Research Article
Open access
Published on 13 December 2024
Download pdf
Bi,S. (2024). Exploration of Alzheimer’s Disease. Journal of Food Science, Nutrition and Health,3,27-37.
Export citation

Exploration of Alzheimer’s Disease

Siying Bi *,1,
  • 1 Boston University,Commonwealth ave,Boston,MA,02215

* Author to whom correspondence should be addressed.

https://doi.org/10.54254/3029-0821/2024.18466

Abstract

One of the leading causes of dementia and a significant global public health concern is Alzheimer's disease (AD). The many facets of AD are examined in this study, with particular attention to its pathophysiology, genetic and lifestyle risk factors, and developments in diagnostic methods. We discuss how several animal models, including Drosophila and C. elegans, as well as vertebrates like non-human primates, dogs, mice, rats, and zebrafish, have been used to study the genetic basis of AD. Along with the effect of COVID-19 on AD patients, the function of the ApoE4 allele and Western diets in disease vulnerability are examined. The frequency of AD is rising, according to demographic statistics, which emphasizes the critical need for research on early identification and treatments. The potential of existing diagnostic techniques, such as phosphorylated tau and amyloid β plasma testing and PET scans, is assessed in clinical and research contexts. The article highlights the value of lifestyle modifications and early detection in treating AD, providing insights into potential future treatment approaches and broader ramifications for the study of neurodegenerative diseases.

Keywords

Alzheimer's Disease (AD) Pathology, genetic and lifestyle risk factors, diagnostic methods, neuroinflammation, ApoE4 Allele

[1]. Abdi, S., Javanmehr, N., Ghasemi-Kasman, M., Bali, H. Y., & Pirzadeh, M. (2022). Stem cell-based therapeutic and diagnostic approaches in Alzheimer’s disease. Current Neuropharmacology, 20(6), 1093–1115. https://doi.org/10.2174/1570159X20666211231090659

[2]. Allen, W. E., Blosser, T. R., Sullivan, Z. A., Dulac, C., & Zhuang, X. (2023). Molecular and spatial signatures of mouse brain aging at single-cell resolution. Cell, 186(1), 194-208.e18. https://doi.org/10.1016/j.cell.2022.12.010

[3]. Armstrong, R. A. (2019). Risk factors for Alzheimer’s disease. Folia Neuropathologica, 57(2), 87–105. https://doi.org/10.5114/fn.2019.85929

[4]. Bai, B., Vanderwall, D., Li, Y., Wang, X., Poudel, S., Wang, H., Dey, K. K., Chen, P.-C., Yang, K., & Peng, J. (2021). Proteomic landscape of Alzheimer’s disease: Novel insights into pathogenesis and biomarker discovery. Molecular Neurodegeneration, 16(1), 55. https://doi.org/10.1186/s13024-021-00474-z

[5]. Beata, B.-K., Wojciech, J., Johannes, K., Piotr, L., & Barbara, M. (2023). Alzheimer’s disease—Biochemical and psychological background for diagnosis and treatment. International Journal of Molecular Sciences, 24(2), 1059. https://doi.org/10.3390/ijms24021059

[6]. Bondi, M. W., Edmonds, E. C., & Salmon, D. P. (2017). Alzheimer’s disease: Past, present, and future. Journal of the International Neuropsychological Society, 23(9–10), 818–831. https://doi.org/10.1017/S135561771700100X

[7]. Bredesen, D. E., Amos, E. C., Canick, J., Ackerley, M., Raji, C., Fiala, M., & Ahdidan, J. (2016). Reversal of cognitive decline in Alzheimer’s disease. Aging, 8(6), 1250–1258. https://doi.org/10.18632/aging.100981

[8]. Briggs, R., Kennelly, S. P., & O’Neill, D. (2016). Drug treatments in Alzheimer’s disease. Clinical Medicine, 16(3), 247–253. https://doi.org/10.7861/clinmedicine.16-3-247

[9]. Chang, C.-H., Lin, C.-H., & Lane, H.-Y. (2021). Machine learning and novel biomarkers for the diagnosis of Alzheimer’s disease. International Journal of Molecular Sciences, 22(5), 2761. https://doi.org/10.3390/ijms22052761

[10]. Chen, Z.-Y., & Zhang, Y. (2022). Animal models of Alzheimer’s disease: Applications, evaluation, and perspectives. Zoological Research, 43(6), 1026–1040. https://doi.org/10.24272/j.issn.2095-8137.2022.289

