
Cluster Detection and Centers of Mass Prediction in Images
- 1 Nanjing Foreign Language School, Nanjing, 210008, China
- 2 Department of Computer Science, Miami University, Ohio state, Oxford City,45056, United States
- 3 Department of Art & Science, Case Western Reserve University, Cleveland,44106, United States
- 4 Tabor Academy, Marion,02738, United States
* Author to whom correspondence should be addressed.
Abstract
This paper provides an exhaustive evaluation of different algorithms for the accurate detection and localization of dense clusters on complex image data with a resolution to maintain real centroids in obscure, overlapping, or densely packed situations. Our approach differs by its use of the local maximum algorithm to quickly identify potential cluster centers (by detecting local maxima in pixel intensity) as a first step. The algorithm starts by initializing cluster centers, which are then refined using the k-Means clustering method that iteratively relocates the positions of these clusters until an optimal configuration is reached. We tighten our approach by adding custom loss functions to Convolutional Neural Networks (CNNs) that encode the predicted number of clusters and their center positions. An early stopping mechanism is introduced to mitigate the issues of noise and overfitting, with performance measured against a test set. Furthermore, we examine the average pooling and center-of-gravity approaches for noise reduction to predict cluster centers without unnecessary outliers. This combination, along with the Hungarian algorithm, which is used to optimally match predicted and real centers, has shown better results in detecting the correct number of clusters across different datasets. These validation results show that our combined method effectively addresses challenges related to overlapping clusters, increasing robustness and accuracy in identification. The approach seems to have potential for applications in high-precision image segmentation and analysis.
Keywords
Cluster Detection, Local Maxima Algorithm, k-Means Algorithm, Average Pooling, Convolutional Neural Networks
[1]. Ran, X., Zhou, X., Lei, M., Tepsan, W., & Deng, W. (2021). A novel k-means clustering algorithm with a noise algorithm for capturing urban hotspots. Applied Sciences, 11(23), 11202.
[2]. Ikotun, A. M., Ezugwu, A. E., Abualigah, L., Abuhaija, B., & Heming, J. (2023). K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data. Information Sciences, 622, 178-210.
[3]. Govender, P., & Sivakumar, V. (2020). Application of k-means and hierarchical clustering techniques for analysis of air pollution: A review (1980–2019). Atmospheric pollution research, 11(1), 40-56.
[4]. Yantovski-Barth, M., Newman, J. A., Dey, B., Andrews, B. H., Eracleous, M., Golden-Marx, J., & Zhou, R. (2024). The CluMPR galaxy cluster-finding algorithm and DESI legacy survey galaxy cluster catalogue. Monthly Notices of the Royal Astronomical Society, 531(2), 2285-2303.
[5]. Chen-xi, L. I., Bing, W. U., Fan, L. U. O., & Na, Z. H. A. N. G. (2020). Clinical study and CT findings of a familial cluster of pneumonia with coronavirus disease 2019 (COVID-19). JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 51(2), 155-158.
[6]. Li, Z., Liu, F., Yang, W., Peng, S., & Zhou, J. (2021). A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects. IEEE Transactions on Neural Networks and Learning Systems, 33(12), 1–21. https://doi.org/10.1109/tnnls.2021.3084827.
[7]. Chauhan, R., Ghanshala, K. K., & Joshi, R. C. (2018, December 1). Convolutional Neural Network (CNN) for Image Detection and Recognition. IEEE Xplore. https://doi.org/10.1109/ICSCCC.2018.8703316
[8]. Liu, S., & Deng, W. (2015, November 1). Very deep convolutional neural network based image classification using small training sample size. IEEE Xplore. https://doi.org/10.1109/ACPR.2015.7486599
[9]. Kandel, I., & Castelli, M. (2020). The effect of batch size on the generalizability of the convolutional neural networks on a histopathology dataset. ICT Express, 6(4). https://doi.org/10.1016/j.icte.2020.04.010
[10]. Bieder, F., Sandkühler, R., & Cattin, P. C. (2021). Comparison of Methods Generalizing Max- and Average-Pooling.
[11]. Kuhn, H. W. (1955). The Hungarian method for the assignment problem.
[12]. Gabrovšek, B., Novak, T., Povh, J., Poklukar, D. R., & Žerovnik, J. (2020). Multiple Hungarian Method for k-Assignment Problem. Mathematics.
Cite this article
Xu,H.;Wang,Y.;Hou,S.;Wei,S. (2025). Cluster Detection and Centers of Mass Prediction in Images. Applied and Computational Engineering,131,40-51.
Data availability
The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.
Disclaimer/Publisher's Note
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
About volume
Volume title: Proceedings of the 2nd International Conference on Machine Learning and Automation
© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and
conditions of the Creative Commons Attribution (CC BY) license. Authors who
publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons
Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this
series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published
version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial
publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and
during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See
Open access policy for details).