References
[1]. G. Zammarchi, F. Mola, and C. Conversano, ‘Using sentiment analysis to evaluate the impact of the COVID-19 outbreak on Italy’s country reputation and stock market performance’, Stat. Methods Appl., Apr. 2023, doi: 10.1007/s10260-023-00690-5.
[2]. Y. Madani, M. Erritali, and B. Bouikhalene, ‘A new sentiment analysis method to detect and Analyse sentiments of Covid-19 moroccan tweets using a recommender approach’, Multimed. Tools Appl., pp. 1–20, Feb. 2023, doi: 10.1007/s11042-023-14514-x.
[3]. ‘Feeling Positive About Reopening? New Normal Scenarios From COVID-19 US Reopen Sentiment Analytics | IEEE Journals & Magazine | IEEE Xplore’. https://ieeexplore.ieee.org/document/9154672 (accessed Sep. 15, 2023).
[4]. ‘Deep Learning Model for COVID-19 Sentiment Analysis on Twitter | SpringerLink’. https://link.springer.com/article/10.1007/s00354-023-00209-2 (accessed Sep. 16, 2023).
[5]. ‘Studying the psychology of coping negative emotions during COVID-19: a quantitative analysis from India | SpringerLink’. https://link.springer.com/article/10.1007/s11356-021-16002-x (accessed Sep. 16, 2023).
[6]. ‘Trends and prevalence of suicide 2017-2021 and its association with COVID-19: Interrupted time series analysis of a national sample of college students in the United States - PubMed’. https://pubmed.ncbi.nlm.nih.gov/35987067/ (accessed Sep. 16, 2023).
[7]. ‘SemEval-2018 Task 1: Affect in Tweets - ACL Anthology’. https://aclanthology.org/S18-1001/ (accessed Sep. 16, 2023).
[8]. A. Law and A. Ghosh, ‘Multi-Label Classification Using Binary Tree of Classifiers’, IEEE Trans. Emerg. Top. Comput. Intell., vol. 6, no. 3, pp. 677–689, Jun. 2022, doi: 10.1109/TETCI.2021.3075717.
[9]. K. Machova, M. Mach, and M. Vasilko, ‘Comparison of Machine Learning and Sentiment Analysis in Detection of Suspicious Online Reviewers on Different Type of Data’, Sensors, vol. 22, no. 1, Art. no. 1, Jan. 2022, doi: 10.3390/s22010155.
[10]. I. Lasri, A. Riadsolh, and M. Elbelkacemi, ‘Real-time Twitter Sentiment Analysis for Moroccan Universities using Machine Learning and Big Data Technologies’, Int. J. Emerg. Technol. Learn. IJET, vol. 18, pp. 42–61, Mar. 2023, doi: 10.3991/ijet.v18i05.35959.
[11]. ‘Environmental Complaint Text Classification Scheme Combining Automatic Annotation and TextCNN | IEEE Conference Publication | IEEE Xplore’. https://ieeexplore.ieee.org/abstract/document/9727661 (accessed Sep. 18, 2023).
[12]. B. Guo, C. Zhang, J. Liu, and X. Ma, ‘Improving text classification with weighted word embeddings via a multi-channel TextCNN model’, Neurocomputing, vol. 363, pp. 366–374, Oct. 2019, doi: 10.1016/j.neucom.2019.07.052.
[13]. Y. Cao, Z. Sun, L. Li, and W. Mo, ‘A Study of Sentiment Analysis Algorithms for Agricultural Product Reviews Based on Improved BERT Model’, Symmetry, vol. 14, no. 8, Art. no. 8, Aug. 2022, doi: 10.3390/sym14081604.
[14]. T. Kumar, M. Mahrishi, and G. Sharma, ‘Emotion recognition in Hindi text using multilingual BERT transformer’, Multimed. Tools Appl., Apr. 2023, doi: 10.1007/s11042-023-15150-1.
[15]. X. Zhang and Y. Ma, ‘An ALBERT-based TextCNN-Hatt hybrid model enhanced with topic knowledge for sentiment analysis of sudden-onset disasters’, Eng. Appl. Artif. Intell., vol. 123, p. 106136, Aug. 2023, doi: 10.1016/j.engappai.2023.106136.