[11]. Choi, J., Li, J., Ferdous, S., Liang, Q., Moffitt, J. R., & Chen, R. (2023). Spatial organization of the mouse retina at single-cell resolution by MERFISH. Nature Communications, 14(1), 4929. https://doi.org/10.1038/s41467-023-40674-3

[12]. De La Rosa, A., Olaso-Gonzalez, G., Arc-Chagnaud, C., Millan, F., Salvador-Pascual, A., García-Lucerga, C., Blasco-Lafarga, C., Garcia-Dominguez, E., Carretero, A., Correas, A. G., Viña, J., & Gomez-Cabrera, M. C. (2020). Physical exercise in the prevention and treatment of Alzheimer’s disease. Journal of Sport and Health Science, 9(5), 394–404. https://doi.org/10.1016/j.jshs.2020.01.004

[13]. Fang, R., Xia, C., Close, J. L., Zhang, M., He, J., Huang, Z., Halpern, A. R., Long, B., Miller, J. A., Lein, E. S., & Zhuang, X. (2022). Conservation and divergence of cortical cell organization in human and mouse revealed by MERFISH. Science, 377(6601), 56–62. https://doi.org/10.1126/science.abm1741

[14]. Flicker, L. (2010). Modifiable lifestyle risk factors for Alzheimer’s disease. Journal of Alzheimer’s Disease, 20(3), 803–811. https://doi.org/10.3233/JAD-2010-091624

[15]. Graff-Radford, J., Yong, K. X. X., Apostolova, L. G., Bouwman, F. H., Carrillo, M., Dickerson, B. C., Rabinovici, G. D., Schott, J. M., Jones, D. T., & Murray, M. E. (2021). New insights into atypical Alzheimer’s disease in the era of biomarkers. The Lancet Neurology, 20(3), 222–234. https://doi.org/10.1016/S1474-4422(20)30440-3

[16]. Gumus, M., Multani, N., Mack, M. L., Tartaglia, M. C., & for the Alzheimer’s Disease Neuroimaging Initiative. (2021). Progression of neuropsychiatric symptoms in young-onset versus late-onset Alzheimer’s disease. GeroScience, 43(1), 213–223. https://doi.org/10.1007/s11357-020-00304-y

[17]. Jack, C. R., Bennett, D. A., Blennow, K., Carrillo, M. C., Dunn, B., Haeberlein, S. B., Holtzman, D. M., Jagust, W., Jessen, F., Karlawish, J., Liu, E., Molinuevo, J. L., Montine, T., Phelps, C., Rankin, K. P., Rowe, C. C., Scheltens, P., Siemers, E., Snyder, H. M., … Silverberg, N. (2018). NIA‐AA research framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s & Dementia, 14(4), 535–562. https://doi.org/10.1016/j.jalz.2018.02.018

[18]. Jung, Y. J., Kim, Y. H., Bhalla, M., Lee, S. B., & Seo, J. (2018). Genomics: New light on Alzheimer’s disease research. International Journal of Molecular Sciences, 19(12), 3771. https://doi.org/10.3390/ijms19123771

[19]. Lane, C. A., Hardy, J., & Schott, J. M. (2018). Alzheimer’s disease. European Journal of Neurology, 25(1), 59–70. https://doi.org/10.1111/ene.13439

[20]. Mantzavinos, V., & Alexiou, A. (2017). Biomarkers for Alzheimer’s disease diagnosis. Current Alzheimer Research, 14(11). https://doi.org/10.2174/1567205014666170203125942

[21]. Mavroudis, I., Petridis, F., Kazis, D., Njau, S. N., Costa, V., & Baloyannis, S. J. (2019). Purkinje cells pathology in Alzheimer’s disease. American Journal of Alzheimer’s Disease & Other Dementias®, 34(7–8), 439–449. https://doi.org/10.1177/1533317519859200

[22]. Miller, M. B., Huang, A. Y., Kim, J., Zhou, Z., Kirkham, S. L., Maury, E. A., Ziegenfuss, J. S., Reed, H. C., Neil, J. E., Rento, L., Ryu, S. C., Ma, C. C., Luquette, L. J., Ames, H. M., Oakley, D. H., Frosch, M. P., Hyman, B. T., Lodato, M. A., Lee, E. A., & Walsh, C. A. (2022). Somatic genomic changes in single Alzheimer’s disease neurons. Nature, 604(7907), 714–722. https://doi.org/10.1038/s41586-022-04640-1

