Research Article
Open access
Published on 22 May 2025
Download pdf
Yang,J. (2025). β-Cyclodextrins and Its Applications . Applied and Computational Engineering,159,1-9.
Export citation

β-Cyclodextrins and Its Applications

Jiayi Yang *,1,
  • 1 School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China

* Author to whom correspondence should be addressed.

https://doi.org/10.54254/2755-2721/2025.23281

Abstract

Amidst the escalating energy crisis, the quest to harness renewable energy sources has become a topic of prevalent discussion in society. Lithium-ion batteries, as a forefront contender among new energy technologies, have garnered substantial attention from the scientific community. Enhancing the electrochemical performance of lithium-ion batteries is imperative for broadening their applications. Since its discovery in 1891, β-cyclodextrin has been employed in various fields such as pharmaceuticals, food, and textiles. Recent studies have illuminated the role of β-cyclodextrin in lithium-ion batteries, including its use as electrode binders and electrolytes, resulting in a marked improvement in battery efficiency. This paper will delve into the history of β-cyclodextrin, its chemical structure, principal reactions, and its dual applications in lithium-ion batteries and pharmaceuticals. Furthermore, it will explore how the unique structure of β-cyclodextrin influences its properties, thereby elucidating its suitability for use in lithium-ion batteries.

Keywords

β-cyclodextrins, lithium batteries, electrode binders, pharmacy

[1]. Crini, G. (2014) A history of cyclodextrins. Chemical reviews, 114(21): 10940-10975.

[2]. Loftsson, T., & Duchene, D. (2007) Cyclodextrins and their pharmaceutical applications. International journal of pharmaceutics, 329(1-2): 1-11.

[3]. Freudenberg, K., Schaaf, E., Dumpert, G. et al. (1939) Neue Ansichten über die Stärke. https://doi.org/10.1007/BF01489430

[4]. Narayanan, G., Shen, J., Matai, I., Sachdev, A., Boy, R., & Tonelli, A. E. (2022) Cyclodextrin-based nanostructures. Progress in Materials Science, 124: 100869.

[5]. Freudenberg, K.; Cramer, F. Chem. Ber. Recl. (1950) Über die Schardinger Dextrine aus Stärke. https://doi.org/10.1002/cber.19500830319

[6]. Pardhi, D. S., Rabadiya, K. J., Panchal, R. R., Raval, V. H., Joshi, R. G., & Rajput, K. N. (2023) Cyclodextrin glucanotransferase: fundamentals and biotechnological implications. Applied Microbiology and Biotechnology, 107(19): 5899-5907.

[7]. Loftsson, T., & Duchene, D. (2007) Cyclodextrins and their pharmaceutical applications. International journal of pharmaceutics, 329(1-2): 1-11.

[8]. Saenger, W. (1980) Cyclodextrin inclusion compounds in research and industry. Angew. Chem. Int. Ed. Engl. 19: 344–362.

[9]. Morin-Crini, N., Fourmentin, S., Fenyvesi, É., Lichtfouse, E., Torri, G., Fourmentin, M., & Crini, G. (2021) 130 years of cyclodextrin discovery for health, food, agriculture, and the industry: A review. Environmental Chemistry Letters, 19(3): 2581-2617.

[10]. Desoky, M. M., Caldera, F., Brunella, V., Ferrero, R., Hoti, G., & Trotta, F. (2023) Cyclodextrins for lithium batteries applications. Materials, 16(16): 5540.

[11]. Khan, A. R., Forgo, P., Stine, K. J., & D'Souza, V. T. (1998) Methods for selective modifications of cyclodextrins. Chemical Reviews, 98(5): 1977-1996.

[12]. Řezanka, M. (2019) Synthesis of substituted cyclodextrins. Environmental Chemistry Letters, 17(1): 49-63.

[13]. Sallas, F., & Darcy, R. (2008) Amphiphilic cyclodextrins–advances in synthesis and supramolecular chemistry. European Journal of Organic Chemistry, 2008(6): 957-969.

[14]. Przybyla, M. A., Yilmaz, G., & Becer, C. R. (2020) Natural cyclodextrins and their derivatives for polymer synthesis. Polymer Chemistry, 11(48): 7582-7602.

