
Lotus leaf and shark skin-inspired micro-, nano-, hierarchical superhydrophobic surfaces for anti-fouling applications
- 1 Shenzhen University
- 2 American International School
- 3 Jurong Country Garden School
* Author to whom correspondence should be addressed.
Abstract
Fouling, the accumulation and adhesion of unwanted contaminants, is a serious issue around the world in many aspects including industrial transport, marine ecological environment, maintenance of infrastructures, etc. which costs hundreds of millions of dollars and lots of manpower and material resources. Multiscale hierarchical surface structures of superhydrophobic surfaces possess various intriguing properties which provides new platforms for fabricating artificial anti-fouling surfaces. In particular, lotus leaf and shark skin with their unique micro-, nano-, hierarchical surfaces structures are highlighted as emerging tools for anti-bacterial, anti-dust, anti-corrosion, anti-icing, drag reduction applications and so on. In this review, we first provide basic information on two famous superhydrophobic states. After that we outlined the biological models and applications of lotus leaf and shark skin respectively. The self-cleaning effect of superhydrophobic lotus leaf due to their multiscale hierarchical surface structures is discussed after which anti-bacterial applications with three kinds of mechanisms and self-cleaning properties are outlined. Biological models of superhydrophobic shark skin are presented followed by their real-life applications in aircrafts and turbine blades. In addition, we discuss the potential drawbacks of recent biomimetic anti-fouling superhydrophobic surfaces like the loss of anti-fouling hydrophobic materials, adaptability to extreme environments, production and use costs and other problems as well as the possibilities of combine superhydrophobic structures and materials with high temperature resistance, oxidation resistance and other characteristics in order to be applied in more industries fields.
Keywords
superhydrophobic, anti-fouling, lotus leaf, shark skin, drag reduction
[1]. F. M. C. Fazey, P. G. Ryan, Environmental Pollution 2016, 210, 354.
[2]. C. E. Zobell, E. C. Allen, J Bacteriol 1935, 29, 239.
[3]. J. J. Stanković, I. Marjanović, J. Papathanasiou, S. Drezgić, J Mar Sci Eng 2021, 9, 74.
[4]. M. P. Schultz, J. A. Bendick, E. R. Holm, W. M. Hertel, Biofouling 2011, 27, 87.
[5]. P. Kim, T.-S. Wong, J. Alvarenga, M. J. Kreder, W. E. Adorno-Martinez, J. Aizenberg, ACS Nano 2012, 6, 6569.
[6]. U. von Ammon, S. A. Wood, O. Laroche, A. Zaiko, L. Tait, S. Lavery, G. Inglis, X. Pochon, Mar Environ Res 2018, 133, 57.
[7]. S. M. Evans, T. Leksono, P. D. McKinnell, Mar Pollut Bull 1995, 30, 14.
[8]. T. Darmanin, F. Guittard, Materials Today 2015, 18, 273.
[9]. L. Li, V. Breedveld, D. W. Hess, ACS Appl Mater Interfaces 2013, 5, 5381.
[10]. W. Barthlott, C. Neinhuis, Planta 1997, 202, 1.
[11]. G. Tian, D. Fan, X. Feng, H. Zhou, RSC Adv 2021, 11, 3399.
[12]. D. W. Bechert, M. Bruse, W. Hage, Exp Fluids 2000, 28, 403.
[13]. R. Subbaiyan, A. Ganesan, V. Varadharajan, J Pure Appl Microbiol 2023, 17, 1374.
[14]. M. Yao, Z. Yan, X. Sun, B. Guo, C. Yu, Z. Zhao, X. Li, Z. Tan, H. Zhang, F. Yao, J. Li, Acta Biomater 2023, 166, 201.
[15]. S. Nishimoto, B. Bhushan, RSC Adv. 2013, 3, 671.
[16]. A. Lafuma, D. Quéré, Nat Mater 2003, 2, 457.
[17]. H. J. Ensikat, P. Ditsche-Kuru, C. Neinhuis, W. Barthlott, Beilstein Journal of Nanotechnology 2011, 2, 152.
[18]. C. NEINHUIS, Ann Bot 1997, 79, 667.
[19]. P. Wagner, R. Fürstner, W. Barthlott, C. Neinhuis, J Exp Bot 2003, 54, 1295.
[20]. Z. Guo, W. Liu, Plant Science 2007, 172, 1103.
[21]. A. Marmur, Langmuir 2004, 20, 3517.
[22]. A. Otten, S. Herminghaus, Langmuir 2004, 20, 2405.
[23]. J. Zhang, X. Sheng, L. Jiang, Langmuir 2009, 25, 1371.
[24]. Y. T. Cheng, D. E. Rodak, C. A. Wong, C. A. Hayden, Nanotechnology 2006, 17, 1359.
[25]. R. N. Wenzel, Ind Eng Chem 1936, 28, 988.