[23]. Qiu, C., Kivipelto, M., & von Strauss, E. (2009). Epidemiology of Alzheimer’s disease: Occurrence, determinants, and strategies toward intervention. Dialogues in Clinical Neuroscience, 11(2), 111–128. https://doi.org/10.31887/DCNS.2009.11.2/cqiu

[24]. Reitz, C. (2015). Genetic diagnosis and prognosis of Alzheimer’s disease: Challenges and opportunities. Expert Review of Molecular Diagnostics, 15(3), 339–348. https://doi.org/10.1586/14737159.2015.1002469

[25]. Scheltens, P., De Strooper, B., Kivipelto, M., Holstege, H., Chételat, G., Teunissen, C. E., Cummings, J., & van der Flier, W. M. (2021). Alzheimer’s disease. The Lancet, 397(10284), 1577–1590. https://doi.org/10.1016/S0140-6736(20)32205-4

[26]. Serrano-Pozo, A., Das, S., & Hyman, B. T. (2021). APOE and Alzheimer’s disease: Advances in genetics, pathophysiology, and therapeutic approaches. The Lancet Neurology, 20(1), 68–80. https://doi.org/10.1016/S1474-4422(20)30412-9

[27]. Serrano-Pozo, A., & Growdon, J. H. (2019). Is Alzheimer’s disease risk modifiable? Journal of Alzheimer’s Disease, 67(3), 795–819. https://doi.org/10.3233/JAD181028

[28]. Sun, B.-L., Li, W.-W., Zhu, C., Jin, W.-S., Zeng, F., Liu, Y.-H., Bu, X.-L., Zhu, J., Yao, X.-Q., & Wang, Y.-J. (2018). Clinical research on Alzheimer’s disease: Progress and perspectives. Neuroscience Bulletin, 34(6), 1111–1118. https://doi.org/10.1007/s12264-018-0249-z

[29]. The need for early detection and treatment in Alzheimer’s disease. (2016). EBioMedicine, 9, 1–2. https://doi.org/10.1016/j.ebiom.2016.07.001

[30]. Twarowski, B., & Herbet, M. (2023). Inflammatory processes in Alzheimer’s disease—Pathomechanism, diagnosis and treatment: A

[31]. Wang, G., Moffitt, J. R., & Zhuang, X. (2018). Multiplexed imaging of high-density libraries of RNAs with MERFISH and expansion microscopy. Scientific Reports, 8(1), 4847. https://doi.org/10.1038/s41598-018-22297-7

[32]. Wang, X., Huang, W., Su, L., Xing, Y., Jessen, F., Sun, Y., Shu, N., & Han, Y. (2020). Neuroimaging advances regarding subjective cognitive decline in preclinical Alzheimer’s disease. Molecular Neurodegeneration, 15(1), 55. https://doi.org/10.1186/s13024-020-00395-3

[33]. Wang, Y., Liu, B., Zhao, G., Lee, Y., Buzdin, A., Mu, X., Zhao, J., Chen, H., & Li, X. (2023). Spatial transcriptomics: Technologies, applications and experimental considerations. Genomics, 115(5), 110671. https://doi.org/10.1016/j.ygeno.2023.110671

[34]. Warren, S. L., & Moustafa, A. A. (2023). Functional magnetic resonance imaging, deep learning, and Alzheimer’s disease: A systematic review. Journal of Neuroimaging, 33(1), 5–18. https://doi.org/10.1111/jon.13063

[35]. Weller, J., & Budson, A. (2018). Current understanding of Alzheimer’s disease diagnosis and treatment. F1000Research, 7, F1000 Faculty Rev-1161. https://doi.org/10.12688/f1000research.14506.1

[36]. Xia, C., Babcock, H. P., Moffitt, J. R., & Zhuang, X. (2019). Multiplexed detection of RNA using MERFISH and branched DNA amplification. Scientific Reports, 9(1), 7721. https://doi.org/10.1038/s41598-019-43943-8

[37]. Xia, C., Fan, J., Emanuel, G., Hao, J., & Zhuang, X. (2019). Spatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression. Proceedings of the National Academy of Sciences of the United States of America, 116(39), 19490–19499. https://doi.org/10.1073/pnas.1912459116

Cite this article

Bi,S. (2024). Exploration of Alzheimer’s Disease. Journal of Food Science, Nutrition and Health,3,27-37.

Data availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

Disclaimer/Publisher's Note

The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

About volume

Journal:Journal of Food Science, Nutrition and Health

Volume number: Vol.3
ISSN:3029-0821(Print) / 3029-083X(Online)

© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license. Authors who publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See Open access policy for details).