[15]. Wood, D. J., Hruska, F. E., & Saenger, W. (1977) Proton NMR study of the inclusion of aromatic molecules in. alpha.-cyclodextrin. Journal of the American Chemical Society, 99(6): 1735-1740.

[16]. Szejtli, J. (1998) Introduction and general overview of cyclodextrin chemistry. Chemical reviews, 98(5): 1743-1754.

[17]. Bezerra, F. M., Lis, M. J., Firmino, H. B., Dias da Silva, J. G., Curto Valle, R. D. C. S., Borges Valle, J. A., ... & Tessaro, A. L. (2020) The role of β-cyclodextrin in the textile industry. Molecules, 25(16): 3624.

[18]. Liu, Z., & Liu, Y. (2022) Multicharged cyclodextrin supramolecular assemblies. Chemical Society Reviews, 51(11): 4786-4827.

[19]. Szente L, Fenyvesi E (2017) Cyclodextrin-lipid complexes: cavity size matters. Struct Chem 28(2):479–492.

[20]. Bai, L., Xu, X.M., He, J., Pan, S.Z. (2009) Inclusion complexation, encapsulation interaction and inclusion number in cyclodextrin chemistry. Coord. Chem. Rev. 253: 1276–1284

[21]. Hedges, A. R. (1998) Industrial applications of cyclodextrins. Chemical reviews, 98(5): 2035-2044.

[22]. Kfoury, M., Landy, D., & Fourmentin, S. (2018) Characterization of cyclodextrin/volatile inclusion complexes: a review. Molecules, 23(5): 1204.

[23]. Cramer, F. (1956) Einschlußverbindungen. Angewandte Chemie, 68(3): 115-120.

[24]. Hădărugă DI, Ünlüsayin M, Gruia AT, Birău (Mitroi) C, Rusu G, Hădărugă NG. (2016) Thermal and oxidative stability of Atlantic salmon oil (Salmo salar L.) and complexation with β-cyclodextrin. Beilstein J Org Chem 12:179–191.

[25]. Giordano, F., Novak, C., Moyano, J.R. (2001) Thermal analysis of cyclodextrins and their inclusion compounds. Thermochim. Acta 380: 123–151

[26]. Tian, B., & Liu, J. (2020) The classification and application of cyclodextrin polymers: a review. New Journal of Chemistry, 44(22): 9137-9148.

[27]. Yao, X., Huang, P., & Nie, Z. (2019) Cyclodextrin-based polymer materials: from controlled synthesis to applications. Progress in Polymer Science, 93: 1-35.

[28]. Saokham, P., Muankaew, C., Jansook, P., & Loftsson, T. (2018) Solubility of cyclodextrins and drug/cyclodextrin complexes. Molecules, 23(5): 1161.

[29]. Schwarz, D. H., Engelke, A., & Wenz, G. (2017) Solubilizing steroidal drugs by β-cyclodextrin derivatives. International Journal of Pharmaceutics, 531(2): 559-567.

[30]. Yao, X., Huang, P., & Nie, Z. (2019) Cyclodextrin-based polymer materials: from controlled synthesis to applications. Progress in Polymer Science, 93: 1-35.

[31]. Zhuang, J., Xu, X., Peleckis, G., Hao, W., Dou, S. X., & Du, Y. (2017) Silicene: A promising anode for lithium‐ion batteries. Advanced materials, 29(48): 1606716.

[32]. Desoky, M. M., Caldera, F., Brunella, V., Ferrero, R., Hoti, G., & Trotta, F. (2023) Cyclodextrins for lithium batteries applications. Materials, 16(16): 5540.

[33]. Zhuang, J., Xu, X., Peleckis, G., Hao, W., Dou, S. X., & Du, Y. (2017) Silicene: A promising anode for lithium‐ion batteries. Advanced materials, 29(48): 1606716.

[34]. Boukamp, B. A., Lesh, G. C., & Huggins, R. A. (1981) All‐solid lithium electrodes with mixed‐conductor matrix. Journal of the Electrochemical Society, 128(4): 725.

[35]. Zou, F., & Manthiram, A. (2020) A review of the design of advanced binders for high‐performance batteries. Advanced Energy Materials, 10(45): 2002508.