[16]. A. F. Abdillah, C. B. P. Putra, A. Apriantoni, S. Juanita, and D. Purwitasari, ‘Ensemble-based Methods for Multi-label Classification on Biomedical Question-Answer Data’, J. Inf. Syst. Eng. Bus. Intell., vol. 8, no. 1, Art. no. 1, Apr. 2022, doi: 10.20473/jisebi.8.1.42-50.
[17]. S. Srivastava, B. Paul, and D. Gupta, ‘Study of Word Embeddings for Enhanced Cyber Security Named Entity Recognition’, Procedia Comput. Sci., vol. 218, pp. 449–460, Jan. 2023, doi: 10.1016/j.procs.2023.01.027.
[18]. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding’. arXiv, May 24, 2019. doi: 10.48550/arXiv.1810.04805.
[19]. B. Heinzerling and M. Strube, ‘BPEmb: Tokenization-free Pre-trained Subword Embeddings in 275 Languages’. arXiv, Oct. 05, 2017. Accessed: Apr. 23, 2023. [Online]. Available: http://arxiv.org/abs/1710.02187
[20]. ‘Rise and fall of the global conversation and shifting sentiments during the COVID-19 pandemic | Humanities and Social Sciences Communications’. https://www.nature.com/articles/s41599-021-00798-7 (accessed Oct. 31, 2022).
[21]. Q. Yang et al., ‘SenWave: Monitoring the Global Sentiments under the COVID-19 Pandemic’. arXiv, Jun. 18, 2020. doi: 10.48550/arXiv.2006.10842.
[22]. J. Qiang, Y. Li, Y. Zhu, Y. Yuan, and X. Wu, ‘Lexical Simplification with Pretrained Encoders’. arXiv, Oct. 28, 2020. Accessed: Apr. 16, 2023. [Online]. Available: http://arxiv.org/abs/1907.06226
[23]. E. Çelik and T. Dalyan, ‘Unified benchmark for zero-shot Turkish text classification’, Inf. Process. Manag., vol. 60, no. 3, p. 103298, May 2023, doi: 10.1016/j.ipm.2023.103298.
[24]. Y. Kim, ‘Convolutional Neural Networks for Sentence Classification’. arXiv, Sep. 02, 2014. Accessed: Apr. 23, 2023. [Online]. Available: http://arxiv.org/abs/1408.5882
[25]. B. Lu, Z. Lin, and X. Zhang, ‘Text Analysis Method Based on Multi-channel Parallel Classifier’, in 2022 IEEE 2nd International Conference on Information Communication and Software Engineering (ICICSE), Mar. 2022, pp. 6–12. doi: 10.1109/ICICSE55337.2022.9828968.
[26]. X. Jiang, C. Song, Y. Xu, Y. Li, and Y. Peng, ‘Research on sentiment classification for netizens based on the BERT-BiLSTM-TextCNN model’, PeerJ Comput. Sci., vol. 8, p. e1005, Jun. 2022, doi: 10.7717/peerj-cs.1005.
[27]. ‘torch.nn — PyTorch 2.0 documentation’. https://pytorch.org/docs/stable/nn.html (accessed Apr. 23, 2023).
[28]. J. Deng and F. Ren, ‘Multi-Label Emotion Detection via Emotion-Specified Feature Extraction and Emotion Correlation Learning’, IEEE Trans. Affect. Comput., vol. 14, no. 1, pp. 475–486, Jan. 2023, doi: 10.1109/TAFFC.2020.3034215.
[29]. Q. Lv, W. Liu, R. Li, H. Yang, Y. Tao, and M. Wang, ‘Classification of Seismaesthesia Information and Seismic Intensity Assessment by Multi-Model Coupling’, ISPRS Int. J. Geo-Inf., vol. 12, no. 2, Art. no. 2, Feb. 2023, doi: 10.3390/ijgi12020046.
[30]. H.-D. Le, G.-S. Lee, S.-H. Kim, S. Kim, and H.-J. Yang, ‘Multi-Label Multimodal Emotion Recognition With Transformer-Based Fusion and Emotion-Level Representation Learning’, IEEE Access, vol. 11, pp. 14742–14751, 2023, doi: 10.1109/ACCESS.2023.3244390.
Cite this article
Chang,Y. (2024). Multilingual sentiment analysis during the pandemic using deep learning models. Applied and Computational Engineering,43,284-293.
Data availability
The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.
