Research Article
Open access
Published on 31 July 2024
Download pdf
Xiao,B.;Tang,C. (2024). Particle dispersion in atmospheric modelling: A comprehensive review. Applied and Computational Engineering,85,33-43.
Export citation

Particle dispersion in atmospheric modelling: A comprehensive review

Bohuai Xiao *,1, Chengjin Tang 2
  • 1 School of YKPao
  • 2 School of Cranbrook

* Author to whom correspondence should be addressed.

https://doi.org/10.54254/2755-2721/85/20240751

Abstract

Atmospheric dispersion modeling, traditionally inclined towards gaseous dispersion, has undergone significant evolution in capturing the intricacies of particle dispersion in urban and open environments. This comprehensive review explores the nuances of particle-gas interactions, highlighting discrepancies in correlations between their concentrations, influenced by factors such as turbulence and multiple emission sources. The research accentuates the intriguing dynamics between PM2.5 and PM10 concentrations, suggesting the viability of models based on passive scalars for such particles in open environments. However, a marked challenge emerges in modeling particle number concentration, necessitating the integration of aerosol dynamics modules. Emphasizing the diversity of model types, this paper elucidates the specific requirements across varying spatial scales, identifying gaps in understanding particle dispersion and aerosol dynamics. The review critically assesses the performance of notable models, highlighting the paramount importance of quality data sources and underscoring the need for more dedicated focus on particle dynamics beyond mass predictions. Through a synthesis of existing literature and model evaluations, this review seeks to guide future research endeavors, fostering advancements in atmospheric dispersion modeling.

Keywords

Atmospheric Dispersion Modelling, Gaussian Plume, Langrangian, Computational Fluid Dynamics

[1]. Venkatesan, R., Mathiyarasu, R., & Somayaji, K. M. (2002). A study of atmospheric dispersion of radionuclides at a coastal site using a modified Gaussian model and a mesoscale sea breeze model. Atmospheric Environment, 36. doi:10.1016/S1352-2310(02)00258-3

[2]. Sharan, M., Yadav, A. K., & Singh, M. P. (1996). Plume dispersion simulation in low-wind conditions using coupled plume segment and Gaussian puff approaches. Journal of Applied Meteorology, 35. doi:10.1175/1520-0450(1996)035<1625:PDSILW>2.0.CO;2

[3]. Ferrero, E., Anfossi, D., Tinarelli, G., & Tamiazzo, M. (2000). Intercomparison of Lagrangian stochastic models based on two different PDFs. International Journal of Environment and Pollution, 14. doi:10.1504/ijep.2000.000544

[4]. Monn, C., Fuchs, A., Högger, D., Junker, M., Kogelschatz, D., Roth, N., & Wanner, H. U. (1997). Particulate matter less than 10 μm (PM10) and fine particles less than 2.5 μm (PM2.5): Relationships between indoor, outdoor and personal concentrations. Science of the Total Environment, 208. doi:10.1016/S0048-9697(97)00271-4

[5]. Claiborn, C., Mitra, A., Adams, G., Bamesberger, L., Allwine, G., Kantamaneni, R., … Westberg, H. (1995). Evaluation of PM10 emission rates from paved and unpaved roads using tracer techniques. Atmospheric Environment, 29. doi:10.1016/1352-2310(95)00046-2

[6]. Barna, M. G., & Gimson, N. R. (2002). Dispersion modelling of a wintertime particulate pollution episode in Christchurch, New Zealand. Atmospheric Environment, 36. doi:10.1016/S1352-2310(02)00296-0

[7]. Hanna, Steven R., Egan, B. A., Purdum, J., & Wagler, J. (2001). Evaluation of the ADMS, AERMOD, and ISC3 dispersion models with the OPTEX, Duke Forest, Kincaid, Indianapolis and Lovett field datasets. International Journal of Environment and Pollution, 16. doi:10.1504/ijep.2001.000626

[8]. Van Dingenen, R., Raes, F., Putaud, J. P., Baltensperger, U., Charron, A., Facchini, M. C., Wåhlin, P. (2004). A European aerosol phenomenology - 1: Physical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. Atmospheric Environment, Vol. 38. doi:10.1016/j.atmosenv.2004.01.040

[9]. Yamartino, R. J., Scire, J. S., Carmichael, G. R., & Chang, Y. S. (1992). The CALGRID mesoscale photochemical grid model-I. Model formulation. Atmospheric Environment Part A, General Topics, 26. doi:10.1016/0960-1686(92)90134-7

[10]. Sivacoumar, R., & Thanasekaran, K. (2001). Comparison and Performance Evaluation of Models Used for Vehicular Pollution Prediction. Journal of Environmental Engineering, 127. doi:10.1061/(asce)0733-9372(2001)127:6(524)