[26]. M. Yamamoto, N. Nishikawa, H. Mayama, Y. Nonomura, S. Yokojima, S. Nakamura, K. Uchida, Langmuir 2015, 31, 7355.
[27]. A. B. D. Cassie, S. Baxter, Transactions of the Faraday Society 1944, 40, 546.
[28]. Y.-T. Cheng, D. E. Rodak, A. Angelopoulos, T. Gacek, Appl Phys Lett 2005, 87, 1.
[29]. Y. Liu, C.-H. Choi, Colloid Polym Sci 2013, 291, 437.
[30]. X. Sheng, J. Zhang, Colloids Surf A Physicochem Eng Asp 2011, 377, 374.
[31]. C. Sun, Z.-Z. Gu, H. Xu, Langmuir 2009, 25, 12439.
[32]. J. Feng, B. Huang, M. Zhong, J Colloid Interface Sci 2009, 336, 268.
[33]. J. Li, J. Zheng, J. Zhang, J. Feng, J Nanosci Nanotechnol 2016, 16, 5875.
[34]. H. Ogihara, J. Xie, T. Saji, Colloids Surf A Physicochem Eng Asp 2013, 434, 35.
[35]. J. G. Wan, S. H. Li, C. Y. Ma, G. W. Guo, Q. W. Meng, Adv Mat Res 2013, 807–809, 2797.
[36]. M. Ma, M. Gupta, Z. Li, L. Zhai, K. K. Gleason, R. E. Cohen, M. F. Rubner, G. C. Rutledge, Advanced Materials 2007, 19, 255.
[37]. H. F. Hoefnagels, D. Wu, G. de With, W. Ming, Langmuir 2007, 23, 13158.
[38]. B. Leng, Z. Shao, G. de With, W. Ming, Langmuir 2009, 25, 2456.
[39]. Y. Zhao, Y. Tang, X. Wang, T. Lin, Appl Surf Sci 2010, 256, 6736.
[40]. M. Yu, G. Gu, W. D. Meng, F. L. Qing, Appl Surf Sci 2007, 253, 3669.
[41]. G. Y. Bae, B. G. Min, Y. G. Jeong, S. C. Lee, J. H. Jang, G. H. Koo, J Colloid Interface Sci 2009, 337, 170.
[42]. M. Xu, N. Lu, H. Xu, D. Qi, Y. Wang, S. Shi, L. Chi, Soft Matter 2010, 6, 1438.
[43]. F. Zhao, X. Wang, B. Ding, J. Lin, J. Hu, Y. Si, J. Yu, G. Sun, RSC Adv 2011, 1, 1482.
[44]. J. Feng, M. Zhong, W. Lin, J Nanosci Nanotechnol 2012, 12, 2679.
[45]. R. H. Wu, Adv Mat Res 2012, 450–451, 881.
[46]. L. Zhai, F. Ç. Cebeci, R. E. Cohen, M. F. Rubner, Nano Lett 2004, 4, 1349.
[47]. D. Ebert, B. Bhushan, J Colloid Interface Sci 2012, 368, 584.
[48]. J. Bravo, L. Zhai, Z. Wu, R. E. Cohen, M. F. Rubner, Langmuir 2007, 23, 7293.
[49]. H. Ogihara, J. Xie, J. Okagaki, T. Saji, Langmuir 2012, 28, 4605.
[50]. W. S. Y. Wong, Z. H. Stachurski, D. R. Nisbet, A. Tricoli, ACS Appl Mater Interfaces 2016, 8, 13615.
[51]. C. E. Zobell, E. C. Allen, J Bacteriol 1935, 29, 239.
[52]. J. W. Costerton, P. S. Stewart, E. P. Greenberg, Science (1979) 1999, 284, 1318.
[53]. J. Ma, Y. Sun, K. Gleichauf, J. Lou, Q. Li, Langmuir 2011, 27, 10035.
[54]. J. I. Lim, M. J. Kang, W.-K. Lee, Appl Surf Sci 2014, 320, 614.
[55]. M. I. Kayes, A. J. Galante, N. A. Stella, S. Haghanifar, R. M. Q. Shanks, P. W. Leu, React Funct Polym 2018, 128, 40.
[56]. X. Chu, P. Zhang, S. Shi, Y. Liu, W. Feng, N. Zhou, J. Li, J. Shen, Colloids Surf A Physicochem Eng Asp 2023, 658, 130621.
[57]. K. Han, T. Y. Park, K. Yong, H. J. Cha, ACS Appl Mater Interfaces 2019, 11, 9777.
[58]. R. Jiang, L. Hao, L. Song, L. Tian, Y. Fan, J. Zhao, C. Liu, W. Ming, L. Ren, Chemical Engineering Journal 2020, 398, 125609.
[59]. J. Wan, H. Li, L. Xu, J. Yan, Y. Liao, X. Wang, Cellulose 2023, 30, 3953.