Disclaimer/Publisher's Note
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
About volume
Volume title: Proceedings of the 2023 International Conference on Machine Learning and Automation
© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and
conditions of the Creative Commons Attribution (CC BY) license. Authors who
publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons
Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this
series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published
version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial
publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and
during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See
Open access policy for details).
References
[1]. G. Zammarchi, F. Mola, and C. Conversano, ‘Using sentiment analysis to evaluate the impact of the COVID-19 outbreak on Italy’s country reputation and stock market performance’, Stat. Methods Appl., Apr. 2023, doi: 10.1007/s10260-023-00690-5.
[2]. Y. Madani, M. Erritali, and B. Bouikhalene, ‘A new sentiment analysis method to detect and Analyse sentiments of Covid-19 moroccan tweets using a recommender approach’, Multimed. Tools Appl., pp. 1–20, Feb. 2023, doi: 10.1007/s11042-023-14514-x.
[3]. ‘Feeling Positive About Reopening? New Normal Scenarios From COVID-19 US Reopen Sentiment Analytics | IEEE Journals & Magazine | IEEE Xplore’. https://ieeexplore.ieee.org/document/9154672 (accessed Sep. 15, 2023).
[4]. ‘Deep Learning Model for COVID-19 Sentiment Analysis on Twitter | SpringerLink’. https://link.springer.com/article/10.1007/s00354-023-00209-2 (accessed Sep. 16, 2023).
[5]. ‘Studying the psychology of coping negative emotions during COVID-19: a quantitative analysis from India | SpringerLink’. https://link.springer.com/article/10.1007/s11356-021-16002-x (accessed Sep. 16, 2023).
[6]. ‘Trends and prevalence of suicide 2017-2021 and its association with COVID-19: Interrupted time series analysis of a national sample of college students in the United States - PubMed’. https://pubmed.ncbi.nlm.nih.gov/35987067/ (accessed Sep. 16, 2023).
[7]. ‘SemEval-2018 Task 1: Affect in Tweets - ACL Anthology’. https://aclanthology.org/S18-1001/ (accessed Sep. 16, 2023).
[8]. A. Law and A. Ghosh, ‘Multi-Label Classification Using Binary Tree of Classifiers’, IEEE Trans. Emerg. Top. Comput. Intell., vol. 6, no. 3, pp. 677–689, Jun. 2022, doi: 10.1109/TETCI.2021.3075717.
[9]. K. Machova, M. Mach, and M. Vasilko, ‘Comparison of Machine Learning and Sentiment Analysis in Detection of Suspicious Online Reviewers on Different Type of Data’, Sensors, vol. 22, no. 1, Art. no. 1, Jan. 2022, doi: 10.3390/s22010155.
[10]. I. Lasri, A. Riadsolh, and M. Elbelkacemi, ‘Real-time Twitter Sentiment Analysis for Moroccan Universities using Machine Learning and Big Data Technologies’, Int. J. Emerg. Technol. Learn. IJET, vol. 18, pp. 42–61, Mar. 2023, doi: 10.3991/ijet.v18i05.35959.
[11]. ‘Environmental Complaint Text Classification Scheme Combining Automatic Annotation and TextCNN | IEEE Conference Publication | IEEE Xplore’. https://ieeexplore.ieee.org/abstract/document/9727661 (accessed Sep. 18, 2023).
[12]. B. Guo, C. Zhang, J. Liu, and X. Ma, ‘Improving text classification with weighted word embeddings via a multi-channel TextCNN model’, Neurocomputing, vol. 363, pp. 366–374, Oct. 2019, doi: 10.1016/j.neucom.2019.07.052.
[13]. Y. Cao, Z. Sun, L. Li, and W. Mo, ‘A Study of Sentiment Analysis Algorithms for Agricultural Product Reviews Based on Improved BERT Model’, Symmetry, vol. 14, no. 8, Art. no. 8, Aug. 2022, doi: 10.3390/sym14081604.
[14]. T. Kumar, M. Mahrishi, and G. Sharma, ‘Emotion recognition in Hindi text using multilingual BERT transformer’, Multimed. Tools Appl., Apr. 2023, doi: 10.1007/s11042-023-15150-1.
[15]. X. Zhang and Y. Ma, ‘An ALBERT-based TextCNN-Hatt hybrid model enhanced with topic knowledge for sentiment analysis of sudden-onset disasters’, Eng. Appl. Artif. Intell., vol. 123, p. 106136, Aug. 2023, doi: 10.1016/j.engappai.2023.106136.