[11]. Hanna, S. R. (1982). Applications in air pollution modeling. Atmospheric Turbulence and Air Pollution Modelling. A Course Held in The Hague, 1981. doi:10.1007/978-94-010-9112-1_7

[12]. Stern, R., & Yamartino, R. J. (2001). Development and first evaluation of micro-calgrid: A 3-D, urban-canopy-scale photochemical model. Atmospheric Environment, 35. doi:10.1016/s1352-2310(00)00567-7

[13]. Holmes, N. S., & Morawska, L. (2006). A review of dispersion modelling and its application to the dispersion of particles: An overview of different dispersion models available. Atmospheric Environment, 40. doi:10.1016/j.atmosenv.2006.06.003

[14]. Abadi, D. J., Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., … Zdonik, S. (2003). Aurora: A new model and architecture for data stream management. 12. doi:10.1007/s00778-003-0095-z

[15]. Han, H., Bao, W., Zhu, X., Feng, X., & Zhou, W. (2018). Fault-Tolerant Scheduling for Hybrid Real-Time Tasks Based on CPB Model in Cloud. IEEE Access, 6. doi:10.1109/ACCESS.2018.2810214

[16]. Majumdar, B. K., Dutta, A., Chakrabarty, S., & Ray, S. (2010). Assessment of vehicular pollution in Kolkata, India, using CALINE 4 model. Environmental Monitoring and Assessment, 170. doi:10.1007/s10661-009-1212-2

[17]. Heidorn, K. C., Davies, A. E., & Murphy, M. C. (1991). Wind tunnel modelling of roadways: Comparison with mathematical models. Journal of the Air and Waste Management Association, 41. doi:10.1080/10473289.1991.10466945

[18]. Sistla, G., Samson, P., Keenan, M., & Rao, S. T. (1979). A study of pollutant dispersion near highways. Atmospheric Environment (1967), 13. doi:10.1016/0004-6981(79)90196-3

[19]. Ko, S. S. K., Jindal, R., Trivitayanurak, W., Tantrakarnapa, K., & Surinkul, N. (2022). Simulation of PM2.5 Concentrations around the Proposed Yangon Outer Ring Road (Eastern Section) in Myanmar Using CALINE 4 Model. Environment and Natural Resources Journal, 20. doi:10.32526/ennrj/20/202200029

[20]. Shenouda, D. A., & Schmidt, L. C. (1997). Predicting traffic-generated carbon dioxide concentrations in Sydney. Journal of Transportation Engineering, 123. doi:10.1061/(ASCE)0733-947X(1997)123:5(327)

[21]. Srimath, S. T. G., Sokhi, R., Karppinen, A., Singh, V., & Kukkonen, J. (2017). Evaluation of an urban modelling system against three measurement campaigns in London and Birmingham. Atmospheric Pollution Research, 8. doi:10.1016/j.apr.2016.07.004

[22]. Oettl, D., Sturm, P., & Almbauer, R. (2005). Evaluation of GRAL for the pollutant dispersion from a city street tunnel portal at depressed level. Environmental Modelling and Software, 20. doi:10.1016/j.envsoft.2004.06.001

[23]. Raza, S. S., Avila, R., & Cervantes, J. (2001). A 3-D Lagrangian stochastic model for the meso-scale atmospheric dispersion applications. Nuclear Engineering and Design, 208. doi:10.1016/S0029-5493(01)00357-0

[24]. Thomson, D. J. (1987). Criteria for the selection of stochastic models of particle trajectories in turbulent flows. Journal of Fluid Mechanics, 180. doi:10.1017/S0022112087001940

[25]. Ogawa, Y., Thompson, R. S., Eskridge, R. E., & Lawson, R. E. (1985). The structure of strongly stratified flow over hills: Dividing-streamline concept. Journal of Fluid Mechanics, 152. doi:10.1017/S0022112085000684

[26]. Moon, D., Albergel, A., Jasmin, F., & Thibaut, G. (1997). The use of the MERCURE CFD code to deal with an air pollution problem due to building wake effects. Journal of Wind Engineering and Industrial Aerodynamics, 67–68. doi:10.1016/S0167-6105(97)00118-9

[27]. Gery, M. W., Whitten, G. Z., Killus, J. P., & Dodge, M. C. (1989). A photochemical kinetics mechanism for urban and regional scale computer modeling. Journal of Geophysical Research, 94. doi:10.1029/jd094id10p12925