[36]. He, Q., Ning, J., Chen, H., Jiang, Z., Wang, J., Chen, D., ... & Huang, W. (2024) Achievements, challenges, and perspectives in the design of polymer binders for advanced lithium-ion batteries. https://pubs.rsc.org/en/content/articlelanding/2024/cs/d4cs00366g

[37]. Jeong, Y. K., Kwon, T. W., Lee, I., Kim, T. S., Coskun, A., & Choi, J. W. (2014) Hyperbranched β-cyclodextrin polymer as an effective multidimensional binder for silicon anodes in lithium rechargeable batteries. Nano letters, 14(2): 864-870.

[38]. Jiang, H. W., Yang, Y., Nie, Y. M., Su, Z. F., Long, Y. F., Wen, Y. X., & Su, J. (2022) Cross-linked β-CD-CMC as an effective aqueous binder for silicon-based anodes in rechargeable lithium-ion batteries. RSC advances, 12(10): 5997-6006.

[39]. Zeng, F., Wang, W., Wang, A., Yuan, K., **, Z., & Yang, Y. S. (2015) Multidimensional polycation β-cyclodextrin polymer as an effective aqueous binder for high sulfur loading cathode in lithium–sulfur batteries. ACS applied materials & interfaces, 7(47): 26257-26265.

[40]. Wang, J., Yao, Z., Monroe, C. W., Yang, J., & Nuli, Y. (2013) Carbonyl‐β‐cyclodextrin as a novel binder for sulfur composite cathodes in rechargeable lithium batteries. Advanced Functional Materials, 23(9): 1194-1201.

[41]. Arima, H., Motoyama, K., & Higashi, T. (2017) Potential use of cyclodextrins as drug carriers and active pharmaceutical ingredients. Chemical and Pharmaceutical Bulletin, 65(4): 341-348.

[42]. Davis, M. E., & Brewster, M. E. (2004) Cyclodextrin-based pharmaceutics: past, present and future. Nature reviews Drug discovery, 3(12): 1023-1035.

[43]. Uekama, K., & Hirayama, F. (1978) Inclusion complexation of prostaglandin F2α with α-and β-cyclodextrins in aqueous solution. Chemical and Pharmaceutical Bulletin, 26(4): 1195-1200.

[44]. Hirayama F, Uekama K, Koinuma H. (1980) Molecular dynamics of prostaglandin F2α-cyclodextrin complexes in aqueous solution. Chem Pharm Bull 28:1975–1980.

[45]. Gao, Y., Li, G., Zhou, Z., Guo, L., & Liu, X. (2017) Supramolecular assembly of poly (β-cyclodextrin) block copolymer and benzimidazole-poly (ε-caprolactone) based on host-guest recognition for drug delivery. Colloids and Surfaces B: Biointerfaces, 160: 364-371.

[46]. Camargo, F., Erickson, R. P., Garver, W. S., Hossain, G. S., Carbone, P. N., Heidenreich, R. A., & Blanchard, J. (2001) Cyclodextrins in the treatment of a mouse model of Niemann-Pick C disease. Life sciences, 70(2): 131-142.

[47]. Walkley, S. U., Davidson, C. D., Jacoby, J., Marella, P. D., Ottinger, E. A., Austin, C. P., ... & Ory, D. S. (2016) Fostering collaborative research for rare genetic disease: the example of niemann-pick type C disease. Orphanet journal of rare diseases, 11: 1-11.

Cite this article

Yang,J. (2025). β-Cyclodextrins and Its Applications . Applied and Computational Engineering,159,1-9.

Data availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

Disclaimer/Publisher's Note

The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

About volume

Volume title: Proceedings of the 5th International Conference on Materials Chemistry and Environmental Engineering

Conference website: https://www.confmcee.org/
ISBN:978-1-80590-143-3(Print) / 978-1-80590-144-0(Online)
Conference date: 17 January 2025
Editor:Harun CELIK
Series: Applied and Computational Engineering
Volume number: Vol.159
ISSN:2755-2721(Print) / 2755-273X(Online)

© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license. Authors who publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See Open access policy for details).