[16]. A. F. Abdillah, C. B. P. Putra, A. Apriantoni, S. Juanita, and D. Purwitasari, ‘Ensemble-based Methods for Multi-label Classification on Biomedical Question-Answer Data’, J. Inf. Syst. Eng. Bus. Intell., vol. 8, no. 1, Art. no. 1, Apr. 2022, doi: 10.20473/jisebi.8.1.42-50.
[17]. S. Srivastava, B. Paul, and D. Gupta, ‘Study of Word Embeddings for Enhanced Cyber Security Named Entity Recognition’, Procedia Comput. Sci., vol. 218, pp. 449–460, Jan. 2023, doi: 10.1016/j.procs.2023.01.027.
[18]. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding’. arXiv, May 24, 2019. doi: 10.48550/arXiv.1810.04805.
[19]. B. Heinzerling and M. Strube, ‘BPEmb: Tokenization-free Pre-trained Subword Embeddings in 275 Languages’. arXiv, Oct. 05, 2017. Accessed: Apr. 23, 2023. [Online]. Available: http://arxiv.org/abs/1710.02187
[20]. ‘Rise and fall of the global conversation and shifting sentiments during the COVID-19 pandemic | Humanities and Social Sciences Communications’. https://www.nature.com/articles/s41599-021-00798-7 (accessed Oct. 31, 2022).
[21]. Q. Yang et al., ‘SenWave: Monitoring the Global Sentiments under the COVID-19 Pandemic’. arXiv, Jun. 18, 2020. doi: 10.48550/arXiv.2006.10842.
[22]. J. Qiang, Y. Li, Y. Zhu, Y. Yuan, and X. Wu, ‘Lexical Simplification with Pretrained Encoders’. arXiv, Oct. 28, 2020. Accessed: Apr. 16, 2023. [Online]. Available: http://arxiv.org/abs/1907.06226
[23]. E. Çelik and T. Dalyan, ‘Unified benchmark for zero-shot Turkish text classification’, Inf. Process. Manag., vol. 60, no. 3, p. 103298, May 2023, doi: 10.1016/j.ipm.2023.103298.
[24]. Y. Kim, ‘Convolutional Neural Networks for Sentence Classification’. arXiv, Sep. 02, 2014. Accessed: Apr. 23, 2023. [Online]. Available: http://arxiv.org/abs/1408.5882
[25]. B. Lu, Z. Lin, and X. Zhang, ‘Text Analysis Method Based on Multi-channel Parallel Classifier’, in 2022 IEEE 2nd International Conference on Information Communication and Software Engineering (ICICSE), Mar. 2022, pp. 6–12. doi: 10.1109/ICICSE55337.2022.9828968.
[26]. X. Jiang, C. Song, Y. Xu, Y. Li, and Y. Peng, ‘Research on sentiment classification for netizens based on the BERT-BiLSTM-TextCNN model’, PeerJ Comput. Sci., vol. 8, p. e1005, Jun. 2022, doi: 10.7717/peerj-cs.1005.
[27]. ‘torch.nn — PyTorch 2.0 documentation’. https://pytorch.org/docs/stable/nn.html (accessed Apr. 23, 2023).
[28]. J. Deng and F. Ren, ‘Multi-Label Emotion Detection via Emotion-Specified Feature Extraction and Emotion Correlation Learning’, IEEE Trans. Affect. Comput., vol. 14, no. 1, pp. 475–486, Jan. 2023, doi: 10.1109/TAFFC.2020.3034215.
[29]. Q. Lv, W. Liu, R. Li, H. Yang, Y. Tao, and M. Wang, ‘Classification of Seismaesthesia Information and Seismic Intensity Assessment by Multi-Model Coupling’, ISPRS Int. J. Geo-Inf., vol. 12, no. 2, Art. no. 2, Feb. 2023, doi: 10.3390/ijgi12020046.
[30]. H.-D. Le, G.-S. Lee, S.-H. Kim, S. Kim, and H.-J. Yang, ‘Multi-Label Multimodal Emotion Recognition With Transformer-Based Fusion and Emotion-Level Representation Learning’, IEEE Access, vol. 11, pp. 14742–14751, 2023, doi: 10.1109/ACCESS.2023.3244390.