[28]. Hall, D. J., Spanton, A. M., Bennett, M., Dunkerley, F., Griffiths, R. F., Fisher, B. E. A., & Timmis, R. J. (2002). Evaluation of new generation atmospheric dispersion models. International Journal of Environment and Pollution, 18. doi:10.1504/IJEP.2002.000692

[29]. Kaasik, M., & Kimmel, V. (2003). Validation of the improved AEROPOL model against the Copenhagen data set. International Journal of Environment and Pollution, 20. doi:10.1504/ijep.2003.004256

[30]. Jung, Y. R., Park, W. G., & Park, O. H. (2003). Pollution dispersion analysis using the puff model with numerical flow field data. Mechanics Research Communications, 30. doi:10.1016/S0093-6413(03)00024-7

[31]. Pandey, G., Venkatram, A., & Arunachalam, S. (2023). Evaluating AERMOD with measurements from a major U.S. airport located on a shoreline. Atmospheric Environment, 294. doi:10.1016/j.atmosenv.2022.119506

[32]. Cimorelli, A. J., Perry, S. G., Venkatram, A., Weil, J. C., Paine, R. J., Wilson, R. B., … Brode, R. W. (2005). AERMOD: A dispersion model for industrial source applications. Part I: General model formulation and boundary layer characterization. Journal of Applied Meteorology, 44. doi:10.1175/JAM2227.1

[33]. Carruthers, D. J., McHugh, C. A., Robins, A. G., Thomson, D. J., Davies, B., & Montgomery, M. (1994). UK Atmospheric Dispersion Modelling System Validation Studies. doi:10.1007/978-1-4615-1817-4_52

[34]. Oettl, D., Kukkonen, J., Almbauer, R. A., Sturm, P. J., Pohjola, M., & Härkönen, J. (2001). Evaluation of a Gaussian and a Lagrangian model against a roadside data set, with emphasis on low wind speed conditions. Atmospheric Environment, 35. doi:10.1016/S1352-2310(00)00492-1

[35]. Elbir, T. (2003). Comparison of model predictions with the data of an urban air quality monitoring network in Izmir, Turkey. Atmospheric Environment,37.doi:10.1016/S1352-2310(03)00087-6

[36]. Pilinis, C., & Seinfeld, J. H. (1988).Development and evaluation of an Eulerian photochemical gas-aerosol model. Atmospheric Environment(1967), 22. doi:10.1016/0004-6981(88)90088-1

[37]. Gariazzo, C., Pelliccioni, A., Bogliolo, M. P., & Scalisi, G. (2004). Evaluation of a Lagrangian particle model (spray) to assess environmental impact of an industrial facility in complex terrain. Water, Air, and Soil Pollution, 155. doi:10.1023/B:WATE.0000026525.82039.ef

[38]. Du, S. (2001). A heuristic Lagrangian stochastic particle model of relative diffusion: Model formulation and preliminary results. Atmospheric Environment, 35. doi:10.1016/S1352-2310(00)00451-9

[39]. Hurley, P., Manins, P., Lee, S., Boyle, R., Ng, Y. L., & Dewundege, P. (2003). Year-long, high-resolution, urban airshed modelling: Verification of TAPM predictions of smog and particles in Melbourne, Australia. Atmospheric Environment, 37.doi:10.1016/S1352-2310(03)00047-5

[40]. Mehdizadeh, F., & Rifai, H. S. (2004). Modeling point source plumes at high altitudes using a modified Gaussian model. Atmospheric Environment, 38. doi:10.1016/j.atmosenv.2003.10.041

[41]. Luhar, A. K., & Hurley, P. J. (2003). Evaluation of TAPM, a prognostic meteorological and air pollution model, using urban and rural point-source data. Atmospheric Environment, 37. doi:10.1016/S1352-2310(03)00204-8

[42]. Caputo, M., Giménez, M., & Schlamp, M. (2003). Intercomparison of atmospheric dispersion models. Atmospheric Environment, 37. doi:10.1016/S1352-2310(03)00201-2

Cite this article

Xiao,B.;Tang,C. (2024). Particle dispersion in atmospheric modelling: A comprehensive review. Applied and Computational Engineering,85,33-43.

Data availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

Disclaimer/Publisher's Note

The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

About volume

Volume title: Proceedings of the 4th International Conference on Materials Chemistry and Environmental Engineering

Conference website: https://www.confmcee.org/
ISBN:978-1-83558-575-7(Print) / 978-1-83558-576-4(Online)
Conference date: 13 January 2024
Editor:Seyed Ghaffar
Series: Applied and Computational Engineering
Volume number: Vol.85
ISSN:2755-2721(Print) / 2755-273X(Online)

© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license. Authors who publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See Open access policy for details).