[60]. L. Hu, L. Zhang, D. Wang, X. Lin, Y. Chen, Colloids Surf A Physicochem Eng Asp 2018, 555, 515.
[61]. M. Xu, X. Wang, B. Wang, Y. Tang, Z. Qin, S. Yin, Z. Liu, H. Sun, Colloids Surf B Biointerfaces 2022, 215, 112468.
[62]. J. Zhao, T. Zhang, Y. Li, L. Huang, Y. Tang, Nanomaterials 2023, 13, 516.
[63]. A. R. Siddiqui, Wen. Li, Fajun. Wang, Junfei. Ou, A. Amirfazli, Appl Surf Sci 2021, 542, 148534.
[64]. X. Liu, K. Chen, D. Zhang, Z. Guo, Coatings 2021, 11, 95.
[65]. W.-T. Cao, W. Feng, Y.-Y. Jiang, C. Ma, Z.-F. Zhou, M.-G. Ma, Y. Chen, F. Chen, Mater Horiz 2019, 6, 1057.
[66]. S. Oh, J. Cho, J. Lee, J. Han, S. Kim, Y. Nam, Advanced Science 2022, 9, 2202781.
[67]. S. Zhao, H. Du, Z. Ma, G. Xiao, J. Liu, Y. Jiang, S. Hu, H. Zhao, C. Wen, L. Ren, Mater Des 2022, 223, 111145.
[68]. S. Hayne, S. Margel, Mater Today Chem 2023, 30, 101497.
[69]. S. S. Latthe, R. S. Sutar, V. S. Kodag, A. K. Bhosale, A. M. Kumar, K. Kumar Sadasivuni, R. Xing, S. Liu, Prog Org Coat 2019, 128, 52.
[70]. C. Sun, J. Dai, H. Zhang, F. Zhang, N. Zhang, Prog Org Coat 2019, 128, 21.
[71]. J. Wang, K. Li, J. Zhang, J. Feng, Prog Org Coat 2023, 183, 107679.
[72]. 1983, 7, 251.
[73]. M. WALSH, L. WEINSTEIN, in 11th Fluid and PlasmaDynamics Conference, American Institute Of Aeronautics And Astronautics, Reston, Virigina, 1978.
[74]. M. WALSH, in 20th Aerospace Sciences Meeting, American Institute Of Aeronautics And Astronautics, Reston, Virigina, 1982.
[75]. M. J. Walsh, AIAA Journal 1983, 21, 485.
[76]. G. Hirt, M. Thome, CIRP Annals 2008, 57, 317.
[77]. B. S. Liu, W. Wu, Y. S. Zeng, Review on application and fabrication of shark skin bionic structure, Beijing Aeronautical Manufacturing Technology Research Institute, 2014, 04-0056-07.
[78]. B. Denkena, J. Köhler, B. Wang, CIRP J Manuf Sci Technol 2010, 3, 14.
[79]. L. Wen, J. C. Weaver, P. J. M. Thornycroft, G. V Lauder, Bioinspir Biomim 2015, 10, 066010.
[80]. A. Lang, M. L. Habegger, P. Motta, in Encyclopedia of Nanotechnology, Springer Netherlands, Dordrecht, 2015, pp. 1–8.
[81]. X. Pu, G. Li, Y. Liu, ChemBioEng Reviews 2016, 3, 26.
[82]. B. S. Liu, W. Wu, Y. S. Zeng, Review on application and fabrication of shark skin bionic structure, Beijing Aeronautical Manufacturing Technology Research Institute, 2014, 04-0056-07.
[83]. L. P. Chamorro, R. E. A. Arndt, F. Sotiropoulos, Renew Energy 2013, 50, 1095.
[84]. S.-J. Lee, S.-H. Lee, Exp Fluids 2001, 30, 153.
[85]. D. W. Bechert, M. Br, R. Meyer, Naturwissenschaften 2000, 87, 157.
[86]. Z. S. She, W. D. Su, Description of the hierarchical structure of turbulent pulsation, Proceedings of the 41st Yong Scientist Forum of China Association for Science and Technology, 2001, 7-03-008456-X.
[87]. S.-J. Lee, Y.-G. Jang, J Fluids Struct 2005, 20, 659.
Cite this article
Tang,Z.;Zhu,J.;Ni,Y. (2024). Lotus leaf and shark skin-inspired micro-, nano-, hierarchical superhydrophobic surfaces for anti-fouling applications. Applied and Computational Engineering,84,100-117.
Data availability
The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.
Disclaimer/Publisher's Note
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
About volume
Volume title: Proceedings of the 4th International Conference on Materials Chemistry and Environmental Engineering
© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and
conditions of the Creative Commons Attribution (CC BY) license. Authors who
publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons
Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this
series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published
version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial
publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and
during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See
Open access policy for details).