., Ma, R., Li, C., Xu, Z., Tse, M. K., & Zhu, G. (2018). Catalytic chemistry for sustainable development. Angewandte Chemie International Edition, 57(X), 9098–9102. https://doi.org/10.1002/anie.201804113

[20]. Beaumont, K., Webster, R., Gardner, I., & Dack, K. (2003). Drug metabolism and disposition in pharmacokinetics. Current Drug Metabolism, 4(5), 461–485. https://doi.org/10.2174/1389200033489317

[21]. Ohura, K. (2020). Yakugaku Zasshi: Journal of the Pharmaceutical Society of Japan, 140(4), 369–376.

[22]. Wang, W., Lü, W., & Lu, Z. (2006). [Details needed for the journal title]. 39(42).

[23]. Park, Y., Park, J. H., Park, S., Lee, S. Y., Cho, K. H., Kim, D. D., Shim, W. S., Yoon, I. S., Cho, H. J., & Maeng, H. J. (2016). Molecules, 21(1).

[24]. Haddad, F., Sawalha, M., Khawaja, Y., Najjar, A., & Karaman, R. (2017). Molecules, 23(1).

[25]. Delatouche, R., Denis, I., Grinda, M., El Bahhaj, F., Baucher, E., Collette, F., Héroguez, V., Grégoire, M., Blanquart, C., & Bertrand, P. (2013). European Journal of Pharmaceutics and Biopharmaceutics, 85(4), 862–872.

[26]. Su, M., & Yin, Z. (2022). [Details needed for the journal title]. 37(1), 130–133.

[27]. Su, M., Yang, B., Xi, M., Qiang, C., & Yin, Z. (2021). Journal of Drug Delivery Science and Technology, 66, 102738.

[28]. Walther, R., Rautio, J., & Zelikin, A. N. (2017). Advanced Drug Delivery Reviews, 118, 65–77.

[29]. Liang, Q., Xi, J., Gao, X. J., Zhang, R., Yang, Y., Gao, X., Yan, X., Gao, L., & Fan, K. (2020). [Details needed for the journal title]. 35(1).

[30]. Li, Y., Wang, Y., Zhang, R., Liu, C., Wei, Y., Sun, J., He, Z., Xu, Y., & Zhang, T. (2018). Drug Delivery and Translational Research, 8(6), 1335–1344.

[31]. Ogawa, T., Hashimoto, M., Niitsu, Y., Jakubowski, J. A., Tani, Y., Otsuguro, K., Asai, F., & Sugidachi, A. (2009). European Journal of Pharmacology, 612(1–3), 29–34.

[32]. Jithavech, P., Suwattananuruk, P., Hasriadi, Muangnoi, C., Thitikornpong, W., Towiwat, P., Vajragupta, O., & Rojsitthisak, P. (2022). PLOS ONE, 17(3), e0265689.

[33]. Mura, S., Bui, D. T., Couvreur, P., & Nicolas, J. (2015). Journal of Controlled Release, 208, 25–41.

[34]. Markovic, M., Ben-Shabat, S., Keinan, S., Aponick, A., Zimmermann, E. M., & Dahan, A. (2018). Pharmaceutics, 10(4).

[35]. Feeney, O. M., Crum, M. F., McEvoy, C. L., Trevaskis, N. L., Williams, H. D., Pouton, C. W., Charman, W. N., Bergström, C. A. S., & Porter, C. J. H. (2016). Advanced Drug Delivery Reviews, 101, 167–194.

[36]. Milano, G., Innocenti, F., & Minami, H. (2022). Cancer Science, 113(8), 2224–2231.

[37]. Toublet, F. X., Lalut, J., Hatat, B., Lecoutey, C., Davis, A., Since, M., Corvaisier, S., Freret, T., Sopková-de Oliveira Santos, J., Claeysen, S., Boulouard, M., Dallemagne, P., & Rochais, C. (2021). European Journal of Medicinal Chemistry, 210, 113059.

[38]. Wang, C., Xu, M., Zhang, Z., Zeng, S., Shen, S., Ding, Z., Chen, J., Cui, X. Y., & Liu, Z. (2024). Science Bulletin.

[39]. Nazli, A., Irshad Khan, M. Z., Rácz, Á., & Béni, S. (2024). European Journal of Medicinal Chemistry, 276, 116699.

[40]. Ma, S., Kim, J. H., Chen, W., Li, L., Lee, J., Xue, J., Liu, Y., Chen, G., Tang, B., Tao, W., & Kim, J. S. (2023). Advanced Science.

[41]. Zhao, J., Li, X., Ma, T., Chang, B., Zhang, B., & Fang, J. (2024). Medicinal Research Reviews, 44(4), 1013–1054.

[42]. Wang, C., Sui, W., Chen, W., Zhang, Y., Xing, J., Jiang, H., Xu, W., & Xing, D. (2024). Coordination Chemistry Reviews, 519, 216138.

[43]. van der Meel, R., Chen, S., Zaifman, J., Kulkarni, J. A., Zhang, X. R. S., Tam, Y. K., Bally, M. B., Schiffelers, R. M., Ciufolini, M. A., Cullis, P. R., & Tam, Y. Y. C. (2021). Small, 17(51), e2103025.

[44]. Chien, S. T., Suydam, I. T., & Woodrow, K. A. (2023). Advanced Drug Delivery Reviews, 198, 114860.

[45]. Maria, C., de Matos, A. M., & Rauter, A. P. (2024). Pharmaceuticals, 17(1).

Cite this article

Li,J. (2024). Advances and applications of prodrug strategies in drug design. Journal of Food Science, Nutrition and Health,3,12-22.

Data availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

Disclaimer/Publisher's Note

The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

About volume

Journal:Journal of Food Science, Nutrition and Health

Volume number: Vol.3
ISSN:3029-0821(Print) / 3029-083X(Online)

© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license. Authors who publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See Open access policy for details).