References
[1]. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2020). Generative Adversarial Networks. Communications of the ACM, 63(11), pp.1–4. https://doi.org/10.1145/3422622
[2]. Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., & Bharath, A. A. (2018). Generative Adversarial Networks: An overview. IEEE Signal Processing Magazine, 35(1), pp.1. https://doi.org/10.1109/msp.2017.2765202
[3]. Albawi, S., Mohammed, T. A., & Al-Zawi, S. (2017). Understanding of a convolutional neural network. 2017 International Conference on Engineering and Technology (ICET), pp.2-6. https://doi.org/10.1109/icengtechnol.2017.8308186
[4]. Ledig, C., Theis, L., Huszar, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z., & Shi, W. (2017). Photo-realistic single image super-resolution using a generative adversarial network. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.4681. https://doi.org/10.1109/cvpr.2017.19
[5]. Dong, H., Neekhara, P., Wu, C., & Guo, Y. (2017). Unsupervised Image-to-Image Translation with Generative Adversarial Networks. Arxiv, pp.1–4. https://doi.org/https://doi.org/10.48550/arXiv.1701.02676
[6]. Antipov, G., Baccouche, M., & Dugelay, J.-L. (2017). Face aging with conditional generative adversarial networks. 2017 IEEE International Conference on Image Processing (ICIP), pp.1. https://doi.org/10.1109/icip.2017.8296650
[7]. Weng, L. (2019). From GAN to WGAN. Arxiv, pp.5–11. https://doi.org/https://arxiv.org/abs/1904.08994
[8]. Radford, A., Metz, L., & Chintala, S. (2016). Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. Arxiv, pp.1. https://doi.org/https://doi.org/10.48550/arXiv.1511.06434
[9]. Xiao, H., Rasul, K., & Vollgraf, R. (2017). Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms. Arxiv, pp.2. https://doi.org/https://doi.org/10.48550/arXiv.1708.07747
[10]. Abouelnaga, Y., Ali, O. S., Rady, H., & Moustafa, M. (2016). CIFAR-10: Knn-based ensemble of classifiers. 2016 International Conference on Computational Science and Computational Intelligence (CSCI), pp.1. https://doi.org/10.1109/csci.2016.0225
[11]. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., … Zheng, X. (2016, November). {tensorflow}: A system for {large-scale} machine learning. USENIX. Retrieved September 19, 2022, from https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
[12]. Imambi, S., Prakash, K. B., & Kanagachidambaresan, G. R. (2021, January 23). Pytorch. SpringerLink. Retrieved September 19, 2022, from https://link.springer.com/chapter/10.1007/978-3-030-57077-4_10
[13]. Liu, M.-Y., Huang, X., Yu, J., Wang, T.-C., & Mallya, A. (2021). Generative adversarial networks for image and video synthesis: Algorithms and applications. Proceedings of the IEEE, 109(5), pp.839. https://doi.org/10.1109/jproc.2021.3049196
[14]. Karras, T., Laine, S., & Aila, T. (2019). A Style-Based Generator Architecture for Generative Adversarial Networks. CVPR 2019 Open Access, pp.4401.
[15]. Mao, X., Li, Q., Xie, H., Lau, R. Y. K., Wang, Z., & Smolley, S. P. (2017). Least Squares Generative Adversarial Networks. ICCV 2017 Open Access, pp.2794.
Cite this article
Deng,Z. (2023). Investigation of influence of additional convolutional and max-pooling layers in general adversarial network . Applied and Computational Engineering,5,390-397.
Data availability
The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.
Disclaimer/Publisher's Note
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
About volume
Volume title: Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and
conditions of the Creative Commons Attribution (CC BY) license. Authors who
publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons
Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this
series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published
version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial
publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and
during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See
Open access policy for details).
References
[1]. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2020). Generative Adversarial Networks. Communications of the ACM, 63(11), pp.1–4. https://doi.org/10.1145/3422622
[2]. Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., & Bharath, A. A. (2018). Generative Adversarial Networks: An overview. IEEE Signal Processing Magazine, 35(1), pp.1. https://doi.org/10.1109/msp.2017.2765202
[3]. Albawi, S., Mohammed, T. A., & Al-Zawi, S. (2017). Understanding of a convolutional neural network. 2017 International Conference on Engineering and Technology (ICET), pp.2-6. https://doi.org/10.1109/icengtechnol.2017.8308186
[4]. Ledig, C., Theis, L., Huszar, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z., & Shi, W. (2017). Photo-realistic single image super-resolution using a generative adversarial network. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.4681. https://doi.org/10.1109/cvpr.2017.19
[5]. Dong, H., Neekhara, P., Wu, C., & Guo, Y. (2017). Unsupervised Image-to-Image Translation with Generative Adversarial Networks. Arxiv, pp.1–4. https://doi.org/https://doi.org/10.48550/arXiv.1701.02676
[6]. Antipov, G., Baccouche, M., & Dugelay, J.-L. (2017). Face aging with conditional generative adversarial networks. 2017 IEEE International Conference on Image Processing (ICIP), pp.1. https://doi.org/10.1109/icip.2017.8296650
[7]. Weng, L. (2019). From GAN to WGAN. Arxiv, pp.5–11. https://doi.org/https://arxiv.org/abs/1904.08994
[8]. Radford, A., Metz, L., & Chintala, S. (2016). Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. Arxiv, pp.1. https://doi.org/https://doi.org/10.48550/arXiv.1511.06434
[9]. Xiao, H., Rasul, K., & Vollgraf, R. (2017). Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms. Arxiv, pp.2. https://doi.org/https://doi.org/10.48550/arXiv.1708.07747
[10]. Abouelnaga, Y., Ali, O. S., Rady, H., & Moustafa, M. (2016). CIFAR-10: Knn-based ensemble of classifiers. 2016 International Conference on Computational Science and Computational Intelligence (CSCI), pp.1. https://doi.org/10.1109/csci.2016.0225
[11]. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., … Zheng, X. (2016, November). {tensorflow}: A system for {large-scale} machine learning. USENIX. Retrieved September 19, 2022, from https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
[12]. Imambi, S., Prakash, K. B., & Kanagachidambaresan, G. R. (2021, January 23). Pytorch. SpringerLink. Retrieved September 19, 2022, from https://link.springer.com/chapter/10.1007/978-3-030-57077-4_10
[13]. Liu, M.-Y., Huang, X., Yu, J., Wang, T.-C., & Mallya, A. (2021). Generative adversarial networks for image and video synthesis: Algorithms and applications. Proceedings of the IEEE, 109(5), pp.839. https://doi.org/10.1109/jproc.2021.3049196
[14]. Karras, T., Laine, S., & Aila, T. (2019). A Style-Based Generator Architecture for Generative Adversarial Networks. CVPR 2019 Open Access, pp.4401.
[15]. Mao, X., Li, Q., Xie, H., Lau, R. Y. K., Wang, Z., & Smolley, S. P. (2017). Least Squares Generative Adversarial Networks. ICCV 2017 Open Access, pp.2794.