References
[1]. Zitova, B., Flusser, J. 2003. Image registration methods: a survey. Imag. Vis. Comput., 21(11), 977–1000.
[2]. Marr, D., & Hildreth, E. 1980. Theory of edge detection. Royal Soc. London Biol. Sci., 207(1167), 187-217.
[3]. Lowe, D. G. 2004. Distinctive image features from scale-invariant keypoints. Inter. J. Com. Vis., 60(2), 91-110.
[4]. Tola, E., Lepetit, V., & Fua, P. 2008. A fast local descriptor for dense matching. Conf. Com. Vis. Pat. Rec. 1-8.
[5]. Calonder, M., Lepetit, V., Strecha, C., & Brief, F. P. 2019 Binary robust independent elementary features. Euro. Conf. Comput. Vis. 778-792.
[6]. Ke, Y., & Sukthankar, R. 2004. PCA-SIFT: A more distinctive representation for local image descriptors. Conf. Com. Vis. Pat. Rec. 2, 506-513.
[7]. Barroso-Laguna, A., Riba, E.,Ponsa, D.,et al. 2019 Key.Net: keypoint detection by handcrafted and learned CNN filters.arXiv preprint,arXiv: 1904. 00889
[8]. Tian, Y R., Fan, B., Wu, F C. 2017 L2-Net: deep learning of discriminative patch descriptor in euclidean space. Conf. Com. Vis. Pat. Rec. 661-669.
[9]. Sivic, J., Zisserman, A. 2003 Video Google: a text retrieval approach to object matching in video. Inter. Conf. Comput. Vis. 1470.
[10]. Jégou, H., Douze, M., Schmid, C., et al.2010 Aggregating local descriptors into a compact image representation. Inter. Conf. Comput. Vis. 3304-3311.
[11]. Babenko, A., Slesarev, A., Chigorin, A., et al.2014. Neural codes for image retrieval. Euro. Conf. Comput. Vis. 584-599.
Cite this article
Bai,Y. (2023). Research of image detection and matching algorithms. Applied and Computational Engineering,5,519-526.
Data availability
The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.
Disclaimer/Publisher's Note
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
About volume
Volume title: Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and
conditions of the Creative Commons Attribution (CC BY) license. Authors who
publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons
Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this
series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published
version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial
publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and
during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See
Open access policy for details).
References
[1]. Zitova, B., Flusser, J. 2003. Image registration methods: a survey. Imag. Vis. Comput., 21(11), 977–1000.
[2]. Marr, D., & Hildreth, E. 1980. Theory of edge detection. Royal Soc. London Biol. Sci., 207(1167), 187-217.
[3]. Lowe, D. G. 2004. Distinctive image features from scale-invariant keypoints. Inter. J. Com. Vis., 60(2), 91-110.
[4]. Tola, E., Lepetit, V., & Fua, P. 2008. A fast local descriptor for dense matching. Conf. Com. Vis. Pat. Rec. 1-8.
[5]. Calonder, M., Lepetit, V., Strecha, C., & Brief, F. P. 2019 Binary robust independent elementary features. Euro. Conf. Comput. Vis. 778-792.
[6]. Ke, Y., & Sukthankar, R. 2004. PCA-SIFT: A more distinctive representation for local image descriptors. Conf. Com. Vis. Pat. Rec. 2, 506-513.
[7]. Barroso-Laguna, A., Riba, E.,Ponsa, D.,et al. 2019 Key.Net: keypoint detection by handcrafted and learned CNN filters.arXiv preprint,arXiv: 1904. 00889
[8]. Tian, Y R., Fan, B., Wu, F C. 2017 L2-Net: deep learning of discriminative patch descriptor in euclidean space. Conf. Com. Vis. Pat. Rec. 661-669.
[9]. Sivic, J., Zisserman, A. 2003 Video Google: a text retrieval approach to object matching in video. Inter. Conf. Comput. Vis. 1470.
[10]. Jégou, H., Douze, M., Schmid, C., et al.2010 Aggregating local descriptors into a compact image representation. Inter. Conf. Comput. Vis. 3304-3311.
[11]. Babenko, A., Slesarev, A., Chigorin, A., et al.2014. Neural codes for image retrieval. Euro. Conf. Comput. Vis. 584-599.